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ABSTRACT 

 

 Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular 

heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the 

tissue structure causes a loss of spatial information, which hinders the identification of 

intercellular communication networks and global transcriptional patterns present in the tissue 

architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial 

information have been actively developed. Significant achievements in imaging technologies 

have enabled in situ targeted transcriptomic profiling in single cells at single-molecule 

resolution. In addition, technologies based on mRNA capture followed by sequencing have 

made possible profiling of the genome-wide transcriptome at the 55~100 μm resolution. 

Unfortunately, neither imaging-based technology nor capture-based method elucidates a 

complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific 

biological questions requires balancing experimental throughput and spatial resolution, 

mandating the efforts to develop computational algorithms that are pivotal to circumvent 

technology-specific limitations. In this review, we focus on the current state-of-the-art spatially 

resolved transcriptomic technologies, describe their applications in a variety of biological 

domains, and explore recent discoveries demonstrating their enormous potential in biomedical 

research. We further highlight novel integrative computational methodologies with other data 

modalities that provide a framework to derive biological insight into heterogeneous and 

complex tissue organization. 
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INTRODUCTION 

 Single-cell RNA sequencing (scRNA-seq) technique has enabled us to investigate deeper into 

the functions and characteristics of each cell, looking into the details of its genetic compositions 

of mRNA that are transiently active at the time of the data acquisition (1). Compared to bulk-

RNA sequencing, this is a tremendous step forward that has allowed scientists to gain 

information about the functional differences between individual cell types (2). However, 

scRNA-seq loses spatial information of individual cells, interactions among adjacent cells, and 

local signaling networks. For example, the tumor microenvironment has remained elusive (3, 

4). In order to overcome this limitation, transcriptomic techniques that capture the spatial 

information for tissues of interest have been actively developed (5, 6). 

 Spatially resolved transcriptomics has achieved significant progress in the biomedical research 

field with advances in imaging and next-generation sequencing (NGS) technology. Spatially 

resolved transcriptomics has two main categories: 1) image-based in situ hybridization (ISH) 

and in situ sequencing (ISS) methods; 2) technologies based on mRNA capture, including laser 

capture microdissection (LCM) that are spatially barcoded on slides or beads. The different 

spatially resolved transcriptomic methods have their key features, such as the number of 

transcripts detected, cellular resolution, and size of the region captured. While image-based 

methods require prior knowledge of the genes of interest, NGS-based methods capture the 

whole transcriptome from tissue sections unbiasedly. Also, the spatial resolution of image-

based methods for tissue imaging is limited only by the optical diffraction limit and, therefore, 

suitable for analyzing a subcellular organization. In contrast, the spatial resolution of NGS-

based methods is limited by the physical size of a spot that captures cells. Although both 

methods have improved considerably in the past few years, efforts to refine the sensitivity and 

increase the cellular resolution of these methods are still ongoing. The overview of two main 

spatially resolved transcriptomic techniques is described in Figure 1. FO
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 In this review, we describe how different spatially resolved transcriptomic techniques have 

evolved based on the needs resulting from distinct tissue environments (Table 1) and how those 

methods are combined with the high-throughput scRNA-seq data to complement each 

method’s technical and functional constraints (Table 2).  
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RESULTS 

Development of spatially resolved transcriptomic techniques 

Image-based spatially resolved transcriptomics There are two major approaches that 

visualize targeted genes of interest by fluorescent labels. First, in situ hybridization (ISH) is a 

technique that detects mRNA molecules in thick tissue samples to find gene expression patterns 

in single cells within the native tissue environment. In detail, it detects target sequences using 

fluorescent images generated by hybridization of a complementary probe. This approach has 

advantages in visualizing RNA molecules directly in the original locations of the biological 

environment. However, the high autofluorescence background of tissue samples present 

limitations in detecting a large set of different transcripts simultaneously. 

 In 2016, Shah et al. developed single-molecule fluorescence in situ hybridization (smFISH) 

methods with multi-color and multi-RNA imaging in deep tissues using single-molecule 

hybridization chain reaction (smHCR) (7). The central innovation of smHCR was the 

fluorescent amplification of probes complementary to the target mRNA to increase the 

sensitivity for gene detection. This technique was essential to ensure that puncta generated by 

the fluorescence were bright enough for high sensitivity. Using this approach, deeper tissue 

was successfully visualized with higher sensitivity as a single mRNA was detected in situ, even 

in thick tissues in the intact vertebrate embryo of zebrafish. However, they were only small 

enough for diffraction-limited resolution. Similarly, unamplified cyclic-ouroboros smFISH 

(osmFISH) visualizes each RNA molecule by binding 20 nucleotide-long fluorescently labeled 

DNA probes (8). Subsequently, the expression of 33 marker genes was successfully analyzed 

in mouse somatosensory cortex and hippocampus by conventional epifluorescence microscope. 

 To understand the spatial context of cells, direct imaging of individual RNA molecules within 

intact cells and tissues is vital. The multiplexed fluorescence in situ hybridization (FISH) 

technique has been widely used for this purpose. MERFISH (multiplexed error-robust FO
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fluorescence in situ hybridization) identifies RNA through a combinational labeling approach 

that consists of RNA molecules with error-robust barcodes followed by sequential rounds of 

smFISH to read out these barcodes (9). With this approach, an imaging process with an 

ensemble of fluorescent spots that define binary barcodes (on or off fluorescent signal) allowed 

the characterization of 130 genes in 100,000 cultured U-2 OS cells. The same group improved 

MERFISH-based imaging where scRNA-seq was combined with the MERFISH-based images 

for in situ cell-type identification and mapping (10). This upgraded analysis platform 

successfully identified functionally important 155 marker genes from ~70 neuronal populations 

and spatial organizations in the hypothalamic preoptic region of mice. Another strategy to 

increase the number of distinguished mRNA molecules was achieved by applying four colors 

with eight barcoding rounds into pseudo-colors. Using seqFISH+, images of mRNA for 10,000 

genes in a single cell were acquired with high accuracy and sub-diffraction-limit resolution 

using a conventional confocal microscope (11). This method identified a subcellular 

localization pattern of 10,000 mRNAs in the brain, and ligand-receptor pairs from potential 

cell-cell interactions were suggested by the observed mRNA expression patterns in the cells. 

This proves that seqFISH+ can overcome not only optical crowding and provide a tenfold or 

greater improvement over existing methods, but also enables super-resolved imaging with 

conventional confocal microscopes. 

 Higher intensity of FISH signals is important to improve the gene detection performance. 

Signal amplification by exchange reaction (SABER) technique was designed to amplify the 

intensity of quantitative FISH signals (12). In brief, DNA and RNA FISH probes were first 

chemically synthesized with a primer sequence of their 3’ end extended into primer-exchange 

reaction (PER). In SABER, a multitude of PER-concatemerized probes sets can be hybridized 

to their targets simultaneously and read out in sequential rounds of imaging. With this approach, 

18,000 probes in total targeting a 3.9-Mb region of human metaphase spreads and interphase FO
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cells were mapped to three colors, which all colocalized as expected. However, a key challenge 

of multiplexed FISH is that it is difficult to detect individual target probes in complex tissue 

environments due to the noisy background of tissue. To address this issue, Goh et al. adopted 

an alternative approach to reduce off-target background fluorescence by integrating split-probe 

strategy with multiplexed FISH (13). By improving the bridge probe design to hybridize with 

sufficient complementary base pairing, split-FISH is capable of accurate transcriptomic 

profiling on four mouse tissue types, even in opaque tissue. However, taking sequential images 

with multiple hybridization rounds for several target genes can sometimes be misaligned 

because of possible technical or experimental errors. Therefore, correcting these misalignments 

is an essential step; thus, tools for precise alignments of multiple images have been developed 

(14). 

 Another imaging-based approach for spatially resolved transcriptomics is in situ sequencing 

(ISS). The main advantage of ISS over ISH is that ISS can detect more genes (~10,000) than 

ISH in a non-targeted manner. In ISS-based methods, transcripts were sequenced directly in 

fixed tissues. Specifically, mRNA molecules are reverse transcribed and amplified by rolling 

circle amplification (RCA). The micrometer- or nanometer-sized RCA products are then 

subjected to sequencing-by-ligation (SBL), and the barcode within the probe is simultaneously 

decoded. 

 Wang et al. devised the spatially resolved transcript amplicon readout mapping (STARmap) 

methods to detect and quantify 160 gene sets simultaneously in the mouse primary visual cortex. 

STARmap incorporates hydrogel chemistry, improved padlock-probe technology, and error-

robust SBL methods (15). Also, the extended STARmap can image a larger number of genes 

successfully with a better spatial resolution (1,020 genes detected simultaneously at millimeter-

scale volumes encompassing ~30,000 cells). To overcome the limitation of short reads in ISS, 

a new method utilizing bidirectional sequencing chemistry and an imaging transcript-specific FO
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barcode was developed. With this bidirectional sequencing method, the generated reads were 

efficiently extracted and assembled into longer reads using NGS technology (16). One of the 

most important aspects of sequencing methodology is maximizing throughput for reliable gene 

detection. Hybridization-based in situ sequencing (HybISS) achieved this goal by replacing the 

SBL technique of ISS with sequencing-by-hybridization (SBH) to detect hundreds of target 

genes and successfully applied in mouse and human brains. The SBH enabled detecting genes 

with increased signal-to-noise using autofluorescence quenching (17). When classifying cell 

types, the low throughput of ISS technology might not be sufficient to have reliable outcomes. 

To address this issue, probabilistic cell typing by in situ sequencing (pciSeq) introduced an 

approach that uses ample scRNA-seq classification to identify cell types using multiplexed in 

situ RNA detection (18). Specifically, the probability of assigning each read to a given cell type 

was calculated using a Bayesian algorithm derived from scRNA-seq cluster data. 

 Another attempt has been made with ExSeq where cDNA amplicons are eluted from the 

sample and re-sequenced ex situ with NGS for long-read untargeted and targeted in situ RNA 

sequencing (19). ExSeq yielded the readout of thousands of genes, including splice variants, 

and enabled highly multiplexed mapping of RNAs when applied in mouse hippocampal neuron 

cells and tissues. 

Capture-based spatially resolved transcriptomics Tissues preserved in FFPE blocks can be 

stored from 3-10 years. Using laser capture microdissection (LCM), Romanens et al. extracted 

tissues related to breast cancer that were preserved in FFPE blocks using an optimized protocol 

for hematoxylin and eosin (H&E) staining with the best parameters for dyes, incubation time, 

the thickness of tissue, and surface area for microdissection (20). In the study, Romanens and 

colleagues spatially characterized tumor and immune cells in triple-negative breast cancer. 

Using the immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) 

technique, it became easier to dissect tissues and study particular genes of cells that have FO
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functions that are highly dependent on the spatial organization in the tissue (21). In their study, 

the quality of RNA was immensely improved by a modified high-salt protocol and RNase 

inhibitor, which enabled the investigation of full-length transcripts and isoforms. 

 Compared with the LCM-seq method, Photo-isolation chemistry has the advantage in spatial 

resolution because its photochemical isolation technique uses photo-caged oligo-

deoxynucleotides for in situ reverse transcription (22). This approach has allowed to analyze 

cells in complicated and fine structures, detecting 8,000 genes with 7x104 unique read counts 

per single cell in mouse embryos. These advanced LCM can profile more than 10,000 genes 

from dozens of cells with spatial resolution up to subcellular or subnuclear levels. While the 

sequencing depth is high enough, the analysis is restricted to a limited number of regions. 

 Another strategy to obtain spatially resolved transcriptomic data is to use pre-arranged set of 

barcoded reverse transcription (RT)-primers on glass slides. Spatial Transcriptomics (ST) 

analyzes the transcriptome in individual tissue sections while maintaining two-dimensional 

positional information of tissues. Specifically, slide sections are delivered to a glass slide that 

bears RT-primers and sets of DNA barcodes in situ.  After generating cDNA libraries, NGS was 

carried out with the sequencing libraries. Then, the spatially resolved whole-transcriptome 

information is provided by aligning tissue images with the sorted RNA-seq data that include 

spatial information carried by the barcodes. However, the spatial resolution of ST is limited to 

100 μm with a center-to-center distance of 200 μm which yields around 50 to 100 cells per 

single spot (23, 24). The higher resolution of ST was achieved with the 10X Genomics Visium 

platform that features a physical spot size of 55 μm diameter and a center-to-center distance of 

100 μm. As a result, the 10X Genomics Visium platform has been one of the most popular 

choices for mapping spatial profiles of tissues in interest in various fields, including 

neuroscience, cancer biology, and developmental study (25-27). Spatial cellular resolution and 

the quality of analysis can be further improved by combining two or more different spatially FO
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resolved transcriptomic techniques. Chen et al. combined ISS and capture-based ST methods 

to identify a plaque-induced gene network in micro-and astroglia cells and oligodendrocytes in 

the Alzheimer’s disease model of mouse and human. Then, the oligodendrocyte gene responses 

were confirmed at the single-cell level using ISS with target-specific probes with known cell 

type markers. Combining those two techniques elucidated how amyloid plaques are involved 

in the neurodegenerative process (28). In another study, Ji et al. carried out three techniques of 

single-cell, spatially resolved transcriptomics, and multiplexed ion beam imaging (MIBI) to 

investigate the tumor microenvironment of cutaneous squamous cell carcinoma (29). Spatially 

resolved transcriptomes from 17,064 spots were obtained utilizing both conventional ST and 

10X Genomics Visium kits. The combination of three methods revealed ligand-receptor 

networks of specific cell types, suggesting tumor-specific keratinocytes as a signaling hub for 

intercellular communication. 

 The techniques for spatial transcriptomics with barcoded oligonucleotide capture array 

described, however, have limitation in the spatial resolution of up to 55~100 μm due to the 

physical size of capturing spots. To resolve the issue of low spatial resolution in capture-based 

sequencing methodology, bead-based capturing sequencing was developed. In 2019, Rodriques 

et al. developed Slide-seq for higher cellular resolution genome-wide analysis using DNA-

barcoded 10 μm beads onto a rubber-coated glass slide (30). In Slide-seq, each bead’s distinct 

barcoded sequence is determined via SBL methods. Using the beads, the resolution comparable 

to the size of an individual cell was achieved by NGS of barcoded RNA-seq libraries and 

successfully applied to the hippocampus area in mice. Slide-seq defined finer cellular 

subpopulations of cerebellar cell types, which had not been identified in previous spatially 

resolved single-cell sequencing studies. Additionally, high-definition spatial transcriptomics 

(HDST) was developed as another effort to accomplish higher resolution for barcoded 

transcripts (31). HDST randomly deposits barcoded poly(d)T oligonucleotides into a 2 μm well FO
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with bead array-based fabrication. Mouse brain and primary breast cancers were profiled with 

25x higher resolution than that of Slide-seq using this method, resulting in a reconstruction of 

the spatial architecture of mouse brain and primary breast cancer tissues. Although Slide-seq 

has a superior spatial resolution compared to other techniques, it has a lower transcript 

detection sensitivity that limits biological applications. To circumvent these restrictive factors 

of the initial version, Slide-seqV2 was developed to offer higher capturing efficiency for 

transcripts by implementing a readily available monobase-sequencing strategy instead of 

dibase-sequencing, leading to a dramatic increase the capture efficiency (32). Another 

advancement from Slide-seq was the application of an error robust computational approach 

using NGS. With the higher number of unique molecular identifier (UMI) per bead (494 UMIs 

per 10 μm), which is higher than HDST, Slide-seqV2 demonstrated that it can detect a rare 

transcript, such as dendritic mRNA in CA1 neurons. Cho et al. developed a high-resolution 

spatial barcoding technology, Seq-Scope, with a 0.5~0.8 μm center-to-center resolution (33). 

This technique was developed based on the NGS technology that utilizes randomly barcoded 

single-molecule oligonucleotides with an outstanding transcriptome capture capacity (~4,700 

UMIs/cell on average), comparable to the conventional scRNA-seq methods. This technical 

improvement enabled visualizing the histological organization of the transcriptome 

architecture in liver tissues at subcellular level. More recently, another high-resolution spatial 

barcoding technology, SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq) was 

introduced with a center-to-center resolution of 500~715 nm (34). This method applies 

microfluidic channels perpendicularly for unique pairwise barcoding on each spot of the tissue 

section. Stereo-seq can capture up to 133,775 UMI per 100 μm diameter bin, superior to other 

available technologies, including Seq-Scope compared to the same bin resolution. Stereo-seq 

was capable of profiling whole mouse embryo, demonstrating that it can be applied to a much 

larger tissue such as whole human brain sections. FO
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Integration of spatially resolved transcriptomic data with other methods 

 While scRNA-seq and spatially resolved transcriptomic data have limitations, a computational 

integration of two or more data modalities can better characterize spatial cell type compositions 

and local cell states in the tissues. Here, we describe the improvements benefiting from the 

novel in silico computational algorithms, which integrate spatially resolved transcriptomic data 

with additional data modalities, such as scRNA-seq, and several other Omics approaches to 

better understand spatial architecture of tissues and to derive biological insights. 

Combination with scRNA-seq probabilistic cell typing by in situ sequencing (pciSeq) was 

used to integrate scRNA-seq data with ISS for cluster analysis (18). To design a gene panel, 

genes were grouped leveraging prior scRNA-seq cell type classification. Using pciSeq, Qian 

et al. were able to map the inhibitory neurons of hippocampal area CA1, making it feasible to 

confirm results for ISS. Before this study, the ISS RNA detection had not been proven to 

distinguish fine cortical cell types identified from previous reports. Defining how cell states 

correlate with spatial cell distribution and investigating how the local signaling environment 

impacts molecular signatures and, ultimately, the fate of cells is inevitably important to 

understand mouse embryo changes during early development. Lohoff and colleagues 

delineated the precise location of distinct cell types within a single reference scaffold by 

combining a high-resolution seqFISH map with scRNA-seq (35). From this study, integration 

of single-cell transcriptome with spatial context enabled not only identification of 387 target 

genes from seqFISH but also the imputation of the spatially resolved map at cellular resolution 

in a mouse organogenesis model. 

 To improve the low spatial resolution of capture-based spatial methods, the two data modalities 

from each scRNA-seq and spatially resolved transcriptomic methods were integrated into other FO
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studies. Cell type signature defined by scRNA-seq was integrated with Slide-seq data, 

facilitating the discovery of spatially defined gene expression patterns from mouse 

hippocampus. For reconstructing expression of each Slide-seq data, non-negative matrix 

factorization regression (NMFreg) was utilized as a combination of cell-type signatures defined 

in the reference scRNA-seq data (30). In addition, several computational techniques for 

combining single-cell and MIBI or multiple spatial transcriptomics were reported to achieve a 

higher cellular resolution (28, 29). Moncada et al. integrated scRNA-seq with the ST method 

to study the microenvironment of primary pancreatic tumors by introducing multimodal 

intersection analysis (MIA) and reported that fibroblast-specific genes in the tissue of 

pancreatic ductal adenocarcinoma overlap significantly with the set of genes specific to the 

cancer region from the ST data (36). The study also identified the colocalization of 

inflammatory fibroblasts and cancer cells expressing a stress-response gene module. 

Deep learning-based spatial information Machine learning algorithms have been extensively 

used as an imputation method for predicting cell types based on the context of relevant datasets. 

For example, DEEPsc, an artificial neural network model for categorizing cell types, was 

trained to predict a specific cell type with sets of genes from the scRNA-seq reference atlas 

dataset (37) and achieved an accuracy comparable to several existing methods (2-norm, infinity 

norm, mean percent difference, and large margin nearest neighbor) for applications utilizing 

3,000 highly variable genes. Additionally, BayesSpace applies a Bayesian statistical method 

that takes the spatial gene expression profile from neighborhoods as a prior and achieves a 

super-resolution image (38). It is noteworthy that BayesSpace does not require separate 

scRNA-seq gene expression signature or preselected marker genes. SPICEMIX, another 

approach using non-negative matrix factorization (NMF) based on probabilistic latent variable 

modeling, calculates spatial affinity between the metagenes and their proportions of FO
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neighboring cells (39). Data acquired from seqFISH+ and STARmap were used to demonstrate 

its ability to refine the identification of cell types in mouse primary visual cortex. SpaOTsc was 

developed to better understand cell-cell communications in the spatially resolved 

transcriptomic datasets and inferred the spatial distance between every pair of cell types by 

computing the optimal transport distance measured by utilizing spatial measurements of a 

relatively small number of genes without the scRNA-seq dataset (4). The results from SpaOTsc 

indicate that signal sender cells exhibit more spatial localization patterns, while the locations 

of the signal receivers are more scattered over throughout the tissues of zebrafish and the mouse 

visual cortex. SpaOTsc can be used both to integrate non-spatial single-cell measurements with 

the spatial data and to reconstruct spatial cellular dynamics in tissues. 

Deconvolution of spatially resolved transcriptomics Owing to the lower cellular resolution 

of spatial barcoding capture-based methods, the proportions of discrete cell types for a given 

spot have been inferred by various deconvolution algorithms. Robust cell type decomposition 

(RCTD) is based on statistical model maximum-likelihood estimation to approximate the 

proportions of spatially localized cellular subtypes in spatially resolved transcriptomic data 

such as Slide-seq or 10X Genomics Visium datasets (40). RCTD accurately recapitulated 

known cell type spatial distribution in both Slide-seq and 10X Genomics Visium in the mouse 

brain tissues. Alternatively, SPOTlight uses NMF alongside non-negative least squares for 

accurate and sensitive cell-type detection, seamlessly applied in mouse brain and 22 immune 

subpopulations from pancreatic adenocarcinoma samples with a curated annotation (41). 

Recently, SpatialDWLS was shown to have a higher degree of sensitivity and accuracy than 

RCTD and SPOTlight using the dampened weighted least squares (DWLS) algorithm in which 

the weight is selected to minimize the overall relative error rate to infer cell-type composition 

(42). By applying SpatialDWLS to spatial transcriptomics dataset of mouse brain and human FO
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embryonic heart, increased abundance of different cell types was observed during development. 

Finally, DestVI was developed to alleviate the problem of the complicated deconvolution, 

especially when there is a continuum of cell states that cannot be clearly distinguished (43). To 

address this problem, deconvolution of spatially resolved transcriptomic profiles used 

Variational Inference (DestVI), a Bayesian model-based multi-resolution cell-type 

deconvolution algorithm, was developed. DestVI learns cell type-specific profiles and sub-cell 

type variations using a conditional deep generative model. By combining scRNA-seq and 

spatially resolved transcriptomic data from the same tissue, DestVI was used to study the 

immune interplay within lymph nodes and explore the spatial tissue architecture of the mouse 

tumor microenvironment. Notably, DestVI outperforms existing discrete deconvolution 

approaches such as RCTD, SPOTlight, and Seurat. 

Cell type inference via image-based machine learning H&E-stained histology images are 

easy and cheap to obtain and routinely generated in clinics. Several studies integrated spatially 

resolved transcriptomics and histopathology images to extract feature information and make 

predictions by various machine learning algorithms. ST-Net implements a convolutional neural 

network model and was trained on 68 breast tissue sections from 23 patients with breast cancer 

to predict the gene expression based on histopathology images (44). In addition, HisToGene 

adopts Vision Transformer for image recognition and predicts super-resolution gene expression. 

Using the same dataset from ST-Net as a training set, HisToGene outperformed ST-Net in both 

gene expression prediction and clustering tissue regions accuracy (45). stLearn also integrates 

three types of datasets, including spatial dimensionality, tissue morphology, and genome-wide 

transcriptional profile using a deep learning network model (46) and predict cell type clustering, 

intercellular interaction, and reconstruction of spatial transition gradients, which were all 

successfully conducted with brain and breast cancer datasets. SpaCell and CoSTA also utilize FO
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a convolutional neural network model to predict malignant cells in prostate cancer and quantify 

the level of spatial expression relationships between each pair of genes from mouse brain 

samples, respectively (47, 48). Alternatively, STUtility uses raw 10X Genomics Visium RNA-

seq and image data as input and processes the images, aligns consecutive stacked tissue images, 

and finally visualize them all together in 3D. Another useful functionality of STUtility includes 

NMF to decompose 10X Genomics Visium data into a lower dimension and a method to 

identify neighboring capture spots in a spatial network (49). This approach was applied in 

human breast cancer tissues to define the leading edge of the tumor region, eventually leading 

to the delineation of tumor heterogeneity between the tumor core and the tumor front. 

Bergenstråhle et al. also constructed a deep generative model for spatial data fusion by 

combining low-sensitivity, low-resolution in situ RNA capturing expression data with high-

resolution histological image data (50). This method inferred de-noised full-transcriptome 

spatial gene expression at the same resolution as the image data in mouse olfactory bulb by 

jointly training a recognition neural network that maps the image data to the variational 

parameters of the latent state to optimize model parameters. 

Cellular protein information Single-cell profiling via proteomics approach has become 

progressively comprehensive, and unbiased profiling of protein expression has had a broad 

impact in biomedical research (51). Recent advances in techniques such as epitope-based 

imaging, mass cytometry, and mass spectrometry enable protein expression to be mapped 

across tissue with high resolution. Stoeckius et al. introduced a method named cellular indexing 

of transcriptomes and epitopes by sequencing (CITE-seq) that integrates cellular protein and 

transcriptome measurements in an effort to provide phenotypic information such as cell-surface 

protein expression levels (52). This multimodal analysis on cellular protein, using 

oligonucleotide-labeled antibodies and high-throughput scRNA-seq, revealed phenotypes 

including a detailed multimodal characterization of immune subpopulations that had not been FO
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ascertained by using scRNA-seq alone. The study carried out by Schulz et al. used extended 

imaging mass cytometry (IMC), based on the simultaneous staining followed by multiplexed 

detection of mRNA and proteins in tissue (53). This approach that couples the RNAscope-

based ISH with simultaneous antibody staining was used in 70 breast cancer samples and 

demonstrated a moderate correlation between HER2 and CK19 mRNA and protein expression 

levels. However, IMC has technical challenges for probing spatial distribution due to the 

limited number of labels and/or antibodies for labeling proteins. To get around this, Piehowski 

et al. developed an automated imaging approach, Nanodroplet Processing in One plot for Trace 

Samples (nanoPOTS), utilizing label-free nanoproteomics to analyze tissue voxels (54). 

nanoPOTS increased the number of target proteins to more than 2,000 with spatial resolution 

of 100 μm. Combined with LCM and ultrasensitive nanoLC-MS/MS, large sample sets were 

collected and processed with high sensitivity capturing the unique proteome mapping in a 

mouse uterus model. 

Spatial ATAC-seq To capture spatial epigenetic information in tissue at the single-cell level 

and genome scale, single-cell combinatorial indexing on microbiopsies that is assigned to 

positions for the assay for transposase accessible chromatin (sciMAP-ATAC) was introduced 

(55). sciMAP-ATAC produced data of similar quality to non-spatial sci-ATAC of cells within 

a 214-micron cubic area and was submitted to the adult mouse primary somatosensory cortex 

and human primary visual cortex to successfully characterize the spatial progressive nature of 

cerebral ischemic infarction. Integration of sciMAP-ATAC with single-nucleus RNA-seq and 

single-cell chromatin accessibility datasets demonstrated high concordance for most cell types. 

Deng et .al. also reported spatially resolved chromatin accessibility profiling method (spatial-

ATAC-seq) (56). The basic concept of ATAC-seq utilizing NGS with Tn5 transposition 

chemistry was improved with a microfluidic barcoding system, introducing two barcode 

solutions to the tissue surface using an array of microchannels for in situ ligation FO
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perpendicularly. By integrating the spatial-ATAC-seq data with the scRNA-seq data, each cell 

type and organ-specific cell type was assigned in mouse embryos. Furthermore, differences 

between the epigenetic state and protein expression of specific marker genes enabled 

distinguishing cell types in mouse brain and human tonsil. 
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DISCUSSION 

 While spatially resolved transcriptomic technology offers tremendous opportunity to discover 

spatial heterogeneity in the disease state, characterize spatial expression blueprints during 

development, and elucidate spatial architecture at the molecular level, its potential lies beyond 

that as it is still in the early days of development. Unfortunately, none of the currently available 

spatially resolved transcriptomic technologies are perfect, and the choice of methods depends 

on study design, the biological question, and often a balance between the cell and/or transcript 

throughput and spatial resolution. A few overlooked caveats include the requirement for a large 

number of pseudocolors and barcodes in image-based techniques and a low spatial resolution 

in capture-based methods. This has brought new technological challenges. The integrative 

computational algorithms that combine the spatially resolved transcriptomic data and other 

data modalities have significantly contributed to not only overcoming the key challenges faced 

by current spatially resolved transcriptomic technologies but gaining fundamental biological 

insights. The development of novel computational tools will continue to play a significant role 

in exploring large-scale spatially resolved transcriptomic datasets, translating the consequences 

of newly acquired spatial patterns, and elucidating principles of the underlying biology. The 

advent of such integrative approaches will ultimately shed light on the mechanisms that explain 

the essential differences in spatial architectures of healthy and diseased tissues. 
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FIGURE LEGENDS 

 

Figure 1. Overview of two main categories of spatially resolved transcriptomic techniques: 

Image-based (Left) and capture-based (Right) methods. Imaging-based methods detect 

target genes by sequencing directly into a fixed tissue section (ISS) or hybridizing a 

complementary fluorescent probe (ISH). Both image-based methods are suitable for analyzing 

subcellular transcript patterns of a cell. Capture-based methods are divided into three sub-

categories: directly obtaining a specific region of interest from a tissue section using laser 

capture microdissection (LCM), customized slides, or bead arrays to capture mRNAs by 

oligonucleotide-based spatial barcodes followed by NGS. Combining computational strategies 

enables the comprehensive mapping of cell types in spatially resolved transcriptomic data with 

a specific spatial resolution by each method. 

 

Table 1. Spatially resolved transcriptomic techniques 

 

Table 2. Integration of spatially resolved transcriptomic data with other methods 
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Table 1. Spatially resolved transcriptomic techniques 

 
Techniques Features Target genes Application Programming 

language 

Reference 

Image-based spatially resolved transcriptomics: ISH 

 smFISH 

smHCR 

Short DNA probes complementary to 

mRNA targets trigger chain reactions 

39 probes (smHCR) Zebra fish, 

mouse brain 

MATLAB Shah et al., 2016 

Development (7) 

 osmFISH Binding of 20 nucleotide-long fluorescently 

labeled DNA probes 

33 marker genes mouse brain Python Codeluppi et al., 

2018 Nat 

Methods (8) 

 MERFISH Using chemical cleavage instead of 

photobleaching to remove fluorescent 

signals 

130 genes in up to 

100,000 cells 

cultured U-2 OS 

cells 

MATLAB Moffitt et al., 

2016 PNAS (9) 

 MERFISH-

based analysis 

platform 

In situ cell-type identification and mapping 

in combination with scRNA-seq 

Targeting a set of 

155 genes 

mouse 

hypothalamic 

preoptic region 

MATLAB Moffitt et al., 

2018 Science 

(10) 

 seqFISH+ Enables visualization of the subcellular 

localization 

10,000 genes in 

single cells 

NIH/3T3,  

mouse brain 

MATLAB Eng et al., 2019 

Nature (11) 

 SABER Additional signal amplification or applying 

serial imaging with DNA-Exchange 

18,000 probes 

targeting a 3.9-Mb 

region 

mouse retinal 

tissue 

MATLAB & 

Python 

Kishi et al., 2019 

Nat Methods 

(12) 

 Split-FISH Alternative approach to reduce off-target 

background fluorescence by integrating 

split-probe strategy with multiplexed FISH 

317 genes in single 

cell 

mouse brain, 

liver, kidney, 

ovary 

Python Goh et al., 2020 

Nat Methods 

(13) 

Image-based spatially resolved transcriptomics: ISS 

 STARmap Integrated with hydrogel-tissue chemistry 

and targeted signal amplification 

160 to 1,020 genes 

simultaneously 

mouse brain Python Wang et al., 

2018 Science 

(15) 

 INSTA-seq Sequences two bases simultaneously from 

both ends of the cDNA fragments 

up to 443,304 UMIs 

in total 

drosophila retina R Fürth et al., 2019 

BioRxiv (16) 

 HybISS New barcoding system via sequence-by- 

hybridization chemistry 

119 genes for PLP 

design 

mouse visual 

cortex, human 

brain 

MATLAB Gyllborg et al., 

2020 Nucleic 

Acids Res (17) 

 pciSeq Bayesian algorithm derived from scRNA-

seq clusters data 

designed 755 

probes for 99 genes 

mouse CA1 

interneuron 

Python Qian et al., 2020 

Nat Methods 

(18) 

 ExSeq cDNA amplicons are eluted from the 

sample and re-sequenced 

up to 3,039 genes 

with untargeted 

approach 

mouse brain, 

mouse visual 

cortex, human 

breast cancer 

MATLAB Alon et al., 2021 

Science (19) 

Capture-based spatially resolved transcriptomics: LCM 

 exome-capture 

RNA-

sequencing 

Optimized standard protocol for 

hematoxylin and eosin (H&E) staining 

Whole exome 7 tumor samples 

of TNBC 

MATLAB Romanens et 

al., 2020 BioRxiv 

(20) 

 immuno-LCM-

RNAseq 

RNA quality was significantly improved 

using modified protocol  

Up to 60 cells were 

demonstrated to be 

sufficient quality 

mouse small 

intestine 

Python Zhang et al., 

2021 BioRxiv 

(21) 

 PIC Photo-irradiated cells were suppressed 

cDNA amplification 

8,000 genes were 

detected with 7 × 

10
4
 unique read 

counts 

mouse embryo R Honda et al., 

2021 Nat 

Commun (22) 

Capture-based spatially resolved transcriptomics: Oligonucleotide-based spatial barcode on slide 

 ST Arrayed reverse transcription primers with 

unique positional barcodes 

Up to 200 million 

oligonucleotides in 

each of 1007 

features 

mouse brain, 

human breast 

cancer 

R Ståhl et al., 2016 

Science (24) 

Salmén et al., 

2018 Nat Protoc 

(23) 

 Multimodal 

analysis 

Combined single-cell RNA sequencing with 

ST 

Median depth of 

1,629 UMIs/spot 

and 967 genes/spot 

human cSCC MATLAB & R Ji et al., 2020 

Cell (29) 

 ST  Combined ST and ISS Mean 31,283 UMIs 

and 6,578 unique 

genes per TD 

AD mouse 

model, mouse 

and human brain 

Python Chen et al., 

2020 Cell (28) 

Capture-based spatially resolved transcriptomics: Oligonucleotide-based spatial barcode on bead array 

 Slide-seq DNA-barcoded beads with known positions 

(in situ indexing) 

1.5 million beads, of 

which 770,000 can 

be analyzed 

mouse 

cerebellum and 

hippocampus 

MATLAB & R Rodriques et al., 

2019 Science 

(30) 

 HDST Barcoded poly(d)T oligonucleotides into 2-

μm wells with a randomly ordered bead 

array-based 

2,893,865 individual 

barcoded beads 

mouse brain, 

primary breast 

cancer 

Python Vickovic et al., 

2019 Nat 

Methods (31) 

 Slide-seq V2 Improvements in library generation, bead 

synthesis and array indexing 

Mean 45,772 UMIs 

in 110 μm diameter 

area 

mouse 

hippocampus 

MATLAB & R & 

Python 

Stickels et al., 

2021 Nat 

Biotechnol (32) 

 Seq-Scope Based on a solid-phase amplification using 

an Illumina sequencing platform 

Up to 5.88 ~ 19.7 

genes were 

identified per HDMI 

pixel 

human liver and 

colon 

Python Cho et al., 2021 

Cell (33) 

 Stereo-seq Combined DNA nanoball pattern arrays 

and tissue RNA capture 

Up to 133,776 UMIs 

per 100 μm 

diameter 

mouse brain Not identified 

yet 

Chen et al., 

2021 BioRxiv 

(34) 

Table 2. Integration of spatially resolved transcriptomic data with other methods 
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Techniques Features Input data Application Programming 

language 

Reference 

Combination with scRNA-seq 

 pciSeq Bayesian algorithm derived from scRNA-

seq clusters data with ISS 

Designed 755 probes 

for 99 genes 

mouse CA1 

interneuron 

Python Qian et al., 

2020 Nat 

Methods (18) 

 seqFISH Computing the ratio of the performance 

and prediction scores with scRNA-seq 

data 

Each cell contained 

avg 196 mRNA from 

93.2 genes 

embryo development 

in brain and gut 

R Lohoff et al., 

2021 Nat 

Biotechnol 

(35) 

 Multiple spatial 

transcriptomics 

Unbiased approach with additional in situ 

hybridization using RNAscope and multi-

molecule ISS 

Mean 31,283 UMIs 

and 6,578 unique 

genes per tissue 

domain 

AD mouse model, 

mouse and human 

brain 

Python Chen et al., 

2020 Cell (25) 

 Slide-seq NMFreg that reconstructs expression of 

each cell type signatures defined by 

scRNA-seq 

1.5 million beads, of 

which 770,000 could 

be analyzed 

mouse cerebellum 

and hippocampus 

MATLAB & R Rodriques et 

al., 2019 

Science (30) 

 Integrating 

microarray-

based ST and 

MIA 

Enrichment analysis that two-tailed 

Student’s t-test were used to compare 

expression of those marker genes 

2,500~3,300 UMIs 

and 1,400~1,700 

unique expressed 

genes per single cell 

pancreatic ductal 

adenocarcinoma 

R Moncada et 

al., 2020 Nat 

Biotechnol 

(36) 

Deep learning-based spatial information 

 DEEPsc Deep-learning network was trained with 

spatial position feature vectors as 

simulated scRNA-seq data 

Started with top 3,000 

highly variable genes 

drosophila embryo, 

Zebrafish embryo, 

murine frontal cortex 

MATLAB Maseda et al., 

2021 Front 

Genet (37) 

 BayesSpace Bayesian statistical method that uses the 

information from spatial neighborhoods 

to achieve super-resolution images  

10X Genomics Visium 

data, does not require 

independent single-

cell data or marker 

gene preselection 

brain, melanoma, 

invasive ductal 

carcinoma, ovarian 

adenocarcinoma 

R Zhao et al., 

2021 Nat 

Biotechnol 

(38) 

 SPICEMIX Enhances the NMF of gene expression 

with a graphical representation of the 

spatial relationship of cells 

2,470 genes in 523 

cells (seqFISH+), 930 

cells and 1,020 genes 

(STARmap) 

mouse primary visual 

cortex 

Python Chidester et 

al., 2020 

BioRxiv (39) 

 SpaOTsc Infer the spatial distance between every 

pair of cells by computing the optimal 

transport distance 

851~15,413 cells and 

10,495~45,789 genes 

(scRNA-seq), 

64~1,549 spatial 

positions and 

47~1,020 genes 

Zebrafish embryo, 

Drosophila embryo, 

mouse visual cortex 

Python Cang et al., 

2020 Nat 

Commun (4) 

Deconvolution of spatially resolved transcriptomics 

 RCTD Statistical model assumed to be Poisson 

distributed and maximum-likelihood 

estimation (MLE) used to infer the cell 

types 

Slide-seq and 10X 

Genomics Visium 

data 

mouse brain R Cable et al., 

2021 Nat 

Biotechnol 

(40) 

 SPOTlight NMF along with non-negative least 

squares (NNLS) model with both the 

basis and coefficient matrices with cell 

type marker genes 

41,986 cells were 

merged to identify a 

total of 10,623 

immune cells 

mouse brain, 

pancreatic 

adenocarcinoma 

R Elosua-Bayes 

et al., 2021 

Nucleic Acids 

Res (41) 

 SpatialDWLS Dampened weighted least squares 

(DWLS) model with cell-type specific 

gene signatures from a public scRNA-

seq dataset as a reference 

10,000 genes in 523 

cells (seqFISH+) 

mouse brain, 

human heart 

R Dong et al., 

2021 Genome 

Biol (42) 

 DestVI Bayesian model for multi-resolution 

deconvolution of cell types using 

Variational Inference 

Pair of ST and 

scRNA-seq from 

same tissue 

murine lymph node, 

mouse tumor model 

Python Lopez et al., 

2021 BioRxiv 

(43) 

Cell type Inference via image-based machine learning 

 ST-Net Deep learning algorithm that combines 

ST and histology images to predict the 

target gene expression of each spot 

30,612 spots in 68 

breast tissue sections 

breast cancer Python He et al., 

2020 Nat 

Biomed Eng 

(44) 

 HisToGene employs a modified Vision Transformer 

model for gene expression prediction 

from histology images 

9,612 spots and 785 

genes in breast 

cancer tissue 

breast cancer PyTorch Pang et al., 

2021 BioRxiv 

(45) 

 stLearn Deep neural network model to predict 

hotspots where cell-cell interactions are 

more likely to occur 

Feature vectors from 

H&E images of the 

tissue section 

mouse brain, human 

brain, breast cancer 

Python Pham et al., 

2020 BioRxiv 

(46) 

 SpaCell Normalized count data and H&E staining 

images were trained with convolutional 

neural network 

Tissue morphology 

and spatial gene 

expression data 

prostate cancer, 

amyotrophic lateral 

sclerosis 

Python Tan et al., 

2020 

Bioinformatics 

(47) 

 CoSTA Clustering by Gaussian mixture model 

(GMM) and weight updating as 

commonly performed in training neural 

networks 

Image-type matrix of 

MERFISH and Slide-

seq data 

mouse brain, brain 

Injury 

Python Xu et al., 2021 

BMC 

Bioinformatics 

(48) 

 STUtility NMF to decompose ST data and 

identification and extraction of 

neighbouring capture-spots 

10x Genomics Visium 

data 

mouse brain, breast 

cancer tissue, lymph 

node, rheumatoid 

arthritis 

R Bergenstråhle 
et al., 2020 

BMC 

Genomics 

(49) 

 ISST Image-based in silico spatial 

transcriptomics without hybridization or 

sequencing 

12 sections from the 

mouse olfactory bulb 

mouse olfactory bulb, 

human breast cancer 

Python Bergenstråhle 
et al., 2020 

BioRxiv (50) 

Cellular protein information 

 CITE-seq Oligonucleotide-labeled antibodies are 

used to integrate cellular protein and 

Common immune 

subpopulation 

human HeLa, mouse 

4T1 cell, immune 

R Stoeckius et 

al., 2017 Nat 
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transcriptome measurements markers (CD8a, 

CD3e, CD19, CD56, 

CD16, CD11c and 

CD14) 

subpopulation Methods (52) 

 IMC Epitope-based imaging methods that 

employ a mass spectrometer for readout 

to infer RNA-to-protein correlations 

Detected three mRNA 

simultaneously 

(HER2, CK19 and 

CXCL10) 

breast cancer MATLAB & R 

& Python 

Schulz et al., 

2018 Cell 

Syst (53) 

 nanoPOTS Unique proteins were identified via 

combination of LCM and ultrasensitive 

nanoLC-MS/MS 

> 2,000 proteins with 

100 μm spatial 

resolution 

mouse luminal 

epithelial cell, stromal 

cell, glandular 

epithelial cell 

R Piehowski et 

al., 2020 Nat 

Commun (54) 

Spatial ATAC-seq 

 sciMAP-ATAC Spatially resolved, single-cell profiling of 

chromatin states from a single tissue 

punch 

Mean 12,052 - 30,212 

passing reads per cell 

mouse and human 

brain, cerebral 

ischemia model 

system 

R Thornton et 

al., 2021 Nat 

Commun (55) 

 Spatial-ATAC-

seq 

DNA barcode solutions were introduced 

to the tissue surface using an array of 

microchannels 

36,303 - 100,786 

unique fragments per 

pixel 

mouse embryos, 

human tonsil tissue 

R Deng et al., 

2021 BioRxiv 

(56) 
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