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ABSTRACT 

Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the 

cellular system. The past several decades have witnessed major leaps in our understanding of 

the biological mechanism of aging using dietary, genetic, pharmacological, and physical 

interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial 

function, have emerged as prominent regulators of aging. Mitochondria have been considered 

to play a key role largely due to their production of reactive oxygen species (ROS), resulting 

in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, 

known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging 

field, but increasing inconsistent evidence has led to criticism and rejection of this idea. 

However, MFRTA should not be hastily rejected in its entirety because we now understand 

that ROS is not simply an undesired toxic metabolic byproduct, but also an important 

signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term 

traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It 

encompasses numerous other key biological processes, including the following: (i) complex 

metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) 

immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding 

mitochondria in aging and their emerging roles based on recent advances. We will also discuss 

how the mitochondrial genome integrates with major theories on the evolution of aging.   
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INTRODUCTION 

Mitochondria are unique cellular organelles in that they inherently possess their own genome 

in the form of a circular DNA (mitochondrial DNA; mtDNA) which presumably derived from 

endosymbiotic alpha-proteobacteria. Traditionally, the main function of mitochondria has 

been considered to be ATP production by oxidative phosphorylation. However, recently, 

mitochondria have been increasingly appreciated as a major hub that transmits adaptive 

regulatory signals to control a wide range of cellular functions, including immunity, survival, 

and homeostasis, with strong implications in aging. Mitochondria regulate many age-related 

pathways including senescence, unfolded protein response, autophagy, and inflammation. 

Some prominent pathways include the following: (i) reactive oxygen species (ROS) signaling 

that have a broad cellular impact including nuclear gene regulation, (ii) metabolite signaling, 

(iii) mitochondrial damage-associated molecular patterns (mtDAMPs) that consist of 

molecules released from injured mitochondria, (iv) mitochondrial unfolded response (UPRmt) 

whereby mitochondrial perturbations activate stress-responsive transcriptional responses in the 

nucleus via factors such as activating transcription factor associated with stress-1 (ATFS-1) in 

C. elegans and ATFS-5 in mammals, and (v) mitochondrial-derived peptides (MDPs) that are 

factors encoded in the mtDNA. Notably, mitochondrial communication is an emerging 

biology with increasing evidence for a key role in normal aging and age-related disease, but 

the mechanistic details are largely unclear. In this review, we will discuss mitochondrial 

communication, with an emphasis on how this communication influences cellular function, 

homeostasis, and aging.  
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MITOCHONDRIAL GENOMIC INSTABILITY AND AGING 

Several theories have been proposed to unravel the biological basis of aging. The 

mitochondrial free radical theory of aging (MFRTA) has been a prominent concept that 

describes mitochondria as a major driving force of aging. Proposed by Denham Harman first 

in the 1950s, the theory posits that the progressive accumulation of cellular damages inflicted 

by free radicals generated during mitochondrial metabolism leads to aging [1,2]. However, 

MFRTA has been increasingly unfavored because of inconsistent data that suggest alternative 

mitochondrial contributions to aging. Here, we will discuss the past, present, and future of the 

role of mitochondria in lifespan and healthspan. 

Free radicals are molecules with at least one unpaired electron. During mitochondrial 

oxidative phosphorylation, electrons can ‘leak’ to form free radicals that react with 

surrounding oxygen to generate reactive oxygen species (ROS), which in turn can damage 

cellular macromolecules such as lipids, protein, and DNA. Mitochondrial DNA (mtDNA), due 

to its proximity to the site of ROS production, was thought to be highly vulnerable [3]. In 

addition,Further athe contemporary notion that the mitochondrial DNA repair system was 

inferior to the nuclear counterpart provided added support to MRFTA [4]. However, mtDNA 

integrity is maintained at multiple levels, including a repair system that is more versatile than 

previously thought [5], physical shielding by nucleoids [6,7], mitochondrial fission and fusion 

[8,9], and mitophagy [10].  Nonetheless, mtDNA mutation frequency increases with age in 

various animal models and humans [11,13,14], although their role as the driver of aging has 

been unclear [15,16]. A mutation load greater than 60%-90%, which is beyond what is 
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incurred by aging, has been suggested to be necessary for age-related phenotypes to manifest 

[17-19].  

Genetic manipulations of the antioxidant system intended to test MFRTA (i.e., the role of 

ROS in aging) more directly has been inconsistent and inconclusive [20]. Only some of the 

cellular antioxidant systems that were inactivated shortened lifespan in  yeast [i.e. copper-zinc 

superoxide dismutase (CuZnSOD; sod1), manganese superoxide dismutase (MnSOD; sod2), 

and copper chaperone (ccs1)] [21,22], worms (sod isoforms) [23], flies (sod1 and sod2) [24-

27],  and mice (i.e. sod1) [28]. Notably, many antioxidant genes did not significantly affect 

lifespan in these model organisms. On the contrary, it has been shown that overexpression of 

antioxidant components including sod1 and sod2 can increase lifespan in yeast [29], worms 

[30,31], and flies [32-34]. In mice, it has been shown that overexpression of  human catalase 

localized to mitochondria (mCAT) can decrease oxidative stress and extend lifespan [35]. It 

can also improve age-dependent insulin resistance [36]. One caveat of the report by Schriner 

et al. [35] was that lifespan extension was significant in mCAT mice that were two to four 

generations backcrossed to the C57BL/6J strain. However, the longevity effect diminished 

after > 9 generations. This could be a secondary effect derived from epistasis and/or CMV 

element methylation [37].  

Perhaps the most direct challenge to MFRTA comes from the failure to detect age-dependent 

increase in ROS-induced mtDNA damage. DNA mutations that arise from ROS can cause an 

8-oxo-2'-deoxyguanosine (8-oxodG)-mediated G-to-T transversion [38]. However, mtDNA 

mutations in brain and heart of old mice (< 24 mo. vs < 10 months) were transitions whereas 

G-to-T transversions were modest [39]. Notably, transitions are mostly caused by replicative 
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infidelity (i.e., DNA polymerase errors), indicating that replicative errors, not ROS, are the 

main culprit of age-dependent mtDNA mutations. In addition, ultra-deep hepatic mtDNA 

sequencing showed increased age-dependent replicative errors, not ROS-dependent damage 

[40]. Similarly, highly sensitive duplex sequencing of aged human pre-frontal cortex mtDNA 

(> 75 yrs vs. < 1 yr) revealed higher proportions of replication errors rather than oxidative 

damage [41].  

Inactivating the proofreading activity of mitochondrial-specific DNA polymerase γ (mtDNA 

mutator in mice) by targeted mutagenesis at amino acid position 257 (D257A) increased 

mtDNA mutation frequency to supraphysiological levels in mice: ~2,500-fold and ~500-fold 

higher in homozygous (polgmut/mut) and heterozygous (polg+/mut) mutant mice, respectively [39].  

Although homozygous (polgmut/mut) mice exhibited accelerated aging phenotypes and 

significantly reduced lifespan, heterozygous (polg+/mut) mice did not show early signs of aging. 

They had a normal lifespan [39,42]. Furthermore, mtDNA mutator mice exhibited OXPHOS 

dysfunction without significant increase of oxidative damage [43-45]. Notably, ROS levels in 

young mtDNA mutator mice were not increased despite high levels of mtDNA mutations [46]. 

Nonetheless, these mutations have been implicated in more than 300 diseases that are linked to 

aging and age-related diseases listed in the Human DNA Polymerase Gamma Mutation 

Database (http://tools.niehs.nih.gov/polg) [47]. Lastly, mtDNA deletions that become 

prevalent with aging [48-50] are significantly increased in short-lived homozygous (polgmut/mut) 

mice, but not in heterozygous (polg+/mut) mice that had a normal lifespan [51]. These results 

suggest a more complicated connection between mtDNA mutation frequency and aging. 
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Further investigations are needed to identify other aspects of mtDNA mutator mice such as 

mitochondrial communication.  

 

CELL-AUTONOMOUS MITOCHONDRIAL COMMUNICATION AND AGING 

Eukaryotic cells are functionally compartmentalized into organelles with assigned distinct 

tasks that work in concert. Such subcellular coordination is mediated by inter-organellar 

communication to maintain cellular homeostasis. The mechanism underlying inter-organellar 

communication is an emerging topic in biology that has much implications for aging. On that 

line, the connection between mitochondria and the nucleus is of special interest considering 

that they uniquely possess independent genomes (Figure 1A).  

 

Mitonuclear communication 

Mitochondria presumably originate from α-proteobacteria that have sustained an 

endosymbiotic relationship with our ancestral cells ~1.5 billion years ago. Notably, 

mitochondrial retained a portion of the original bacterial genomes that co-evolved with 

nuclear genome. However,   mitochondria import over a thousand proteins that are encoded in 

the nuclear genome to maintain their diverse functions, reflecting their close relationship. 

Therefore, it is critical that mitochondria and the nucleus dynamically communicate (i.e., 

mitonuclear communication) with each other to coordinate adaptive responses to the 

constantly changing intrinsic and extrinsic cellular milieu and maintain homeostasis. In fact, 

impaired mitonuclear communication is strongly implicated in aging and age-dependent 
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diseases. Mitonuclear communication is bi-directional. It is mediated by several factors 

transmitted from each organelle. In this review, we will focus on signals transmitted from 

mitochondria to the nucleus (i.e., retrograde signals), including reactive oxygen species (ROS), 

metabolites, mitochondrial damage-associated molecular patterns (mtDAMP), mitochondrial 

unfolded response (UPRmt), and mitochondrial derived peptides (MDPs).  

 

Reactive Oxygen Species (ROS) signaling  

ROS is often considered as a toxic metabolic byproduct that causes detrimental damage to 

multiple cellular components, thereby contributing to the aging process [52,53]. However, as 

discussed above, mitochondrial ROS is not the major cause of mtDNA mutations, indicating a 

more complex cellular role. Actions of ROS are pleiotropic. They cause oxidative stress at 

higher concentrations (pathological) while they act as signaling molecules at lower levels 

(physiological). In fact, physiological ROS response has been suggested as eustress [54] that 

increases mitohormesis as an adaptive response to promote health and extend lifespan [55].  

Increasing interest in ROS as signaling molecules that regulate normal physiological processes 

has provided insight into its role in regulating lifespan and/or healthspan [54,56,57]. Many In 

fact,  lifespan extension inusing in various model organisms such as worm, fly, and mice is 

mediated by retrograde ROS. (53). In worms, RNAi screens have have identified long-lived 

animals that have harbor mutations in mitochondrial respiration [58,59]. On that line, 

retrograde ROS signaling can mediate lifespan extension in worms with impaired insulin/IGF-

1 signaling while inhibition of ROS signals using antioxidants can reduce such longevity by 

up to 60% [60]. Furthermore, a mild increase in ROS levels by inhibiting respiration can 
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activate transcription factor hypoxia-inducible factor 1 (HIF-1) and consequent nuclear gene 

expression to promote longevity in worms [61]. In addition to modulating factors, ROS can 

also lead to epigenetic alternations [62,63]. For instance, ROS can regulate the chromatin 

binding capacity of histone demethylase Rph1p, thereby extending chronological lifespan in 

yeast [64]. Moreover, ROS can promote mitochondrial unfolded protein response (UPRmt). 

This will be further discussed in the following section.   

 

Mitochondrial unfolded protein response (UPRmt) 

Mitochondrial unfolded protein response (UPRmt) is a mitochondria-to-nuclear communication 

mechanism that promotes adaptive regulation of nuclear genes related to mitochondrial 

chaperones, proteases, antioxidants, xenobiotic response, and metabolism, ultimately rewiring 

the cell to survive.  UPRmt was initially thought to be triggered by mtDNA depletion or by 

protein misfolding in the mitochondrial matrix [65]. However, it now encompasses various 

mitochondrial stress conditions, including dysfunctional metabolism, defective iron sulfur 

cluster assembly, and immune response [65,66]. The activating transcription factor associated 

with stress 1 (ATFS-1) in worms is a major mediator of UPRmt. Normally, ATFS-1 is 

imported into mitochondria for proteolytic degradation. However, mitochondrial stress will 

trigger ATFS-1 to translocate from mitochondria to the nucleus where it regulates the 

expression of a considerable portion of mitochondrial stress-responsive genes [66,67]. Such 

bi-organellar trafficking to coordinate mitonuclear communication is possible because ATFS-

1 possesses both a mitochondrial-targeting sequence (MTS) and a nuclear localization signal 

(NLS) [66,67]. ATFS-1 also plays a role in chromatin remodeling which is required for full 
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activation of UPRmt via the histone methyltransferase met-2 and a nuclear co-factor lin-65 to 

promote longevity [68]. CLOCK-1 (CLK-1; human homolog COQ7) acts as a ROS barometer 

that mediates mitochondria to nuclear signaling by activating UPRmt. clk-1 null worms have 

extended lifespans [69].  Such effect appears to be mediated by UPRmt [67]. In mice, the loss 

of clk1 also increases cellular fitness and lifespan [70].  

 

Metabolite signaling 

Mitochondria are metabolic hubs that perform a wide range of catabolic and anabolic 

processes, thereby generating a variety of metabolites. Mitochondrial metabolites can also act 

as secondary messengers for genetic or epigenetic regulation [71,72]. Of these metabolites, 

many are products of the tricarboxylic acid (TCA) cycle, such as acetyl-coenzyme A (acetyl-

CoA), succinyl-coACoA, and nicotinamide adenine dinucleotide (NAD+). The pyruvate 

dehydrogenase (PDH) complex that normally resides in mitochondria and generates acetyl-

coenzyme A (acetyl-CoA) can translocate from mitochondria to the nucleus where it is 

involved in producing acetyl-CoA in the nucleus and modulate histone acetylation which 

requires acetyl-CoA as a substrate for lysine acetylation [73,74]. Under growth conditions, 

acetyl-CoA levels are higher in the nucleus and cytosol for lipid synthesis and histone 

acetylation. However, under starvation conditions, acetyl-CoA predominantly resides in 

mitochondria for ATP and ketone body production [75]. Succinyl-CoA is another TCA cycle 

intermediate that can post-translationally modify proteins by succinylating lysine residues of 

proteins [76] such as histones, thereby affecting chromatin dynamics and consequently the 

epigenome [77]. In a similar way, other TCA intermediates, including oxaloacetate, malate, 
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fumarate and α-ketoglutarate, can also induce genetic and epigenetic reprogramming and 

extend worm lifespan [78]. NAD+ is also a crucial mitochondrial gero-metabolite that declines 

with age [79,80]. Reduced age-dependent NAD + availability is linked to decreased 

deacetylase sirtuin activities, ultimately affecting the communication between mitochondria 

and nucleus [81,82]. It also affects longevity [83,84]. Retrograde Ca2+ is another important 

inorganic gero-metabolite [85]. Nuclear skeletal muscle gene expression is regulated by 

mitochondrial Ca2+ which mediates mitochondria to nucleus route [86].  

 

Mitochondrial damage-associated molecular patterns (mtDAMP) 

Our immune system becomes progressively impaired with age, leading to the loss of immune 

function (i.e., immunosenescence) and elevated chronic low-grade inflammation (i.e., 

inflammaging) [87]. Immune responses can be triggered not only by foreign 

materials/organisms, but also by endogenous factors. Pathogen-associated molecular patterns 

(PAMPs) derived from bacteria, fungi, and viruses can induce innate immune responses via 

inflammasomes that are intracellular complexes capable of promoting pro-inflammatory 

cytokines such as interleukin-1β (IL-1β) and IL-18 [88]. Damage-associated molecular 

patterns (DAMPs) derived from endogenous intracellular components that are released during 

cellular stress and/or damage can also mount an immune response [89]. Especially, injured 

mitochondria can release their contents known as mitochondrial damage-associated molecular 

patterns (mtDAMP) recognized as PAMPs owing to their bacterial ancestry. Some well 

described mtDAMPs include mtDNA, N-formyl peptides (specific to mitochondrially-

translated proteins), and fragments of mitochondrial proteins [90,91]. The innate immune 
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system can express pro-inflammatory cytokines upon sensing circulating mtDNA and N-

formyl peptides using pattern recognition receptors (PRR) such as toll-like receptors (TLRs) 

and NOD-like receptors (NLRs) [91]. Notably, circulating mtDNA levels are increased with 

age. Their increase is associated with elevated levels of cytokines and inflammatory markers, 

indicating a role of mtDNA in inflammaging [92] and may . These events appears to be 

increased in the elderly. They might  individuals and contribute to the development of the age-

related diseases development and inflammaging [93,94].  

 

Mitochondrial-derived peptides (MDPs) 

The human mtDNA encodes only 13 protein-coding genes that are all structural components 

of the electron transport chain (ETC) without known signaling roles. Thus, active gene-

encoded mitonuclear communication pathways were known to be exclusively mediated by 

factors encoded in the nuclear genome. More recently, short open reading frames (sORFs) 

encoded in the mitochondrial genome that yield bioactive peptides, collectively referred to as 

mitochondrial-derived peptides (MDPs), have been identified [95]. There are now eight 

published MDPs, including humanin, MOTS-c (mitochondrial open reading frame of the 

twelve S rRNA type-c), and small humanin-like peptide (SHLP))1- to SHLP6. They regulate 

various cellular functions. Humanin is encoded within the mitochondrial 16S rRNA. It was 

identified from a surviving brain fraction of an Alzheimer’s disease (AD) patient as a 

protective factor against AD-related toxins such as β-amyloid [96]. It is also a binding partner 

of insulin-like growth factor binding protein 3 (IGFBP-3) [97] and an anti-apoptotic factor that 

inhibits Bax [98]. SHLP1- to SHLP6 were also identified within the 16S rRNA [99]. MOTS-c 
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is encoded within the mitochondrial 12S rRNA. It acts as a regulator of metabolic homeostasis 

that can prevent diet-induced obesity and insulin resistance, and age-dependent insulin 

resistance in mice [100-102]. Notably, MOTS-c can translocate to the nucleus upon cellular 

stress to regulate adaptive nuclear gene expression by interacting with other stress-responsive 

transcription factors including nuclear factor erythroid 2-related factor 2 (NFE2L2/NRF2) and 

binding to chromatin [103-105]. HEK293 cells that over-express MOTS-c were significantly 

protected against metabolic stress (i.e., glucose and serum deprivation) [103]. This indicates 

that our co-evolved mitonuclear genomes have established a genetically integrated bi-

directional communication system. 

Humanin, SHLP2, and MOTS-c levels decline with age and their actions are positively 

correlated with longevity [95,99,101,106]. Humanin levels are negatively regulated by the 

GH/IGF axis in both mice and humans [107]. Circulating humanin levels are elevated in long-

lived GH-deficient Ames mice, but decreased in short-lived GH-transgenic mice [107]. 

MOTS-c can reversed age-dependent insulin resistance. A and a functional MOTS-c 

polymorphism is related to exceptional longevity in a Japanese population [108,109]. 

Furthermore, the MOTS-c actions are, in part, dependent on sirtuin 1 (SIRT1) and AMPK 

[101,103], two prominent related factors shown to regulate longevity in various model 

organisms [110,111].   

Because of the unique bi-genomic cellular setup, it is important to consider mitonuclear 

epistasis. mtDNA is maternally transmitted, which forces a cell to coordinate gene expression 

with a foreign (i.e., paternal) genome upon fertilization. The compatibility between maternal 

mtDNA and paternal nuclear DNA is thea major ground for intergenomic epistasis [112-114]. 
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Nuclear gene expression is dependent on the mtDNA background. Nuclear mutations can 

manifest very differently under varying mtDNA context. For instance, patients with a 

mutation in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) exhibit a wide range 

of cardiomyopathies that are correlated with their mtDNA  lineage [115]. In 2015, the United 

Kingdom approved mtDNA replacement therapy to allow a woman to transfer her nuclear 

genome to an egg with healthy mitochondria to prevent transmission of mtDNA disease. Such 

forced mtDNA-nDNA combinations may be incompatible. It can cause dysregulated 

mitonuclear communication (Hamilton 2015). In fact, alloantigenicity and immune rejection 

have been documented in nuclear-transfer-derived embryonic stem cells (NT-ESCs) [116]. In 

addition, Mitochondrial-Nuclear eXchange (MNX) mice with interchanged nuclear and 

mitochondrial genomes from different mice (similar to three-parent baby) have differential 

oxidative stress, resistance to heart failure, lipid concentration, and bioenergetics [117,118]. 

Aging is a complex process with strong genetic components. It is likely to be dependent on 

both of our genomes. Thus, the interaction between factors encoded in each genome may 

further our understanding of aging genetics.  

 

Other mito-organellar communication  

Cellular functions are compartmentalized into various organelles with unique roles. Their 

orchestrated processes together support survival. Therefore, inter-organellar communication is 

key to cellular homeostasis and ultimately organismal fitness. On that line, mitochondria not 

only communicate with the nucleus, but also dynamically interact with other organelles [119] 

(Figure 1B). Although the field of inter-organellar communication is still in its early stages, it 
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is undoubtedly of great interest. Further investigation of mito-organellar communication with 

high spatial and temporal resolution and identification of key signaling mediators are 

necessary to understand the complex coordination of subcellular processes and their roles in 

aging. Here, we will focus on mitochondrial communication with the ER, peroxisomes, and 

lysosomes in the context of aging.  

Mitochondria and Endoplasmic Reticulum (ER) Communication 

The ER physically interacts with mitochondria to regulate organelle morphology and various 

metabolic signaling [120]. The contact sites that ER forms with mitochondria are called 

mitochondria-associated membranes (MAM),,  which haves numerous roles in controlling 

lipid and calcium homeostasis, mitochondrial metabolism, insulin and glucose signaling, and 

ultimately aging [121]. Proteome analysis of MAM has revealed its connection to various age-

related diseases, such as Alzheimer's disease and type 2 diabetes [121]. Cisd2 knockout mice 

also provide evidence that MAM may play a role in aging. {Editor’s Note: Please cite 

reference for the highlighted area. This is discussed in the following sentences and 

referenced}Cisd2 is a regulator of intracellular Ca2+ and glucose homeostasis that localizes to 

the ER, mitochondrial membranes, and MAM [122]. Mice that lacked Cisd2 showed 

mitochondrial degeneration and functional decline in skeletal muscle and neurons, glucose 

intolerance, premature aging phenotypes (e.g. ocular degeneration, dermal deterioration, 

sarcopenia, etc.), and shortened lifespan [123], implying that disruption of mitochondria and 

ER communication could affect the aging process.  

Mitochondria and Peroxisome Communication 
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Increasing evidence points to the mitochondrial-peroxisomal connection as an important 

aspect of  aging and age-related disease [124,125]. Restoring the import of peroxisomal 

catalase which decomposes hydrogen peroxide can restore mitochondrial integrity and reverse 

the senescent phenotype of human fibroblasts [126]. Another study demonstrated that 

peroxisome proliferation and higher peroxisomal antioxidant activity can regulate the aging of 

hippocampal neurons [127,128]. Furthermore, the three-way communication among 

mitochondria, peroxisome, and ER may contribute to the aging process by fine-tuning redox 

and ion signaling pathways [129]. Redox-regulatory enzymes can assemble at the “redox 

triangle” created by these three organelles to sense ROS accumulations and redox imbalances. 

The redox triangle may become dysfunctional with age [129]. However, further investigations 

on the mechanistic details regarding the multidirectional communication among mitochondria, 

ER, and peroxisome and their roles in aging are needed.  

Mitochondria and Lysosome Communication 

Lysosomes are subcellular sites of protein turnover and metabolite storage. Its dysfunction is 

linked to aging and age-associated diseases [130]. Mito-lysosomal communication is mediated 

by physical contact, lipids, and metabolite exchange [131]. In yeast, lysosome-like vacuoles 

are functionally linked to mitochondria. Increased vacuolar pH gives rise to age-dependent 

mitochondrial dysfunction [132], indicating that mito-lysosomal communication is important 

for organismal homeostasis and lifespan. In addition, the contact site between mitochondria 

and yeast lysosome-like vacuoles known as vCALMP (vacuole and mitochondria patch) is 

enriched with ion and amino acid transporters. It is important for lipid exchange lipid between 

the two organelles [133]. Furthermore, the inter-organellar lipid homeostasis coordinated 
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among mitochondria, lysosomes, and ER [ER–mitochondria encounter structure (ERMES)) 

may be important in aging [133,134].  This is also supported by Ltc1 (lipid transfer at contact 

site 1), a sterol-dependent regulator of organelle and cellular homeostasis via its dual 

localization to ER–mitochondria and ER–vacuole contact sites [135]. It is especially important 

in nutrient sensing and signaling [136] as well as replicative aging in yeast [132].  

 

NON-CELL AUTONOMOUS MITOCHONDRIAL COMMUNICATION AND AGING 

Mitochondrial communication is not confined to intracellular coordination. Recent studies 

have shown that mitochondria can also transmit signals to distal cells of different tissues as 

described in this section(95, 137, 138). {Editor’s Note: Please cite reference for the 

highlighted area – Described in this section – this is intro.} Such non-cell autonomous 

mitochondrial signals are often referred as mitochondrial cytokines (mitokines) or 

mitochondrial hormones. The evolutionary aspect of intra-organ mitochondrial 

communication is interesting in that they may represent an archaic endocrine system. Non-cell 

autonomous mitochondrial signals provide another layer of endocrine regulation of longevity 

(Figure 1A).  

 

Mitokines 

The connection between UPRmt and longevity has been investigated in mutant worms with 

perturbed mitochondrial ETC (e.g., cco-1 knockdown) that exhibited extended lifespan [137]. 

Interestingly, cco-1 knockdown in neurons activated UPRmt in the intestine, indicating a 
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soluble factor that could relay signals between distal tissues, dubbed mitokine [138]. In 

addition, Wnt signaling may be a mitokine in worms [139]. Neuronal expression of the Wnt 

ligand/EGL-20 in worms activated cell-non-autonomous UPRmt that required the orchestrated 

actions of a retromer complex, Wnt signaling, and serotonin [139]. In flies, mild ETC 

disruption in muscles prolonged lifespan through UPRmt and insulin signaling [140]. In mice, 

fibroblast growth factor 21 (Fgf21) has also been proposed as a mitokine because its 

production by muscle cells can trigger mitochondrial biogenesis, browning of white adipose 

tissue (WAT), and increase lipid oxidation [141]. These results support the existence of 

systemic mitochondrial communication factors that can regulate longevity, including 

neurotransmitters and neuropeptides [142,143]. The scope of factors that can act as mitokines 

is likely to be broad.  

 

Mitochondrial derived peptides (MDPs)  

MDPs are found in circulation. They can act on certain tissues. Thus, they have been dubbed 

mitochondrial hormones [85,144] [145]. Circulating humanin levels are decreased with age in 

mice and humans [106,107,146]. Humanin is integrated with the GH/IGF-1 axis which is the 

most prominent endocrine regulator of aging. Long-lived GH-deficient Ames mice showed 

higher circulating humanin levels whereas short-lived GH-transgenic mice had lower humanin 

levels compared to their wild type counterparts [107]. Notably, an Ecuadorian cohort with GH 

receptor deficiency (GHRD) that have very low levels of IGF-I are exceptionally protected 

against cancer and diabetes [147]. However, they showed 80% increase in circulating humanin 

levels compared to their unaffected relatives. These studies indicate a role for humanin as an 

FO
R 

RE
VI

EW



BMB Reports Mini Review 

19 

 

endocrine regulator of aging that is tethered with the GH/IGF-1 axis. Similar to humanin, 

levels of circulating SHLP2 are also decreased with age, indicating its relevance to aging as a 

mitochondrial hormone [148]. Plasma levels of MOTS-c are also decreased ~30% in old mice. 

Systemic injection of MOTS-c reversed age-dependent skeletal muscle insulin resistance in 

mice [101].  

 

CONCLUSION 

Mitochondria are versatile organelles that play roles in multiple cellular functions that 

ultimately affect organismal fitness and lifespan/healthspan. The multifaceted nature of 

mitochondria indicates its complex roles in aging and age-related diseases. Thus, it is 

imperative to investigate how mitochondria contribute, and even drive, aging with a 

comprehensive and holistic approach. The silver lining of the downfall of MFRTA is that 

dynamic expansion of concepts and experimental data have continued to reveal the complexity 

and breadth of mitochondria in aging and age-related diseases.  
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FIGURE LEGENDS 

Figure 1. Mitochondrial Communication Modes. (A) Mitochondria communicate to the 

nucleus and other cells (i.e., mitochondrial endocrine signaling) using various mediators such 

as ROS, UPRmt, DAMPs, and mitochondrial-encoded MDPs. (B) Mitochondria also 

communicate with other organelles (e.g., endoplasmic reticulum, lysosomes, and peroxisomes) 

to coordinate complex cellular processes.    
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