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Abstract 

Organismal aging is accompanied by a host of progressive metabolic alterations and an 

accumulation of senescent cells, along with functional decline and the appearance of 

multiple diseases. This implies that the metabolic features of cell senescence may 

contribute to the organism’s metabolic changes and be closely linked to age-associated 

diseases, especially metabolic syndromes. However, there is no clear understanding of 

senescent metabolic characteristics. Here, we review key metabolic features and 

regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic 

deregulation, and their link to other senescence phenotypes and aging. We further 

discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and 

GSK3, proposing them as key metabolic switches for modulating senescence. 
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Introduction 

Cell senescence is an irreversible state of cell cycle arrest induced by multiple stressors, 

such as DNA damage, oncogenic activation, oxidative stress, and chemotherapeutic 

toxicity (1, 2). Observations of senescent cell accumulation in aged tissues (3) have led 

to the assumption that cell senescence may play an important role in the organismal 

aging process. A causal link between cell senescence and aging was first demonstrated 

by studies performed in a rapidly aging mouse model with a BubR1 deficiency (4). In 

this model, p16INK4A-positive senescent cells accumulated in prematurely aged 

tissues, and the genetic inactivation of p16INK4A attenuated the formation of senescent 

cells and the development of aging phenotypes, emphasizing cell senescence as a 

fundamental aging mechanism. Recently, a number of studies have described that 

cellular senescence was also involved in various age-associated diseases, such as 

atherosclerosis, fibrotic pulmonary disease, hepatic steatosis, osteoarthritis, cancer, and 

Alzheimer’s disease (5-8), suggesting that cell senescence may causally drive these 

diseases. However, the mechanism by which cell senescence is involved in these age-

associated diseases is unclear. A detailed understanding of the characteristics of cell 

senescence may be the key to elucidating this issue.   

In addition to the irreversible cell cycle arrest, senescent cells exhibit apparent 

alterations of cellular morphology and functionality, such as an enlarged and flat 

cellular morphology, release of the senescence-associated secretory phenotype (SASP), 

and a resistance to apoptosis. These features distort cellular communications with 

surrounding cells and tissues, eventually leading to tissue reorganization and 

deterioration (3, 9). The functional alterations of senescent cells come from FO
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abnormalities in morphology, mass, and the functions of their organelles, such as 

mitochondria, lysosomes, endoplasmic reticulum (ER), nucleus, etc. Although each 

organelle possesses its own function and metabolism, senescent organelles share some 

common changes, including increases in their subcellular mass with functional defects 

and modified communication through release of their metabolites (10). These organelle 

abnormalities are indicated by several typical senescent markers, such as respiratory 

defects and reactive oxygen species (ROS) in mitochondria, an increase in senescence-

associated-β-galactosidase activity (SA-β-Gal) and lipofuscin in lysosomes, an unfolded 

protein response (UPR) in the ER, and senescence-associated heterochromatin foci 

(SAHF) and DNA damage response (DDR) in the nucleus. However, it remains 

uncertain how the overall mass of cellular organelles increases as senescence 

progresses, and leads to defective functions. This underlying mechanism must be 

closely linked to senescence-associated metabolic changes and there must be a key 

player that modulates organelle mass during senescence.  

In this paper, we a reviewed key metabolic features of cellular senescence. In 

particular, we focused on mitochondrial catabolic defects and deregulated anabolic 

activation, and their links to the subcellular organelle features of senescence. We also 

reviewed some key players in the metabolic alterations and their potential links to age-

associated diseases.   

 

Metabolic features of cell senescence 
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Cellular metabolism is usually categorized as two opposite directions of energy flow: 

catabolism, the oxidative degradation of macromolecules that generates cellular energy 

as ATP; and anabolism, the reductive synthesis of the macromolecules for building cell 

components (proteins, lipids, nucleic acids, and carbohydrates) that consumes the 

energy. The major catabolic activity is glucose oxidation, which is tightly linked to 

mitochondrial respiration. Anabolic activities take place in different organelles, 

depending on the types of macromolecules generated. Normal cells maintain the 

controlled balance between cell division and cell metabolism, because optimal building 

of cell components and maintenance of cellular energy levels are essential for cell 

division activity. And, despite the permanently arrested state of cell growth, senescent 

cells remain metabolically active, but in an altered state (11). Therefore, it is very 

important to explore the metabolic changes critically involved in cellular senescence to 

understand the underlying mechanisms of senescence, the aging process, and age-

associated metabolic diseases.  

 

 

Mitochondrial dysfunction and its link to DNA damage responses 

 

Oxidative phosphorylation dysfunction in aging. In an aerobically growing cell, 

mitochondria play a key role in producing and maintaining cellular energy (ATP). This 

is achieved by a complex sequential reaction, named oxidative phosphorylation 

(OXPHOS), which is composed of four respiratory chain complexes (complex I to IV), 

and F1F0-ATP synthase (complex V) embedded in the mitochondrial inner membrane. 

Human cells harbor hundreds to thousands of mitochondria, depending on the cell type, FO
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and the mitochondrial mass and activity are susceptible to the cellular energy needs of 

cell growth and differentiation, and physiological conditions, such as endurance 

exercise. Deterioration in the mitochondrial OXPHOS function during human aging has 

been reported (12). The causal link between OXPHOS function and aging was 

demonstrated in mev-1 (ortholog of the complex II cytochrome b560 subunit) mutant 

nematodes. Mitochondrial defects caused by the mev-1 mutation resulted in oxidative 

stress and premature aging in Caenorhabditis elegans (13). In addition, mitochondrial 

DNA (mtDNA) deletions or mutations have been associated with aging and certain age-

related diseases in animals (14-16). The involvement of mtDNA damage in aging was 

mechanistically proven by studies of mice harboring defective proofreading activity of 

mtDNA  polymerase.  These mice exhibited accumulation of mtDNA mutations and 

premature aging (17). These two studies well support “the mitochondrial theory of 

aging” (18, 19).  

 

OXPHOS dysfunction in cellular senescence. The potential involvement of mtDNA 

damage in cellular senescence has also been reported (20). Mitochondrial DNA-

depleted rho(0) MDA-MB-435 cells displayed senescent phenotypes, such as SA-β-Gal, 

lipofuscin pigment, and decreased telomerase activity (20). Thus, the rho(0) cells can be 

used as an in vitro model for aged cells. Several different mitochondrial OXPHOS 

defects were demonstrated in the early stages of the senescent process using diverse 

cellular senescence models. Iron chelation using deferoxamine (DFO) decreased 

complex II activity via down-regulated translation of the complex II iron-sulfur subunit, 

prior to increasing p27kip1-mediated cell cycle arrest, and eventual induction of 

senescence in Chang normal liver cells (21, 22). Transforming growth factor β1 (TGF FO
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β1) triggered senescence of Mv1Lu lung epithelial cells by inhibiting complex IV 

activity via the PKCδ/GSK3 axis, and increasing ROS (23-25). Ionizing radiation 

induced endothelial cell senescence through a mitochondrial respiratory complex II 

defect and superoxide generation (26). Mitochondrial dysfunction was also involved in 

hydrophobic bile acid-induced human trophoblasts (27). These findings emphasize that 

mitochondrial OXPHOS dysfunction is primarily involved in cellular senescence, 

regardless of the types of senescent stressor.     

 

Senescent features of mitochondrial dynamics. In addition to OXPHOS dysfunction, 

special mitochondrial alterations are observed in cell senescence. Pleomorphic giant or 

highly interconnected mitochondria have often been reported in cirrhotic livers and in 

several aged tissues (28, 29). Also, progressive elongation of mitochondria (Fig. 1) was 

clearly visualized in the DFO-induced senescence, accompanied by a complex II defect 

(30). This study also showed that many differently induced senescent cells harbored 

giant elongated mitochondria, and downregulation of Fis1, a mitochondrial fission 

modulator, was the key underlying molecular mechanism. Why are enlarged 

mitochondria formed during cellular senescence or aging? Mitochondrial fusion drives 

extensive complementation to maintain homogenous inheritance to progeny (31), 

efficient transfer of energy or signaling (32), and to preserve the function of randomly 

damaged individual mitochondrion (33, 34). The last hypothesis seems appropriate to 

explain the giant enlarged mitochondria displayed in senescent cells because these 

mitochondria already possess an OXPHOS defect. Interestingly, abrogating 

mitochondrial dynamics accelerated mitochondrial senescence in mice (35), supporting 

the importance of morphological dynamics in the aging process. One plausible FO
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explanation for this phenomenon is that maintenance of the proper size of mitochondria 

is essential for its quality control, because giant damaged mitochondria have difficulties 

during autophagic degradation (36, 37).  

Another feature of mitochondrial senescence is an increase in cellular 

mitochondrial mass (Fig. 1). Simultaneous with formation of giant elongated 

mitochondria, mitochondrial mass also progressively increased in several cellular 

senescence models induced by DFO, TGF β1, hydrogen peroxide (H2O2), and 

replicative stress (30, 38). We can simply assume that damaged enlarged mitochondria 

are accumulated during the senescent progress due to their insensitivity to autophagic 

degradation. However, it remains unclear whether this is the only explanation. In 

normal growth conditions, the number of mitochondria is well controlled and, even in 

cell division, the mitochondrial mass per cell is properly maintained in the progenies, 

implying there is intimate control of the number within individual cells. Senescent cells 

may lose this control, resulting in a progressive increase in mitochondrial mass, despite 

their functional defects. 

 

Mitochondrial retrograde signaling and senescence. How does mitochondrial 

OXPHOS dysfunction regulate senescence and aging? The answer to this question is 

important for determining whether the mitochondrial dysfunction is merely an 

epiphenomenon or has causative roles in the course of senescence and aging. When the 

activities of mitochondria are altered, communication with the nucleus via 

mitochondrial retrograde signaling, which is initiated from mitochondria and sent to the 

nucleus and is often reported in mitochondrial damage-associated conditions, such as 

cancer, neurodegeneration, and cardiovascular diseases (39-41). The retrograde FO
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signaling starts with several key events: diffusion-mediated release of ROS, transporter-

linked release of calcium ions into the cytoplasm, and alterations in the NAD+/NADH 

and ADP/ATP ratios (42). These signals activate diverse cytosolic transducers through 

oxidative modification; interactions with small molecules, such as Ca++, NAD+, or 

AMP; and various post-translational modifications, then transmit into the nucleus (42, 

43). There, the transducers modulate the activities of certain transcription factors, 

including PGC1α, Sirt1, mTOR, and CREB, switching on transcriptional 

reprogramming (42). The reprogrammed transcripts may restore mitochondrial function, 

activate an alternative energy supply, modify cellular function, and change cellular fate 

to death, senescence, or proliferation (42, 44-47). Thus, retrograde signaling-mediated 

transcriptional reprogramming may play a key role in senescence and aging (Fig. 2). 

 

Mitochondrial ROS, oxidative stress, and the DNA damage response. Among the 

mitochondrial retrograde signaling messengers (such as ROS, calcium, NAD+, and 

AMP), ROS has long been implicated in senescence and aging. ROS not only mediate 

retrograde signaling, but also directly damage DNA, proteins, and lipids, thereby 

generating diverse damage responses. The electron transfer chain reaction of OXPHOS 

is the major ROS generation site because it utilizes most of the oxygen, approximately 

85–90%, consumed by the cell. The electron transfer reaction is not complete and often 

leaks electrons in a quinone-mediated radical form. Mitochondrial DNA is highly 

vulnerable to ROS because it is located in close vicinity to the generation site and it has 

a naked structure, without stereotypic packing by proteins, like histones. In turn, 

damaged mtDNA undergoes impaired OXPHOS reactions and releases more ROS in a 

vicious cycle. Moreover, cells possess plenty of mitochondria. Collectively, this FO
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unwanted cycle results in mitochondria that are persistent ROS generators, oxidative 

stress propagators, and a trigger to initiate or maintain senescent phenotypes, 

emphasizing its causal role in senescence and the aging process (48-51). 

   The initial ROS generated from the OXPHOS reaction is superoxide, which is 

converted to the membrane permeable ROS, H2O2, by mitochondrial manganese-

dependent superoxide dismutase. Then, the released H2O2 disperses and reacts with 

various cytosolic and nuclear components, propagating and amplifying oxidative stress 

signals and damage. Oxidative stress triggers several types of DNA damage, such as 

oxidized bases, single-strand breaks (SSB), and double-strand breaks (DSB). DSB 

activates the DDR and induces expression of p53 and its downstream p21, a senescence 

modulator, through the ATM and ATR kinase cascades (52), leading to staining of γ-

H2AX and SAHF senescence markers (Fig. 2). Thus, senescence can be induced by the 

DSB-mediated DDR, and this is known as telomere-independent premature senescence. 

Telomeres are susceptible to SSB due to guanine triplet-containing structures, which are 

extremely sensitive to oxidative modification (53, 54). This implies a potential link 

between mitochondrial ROS-mediated SSB and telomere attrition, a representative 

mechanistic driver of replicative senescence. Oxidative stress also modulates telomerase 

activity, as shown in endothelial (3, 37, 55) and leukemia cells (56). A direct link 

between mitochondrial dysfunction and telomere attrition was demonstrated using 

replicative senescence of MRF5 human fibroblasts (57, 58). Together, these 

observations suggest that mitochondria-initiated oxidative stress can modulate overall 

telomere maintenance, accelerating telomere attrition. 
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Anabolic deregulation and related senescent phenotypes 

 

Enlarged cell morphology is the most pronounced phenotype of cell senescence (Fig. 1). 

This reflects increases in cell mass and components (10), including macromolecules 

(such as total cellular RNA, proteins, and lipids) and organelles (10, 38, 59), suggesting 

that the overall cellular components, rather than any specific compartment(s), are 

augmented in the progress of senescence. As mentioned above, persistent oxidative 

stress may damage cellular components, and this has been further supported by 

impaired proteostasis and organelle-homeostasis using an ubiquitin-proteasome system 

and autophagy-lysosomal system, respectively (60, 61). However, it is still unclear 

whether the increase in cell mass and components only results from the accumulation of 

damaged components. Here, we discuss the importance of anabolic activation, such as 

glycogenesis, lipogenesis, and protein synthesis, in cell senescence (Fig. 2). 

 

Glycogenesis and cellular granularity. Cellular granularity is the general term for 

dense particles detected by transmission electron microscopy. Cellular granularity levels 

can more easily be estimated by the side scatter parameter (SSC), measured with a laser 

beam (488 nm) that bounces off intracellular particles using flow cytometric analysis. 

Although the components of the granules are different, depending on the cell type (such 

as alpha granules in platelets, secretary vesicles in granulocytes, and glycogen granules 

in muscle and liver), many senescent cells harbor increases in cellular granularity. 

Therefore, an increase in the SSC has often been used as a marker of cell senescence 

(24, 59, 62). It is unclear why cell granularity increases and what kinds of granules are 

formed in the senescence process. An increased number of lysosome-containing FO
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lipofuscins is the major component of senescent granules (63); the other components 

include protein aggregates, such as beta amyloid, and secretory vesicles (64, 65). The 

accumulation of glycogen aggregates in several cell senescence systems, including 

replicative senescence of primary human fibroblasts (62), is a new component of 

senescent granules (Fig. 2). Glycogen granules have also been shown to accumulate in 

myelinated axons (66) and liver tissues of aged rats (62), and formed inclusion bodies in 

the cerebral cortex of people over 60 years old (67). The key upstream signaling 

regulator of glycogenesis is glycogen synthase (GS) kinase 3 (GSK3), which is 

inactivated by phosphorylation of its upstream kinases, including AKT. 

Dephosphorylation of GSK3 activates GS activity, enhancing glycogenesis. The 

GSK3/GS axis modulates senescence (62). Inhibition of GSK3 using siRNA or 

pharmacological inhibitors induced senescence and enhanced glycogen accumulation, 

suggesting that glycogenesis is critically involved in senescence. The GS activity can 

also be negatively regulated by AMPK (68).  

The GSK3/GS axis is linked with the insulin-like signaling cascade, 

IGF1/IR/PI3K/AKT, a key modulator of lifespan and senescence (69-71). This implies 

that the GSK3/GS-mediated glycogenesis participates primarily in senescence and aging 

as a major downstream effector of the IGF1 signaling cascade. However, the role of the 

increased glycogen particles in senescence is not clearly understood. One plausible 

explanation is that highly aggregated glycogen particles may disrupt the appropriate 

localization of and/or efficient communication between intracellular organelles because 

the senescent particles occupy most of the cytoplasmic space, further generating 

senescent stress. The role of the glycogen particle as the stored form of efficient energy 

in senescence needs to be clarified. FO
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Lipogenesis and an increase in cellular organelles. Senescent increases in cell mass 

and components are reflected in increased cellular organelles, especially membranous 

ones, such as lysosomes, mitochondria, ER, plasma membrane, etc. The generation of 

membranous organelles requires biosynthesis of membranous lipids. Lipid biosynthesis, 

called lipogenesis, is mainly increased during cell proliferation to provide sufficient 

subcellular organelles for progenies (72, 73). The multiple sequential steps of 

lipogenesis are governed by several key enzymes, including ATP citrate lyase (ACL), 

acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) (74). The expression of 

these enzymes is regulated by the master lipogenic transcription factor, sterol regulatory 

element-binding protein 1 (SREBP1). Therefore, SREBP1 activity can be a good 

indicator of lipogenic status. SREBP1 is involved in cell growth by supplying 

membrane lipids, and it is highly expressed in actively growing cells (75). As expected, 

several senescent cells possess high levels of the mature form of SREBP1 and its 

downstream lipogenic enzymes (FAS, ACC, and ACL). Overexpression is sufficient to 

induce senescence-associated growth arrest, accompanied by increases in membranous 

lipids and organelle mass (Fig. 2) (38). Thus, an abnormal balance between lipogenesis 

and cellular growth may trigger senescence. Several upstream regulators of SREBP1, 

including GSK3, AMPK, and mTOR, regulate senescence and/or aging (76-79), 

indicating SREBP1-mediated lipogenesis is involved in senescence and aging; mTOR 

activates SREBP1, whereas GSK3 and AMPK are negative regulators (Fig. 3). 

Senescent cells may generate organelles as a defensive response to compensate for 

the declined function of organelles damaged by senescence-associated ROS, but newly 

synthesized organelles may have oxidative stress that aggravates senescence. How does FO
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enhanced lipogenesis due to SREBP1 overexpression trigger senescence in normal 

cellular conditions? To keep normal organellar function, the organelles require a well-

balanced composition of their components, including membrane lipids and proteins. 

Therefore, enhancement of lipogenesis alone may form lipid-enriched abnormal 

organelles and trigger senescence. In this context, activation of SREBP1 by the upstream 

regulators plays a key role in modulating senescence and aging. Enhanced lipogenesis of 

the senescent cells does not only regulate organellar mass, but also increases lipid droplets 

within a cell (Fig. 2), which may be linked with age-related fat redistribution (80) and 

hepatic fat accumulation (steatosis). This was supported by recent findings showing that 

elimination of senescent cells by genetically targeting p16INK4A or by using senolytic 

drugs, such as dasatinib and quercetin, reduced overall hepatic steatosis (7). 

Protein synthesis and dysregulated proteostasis. One of the most important 

alterations during normal aging is impaired proteasis (protein homeostasis) (81, 82). 

Cellular maintenance of proteome integrity is governed by a well-balanced control of 

chaperone-mediated folding and proteasome- and autophagy-mediated degradation 

systems. Therefore, the senescent impairment of proteasomal and autophagic activities 

leads to damaged and aggregated proteins. However, the key metabolic regulators, 

GSK3, AMPK, and mTOR, modulate both protein degradation and protein synthesis. 

The negative regulator of autophagy, mTOR, activates translation machinery by 

activating eIF4E, eIF4B, and eEF2, and regulates senescence (83-85). AMPK inhibits 

protein translation either through inhibiting mTOR or eEF2 (86), and activates 

autophagy through ULK phosphorylation(87). GSK3 also negatively regulates protein 

synthesis by phosphorylating eIF2B (88), and activates autophagy via the TIP60/ULK FO
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axis (89). Thus, dysregulated proteasis is not only impaired by protein degradation,, but 

also by abnormally enhanced protein synthesis (Fig. 2) (90), emphasizing the three 

regulators of proteasis and senescence.  

 

 

Deregulated homeostasis of cellular organelles in cellular senescence. 

 

Human cells undergo three types of autophagy; microautophagy, chaperone-mediated 

autophagy (CMA), and macroautophagy. Macroautophagy and CMA activities are often 

decreased with age (91, 92). CMA plays a role in the homeostasis of proteome 

functionality and macroautophagy in organelle quality control. Although cellular 

organelles are damaged by oxidative stress derived from mitochondrial dysfunction, 

macroautophagy can remove the damaged organelles, and enhanced autophagy can 

generate de novo organelles to maintain homeostasis. However, these activities do not 

seem to be turned on sequentially or properly, deregulating the organelle homeostasis 

and leading to defective organelles (Fig. 3). For example, H2O2, a secondary messenger 

of mitochondrial dysfunction, can phosphorylate (inactivate) GSK3. The 

phosphorylated GSK3 activates anabolism via SREBP1-mediated lipogenesis, eIF2Bε-

mediated translation, and GS-mediated glycogenesis (93). Simultaneously, the 

inactivated GSK3 inhibits autophagy through the TIP60/ULK axis (89). Newly 

generated organelles, via enhanced anabolism, are immediately placed under oxidative 

stress and are susceptible to damage, resulting in defective organelles. This 

phenomenon is further aggravated by defective autophagic activity. Moreover, GSK3 

inactivation can cause mitochondrial OXPHOS dysfunction and increase ROS by FO
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inhibiting complex IV activity (25). This implies that senescent anabolic activation and 

mitochondria-derived oxidative stress are closely interconnected in a vicious cycle (Fig. 

3). Analogous to GSK3, mTORC1 and AMPK crosstalk with mitochondria via ROS 

generation (78, 94, 95). 

Well-controlled organelle homeostasis is essential for maintaining normal cellular 

function. In senescence, a mitochondrial defect or abnormal anabolic activation may be 

the key event that triggers oxidative stress and organelle biogenesis, resulting in a 

defective increase in organelle mass. In addition, defective autophagy may aggravate 

this deregulated homeostasis of organelles through loss of its quality control capacity 

(Fig. 3). Among the three key signaling kinases, AMPK and GSK3 play key roles as 

positive regulators, while mTOR acts as a negative regulator of the senescent metabolic 

features.      
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Figure legends 

 

Figure 1. Alterations of mitochondrial morphology and mass in cellular senescence. 

Images of senescence in Chang cells induced by 1 mM DFO, stained with MitoTracker 

Red and visualized with an Apo Plan 1000 oil-immersion objective (numerical aperture 

1.4) on an Axiovert 200 M fluorescence microscope (Carl Zeiss, Gottingen, Germany). 

Highly interconnected elongated mitochondria with increased mass are shown.  

 

Figure 2. Summary of metabolic features and related key senescent phenotypes in 

cellular senescence. 

 

Figure 3. The key signaling kinases acting as metabolic switches to regulate 

senescence.  
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