BMB Reports Papers in Press available online.

Search Papers In Press
This galley proof is being listed electronically before publishing the final manuscript (It's not final version).

 
Single cell heterogeneity in human pluripotent stem cells
Seungbok Yang 1 (Graduate student), Yoonjae Cho 1 (Graduate student), Jiwon Jang 1,* (Professor)
1Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Abstract
Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.
Abstract, Accepted Manuscript(in press) [Submitted on July 16, 2021, Accepted on August 29, 2021]
  Copyright © KSBMB. All rights reserved. / Powered by INFOrang Co., Ltd