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ABSTRACT 

Mitochondria are ubiquitous and multi-functional organelles involved in diverse 

metabolic processes, namely energy production and biomolecule synthesis. The intracellular 

mitochondrial morphology and distribution change dynamically, which reflect the metabolic 

state of a given cell type. A dramatic change of the mitochondrial dynamics has been 

observed in early development that led to further investigations on the relationship between FO
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mitochondria and the process of development. A significant developmental process to focus 

on, in this review, is a differentiation of neural progenitor cells into neurons. Information on 

how mitochondria-regulated cellular energetics is linked to neuronal development will be 

discussed, followed by functions of mitochondria and associated diseases in neuronal 

development. Lastly, the potential use of mitochondrial features in analyzing various 

neurodevelopmental diseases will be addressed. 

 

INTRODUCTION 

All cells undergo cellular respiration, whether it uses oxygen or not, to produce 

energy for survival. The process using oxygen to respire is called aerobic respiration and all 

aerobically respiring mammalian cells contain and utilize mitochondria for energy production 

(1). Dependency on mitochondria for energy production varies on different cell types. High 

energy-demanding cells rely on mitochondria for adenosine triphosphate (ATP) production 

because mitochondria; a major powerhouse of cells, generate ATP in the most efficient way 

via oxidative phosphorylation (OXPHOS) (2). OXPHOS creates a proton gradient that 

induces mitochondrial membrane potential (MMP), then uses oxygen for the synthesis of ATP 

(3). On the other hand, certain cell types prefer utilizing cytoplasmic metabolic pathways of 

glycolysis and pentose phosphate pathway (PPP) for cellular metabolism even though 

mitochondria are found in these cells (4,5). Glycolysis and PPP use glucose then generate 

pyruvate and NADPH in addition to ATP (Fig. 1A). Pyruvate and NADPH are essential 

molecules for the synthesis of amino acids and nucleotides required for highly proliferative 

cells to divide.  

Cells in the developmental process change metabolic states to support any newly 

acquired structural and functional properties (6,7). Although ATP production is more efficient 

in OXPHOS, glycolysis is enhanced in actively proliferating cells since diverse metabolic FO
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substances (not limited to ATP) are required (8,9). Cells need a lot of energy to sustain 

homeostasis and support specialized functions they have acquired from cellular 

differentiation. Therefore, energy metabolism shifts from glycolysis to OXPHOS and 

mitochondrial maturation occurs during cellular differentiation (9). 

Mutations on genes necessary for mitochondrial maturation are associated with a 

failure in metabolic transition that can result in developmental defects (10). Since 

mitochondria is present everywhere, they can have an impact on all types of tissues with no 

limits. Studies linking mitochondrial dysfunction and developmental diseases are beginning 

to re-emerge. Knowing how mitochondria behave in a given condition and which genes 

regulate mitochondrial dynamics will facilitate an understanding of many developmental 

disease-etiologies. This review will focus on distinct features of mitochondria in neuronal 

development and diseases. We will address the roles of mitochondria along with the process 

of neurodevelopment. 

 

Genes regulating mitochondria  

 Mitochondria are thought to have been engulfed by an ancestral cell during evolution, 

via a process named endosymbiosis, for more efficient cell survival (11–13). Mitochondria, 

therefore, are double-membraned: including a permeable outer membrane that is structurally 

similar to the plasma membrane and an inner membrane forming cristae that divides the 

mitochondrial matrix and the intermembrane space. Mitochondrion has its own genome and 

machinery for its gene expression. Mitochondrial genome encodes 37 genes and only makes 

13 polypeptides that belong to the OXPHOS complexes (Fig. 1B) (14).  

OXPHOS components excluding all 13 polypeptides synthesized in mitochondria are 

translated in cytoplasm from the nuclear genome transcripts (10,15–17). Nuclear genome-

derived mitochondrial proteins are transported through TOM (translocase of outer FO
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mitochondrial membrane), TIM (translocase of inner mitochondrial membrane), OXA 

(oxidase assembly machinery), etc. (11,18–22) The five OXPHOS complexes in the inner 

mitochondrial membrane (IMM) comprise of NADH dehydrogenase (Complex I), succinate 

dehydrogenase (Complex II), cytochrome c reductase (Complex III), cytochrome c oxidase 

(Complex IV), and ATP synthase (Complex V).  

Mitochondria mainly facilitate energy production through OXPHOS, consisting of an 

electron transport chain (ETC) and an ATP synthase (17). The ETC carries electrons step-by-

step that triggers proton gradient across the IMM. Keeping a constant MMP and cellular 

respiration cycle are significant in operating the OXPHOS, since the ATP producing complex, 

ATP synthase, needs a proton gradient to convert adenosine diphosphates (ADPs) to ATPs. 

Mitochondria participate in other cellular processes like calcium signaling, trafficking and 

apoptosis by interacting with many other intracellular organelles such as endoplasmic 

reticulums, lysosomes, peroxisomes, etc. Proteins necessary for additional mitochondrial 

functions are originated from the nuclear genome and transported into mitochondria. 

Exploration of mitochondrial protein composition, localization, and topology are in progress 

to fully investigate the role of mitochondria (23–28).  

Mitochondria change their morphology and localization in cells under given 

conditions to function properly. Mitochondria are regulated dynamically with a balanced and 

continuous cycle of fusion and fission (Fig. 1C) (29). Fusion allows mitochondria to 

exchange membranous materials including various metabolites and rescue damaged 

mitochondria. On the other hand, fission can segregate and degrade mitochondria with 

impaired mitochondrial DNA (mtDNA), only leaving healthy mitochondria inside the cell. 

Proteins helping the fusion: MFN1/2 and OPA1, and the fission: DRP1 and FIS1, have been 

identified and studies are ongoing to regulate mitochondrial dynamics (30–32). Mitochondria 

move to a specific region of a cell where high-energy consumption is required (33). Rho FO
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GTPases of mitochondria that affect mitochondrial motility, mitochondrial transport, etc. in 

mammals have been identified: MIRO-1 and MIRO-2 (34). These are proteins of the outer 

mitochondrial membrane (OMM) interacting with motor proteins such as KINESIN and 

transporting mitochondria along microtubules.  

Databases demonstrating the localization of mitochondrial proteins in representative 

tissues have been developed. Databases such as MitoCarta, MitoMiner including Integrated 

Mitochondrial Protein Index (IMPI), MitoP2, MitoProteome, etc. include protein information 

mostly obtained by an approach to isolate mitochondria from cells (35–38). Biochemical 

isolation of mitochondria from cells removes the OMM. This approach identifies proteins of 

mitochondrial matrix and IMM. Recently, proteins localized in OMM facing the cytosol can 

be analyzed by an enzymatic method called engineered ascorbate peroxidase (APEX) that 

labels proximal and interacting proteins (28). The latest version of MitoCarta, named 

MitoCarta2.0, includes additional proteomic data reported in literatures and discovered via 

APEX (35). However, most of above databases are limited to a number of tissues and only 

focused on certain complexes. An extensive research that uncovers the entire protein 

composition of mitochondria, linked to each protein’s physiological role, is necessary. 

 

Developmental process of neurons 

Mammalian neurogenesis begins at the prenatal stage and continues to the postnatal 

stage even for adult brains. During neonatal development, neural stem cells (NSCs) appear by 

the end of gastrulation and majority of the brain structure is formed by the end of 

embryogenesis (39). In early fetal development, NSCs called radial glial cells (RGCs) reside 

in the ventricular zone and produce neurons that assemble the neocortex. Newborn neurons 

migrate inside-out to the neocortex and form the cortical layer; younger neurons are at the 

outer layer of the cortex. Following neurogenesis, NSCs produce glial cells as well. In the FO
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postnatal brain, certain population of the fetal NSCs are retained in two restricted regions of 

the brain and maintained as adult NSCs (40,41). While adult NSCs are surrounded by glial 

cells, adult NSCs keep their multi-potency and produce neurons. One of the neurogenic 

niches in the adult brain is the dentate gyrus (DG) of the hippocampus. Radial glia-like (RGL) 

NSCs reside in the subgranular zone and add newborn neurons to the granule cell layer (GCL) 

of DG with an outside-in pattern. Younger neurons are at the inner GCL. The occurrence of 

adult hippocampal neurogenesis in human brains is like other mammalian brains except for 

cetaceans such as whales and dolphins. Although debated recently, this phenomenon has been 

widely accepted for two decades (42–44). 

Fetal and adult NSCs share common features in the process of neuronal development 

even though the environment of neurogenic niche and the layering patterns of newborn 

neurons are different from each other. RGCs and RGL NSCs displaying a bipolar structure 

produce intermediate neural progenitor cells (NPCs, also referred to as IPCs) with a non-

polar structure. NPCs continue to retain stem cell markers such as SOX2 and actively 

proliferate. Neuronal cell fate becomes more apparent at the NPC stage. Neurons 

differentiated from NPCs undergo morphological changes via axonal and dendritic 

arborization, resulting in a change in cell polarity. Then, newborn neurons migrate to their 

destination and make connections with pre-existing neurons by forming synapses and 

integrating into an established neuronal circuit.  

Neurogenesis is modulated by diverse molecular mechanisms. A representative 

mechanism that regulates neurogenesis is the transcriptional gene regulation (45,46). 

Transcription factors drive a change in the transcriptome profile of cells during neuronal 

development. Extrinsic factors such as signaling molecules also affect many steps of 

neurogenesis. For example, the WNT protein family affects proliferation of NPCs, 

morphogenesis of newborn neurons, migration of newborn neurons, etc. (47,48). Recently, FO
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interests on studying the mechanisms of neurogenesis have expanded to lipid metabolism 

(49,50). In adult hippocampal neurogenesis, fatty acid oxidation is required for maintenance 

and proliferation of NPCs and lipogenesis is critical for neuronal differentiation (49). These 

processes aid the metabolic shift during neuronal development. Lipid can be used as an 

alternative energy source in addition to glucose in (an anaerobic) glucose metabolism. In this 

regard, significance of the mitochondrial role in neuronal development is now recognized and 

receiving more attention.  

 

Mitochondrial dynamics during neuronal development and its potential association with 

developmental brain diseases 

The significance of mitochondrial dynamics in neuronal development has been 

described in the animal brain. Ablating some genes involved in mitochondrial fission and 

fusion resulted in defects of brain development, although fusion-and-fission dynamics during 

neuronal development under physiological conditions is unknown (51–53). Recent studies 

have reported on morphological changes of mitochondria when NSCs are differentiated in the 

developing brain and the adult brain (54–56). In the developing brain, mitochondria shape 

themselves with an elongated morphology in NSCs and a fragmented morphology in NPCs 

(54). On the other hand, in the adult hippocampus, mitochondria form a mixture of globular 

and tubular structures in NSCs and a thin and more elongated morphology in NPCs (56). 

However, divergent observations in fetal and adult brains come to an agreement for neurons. 

Mitochondria of the differentiated neurons reveal an elongated morphology in the developing 

brain and a wider and highly elongated morphology in the adult hippocampus (54,56). 

Morphological changes of mitochondria during neurogenesis illustrate maturation of 

mitochondria and reflect metabolic shift of cells from glycolysis to OXPHOS for an increase 

in bioenergetics (Fig.2) (57). FO
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Adding on to morphological changes of mitochondria during neurogenesis, RNA 

expression profiles of single cells during neuronal differentiation demonstrate a metabolic 

shift from glycolysis to OXPHOS (58,59). In adult hippocampus, it clearly demonstrates that 

RGL NSCs highly express glycolytic genes and lose expression of those genes with 

differentiation (58). Corresponding to this, increased expression of OXPHOS genes are 

characterized in post-mitotic neurons. Particularly, genes of Complex V in OXPHOS are 

dramatically increased in their expression level upon neuronal differentiation. Expression 

levels of ETC genes, referring to other OXPHOS complexes: Complex I - IV, are quite 

consistent during neuronal development. When cells enter the post-mitotic stage in the 

developing brain, expression patterns of the metabolic genes also change dramatically (59). 

For example, expression levels of glycolytic genes such as ALDOC (Aldolase C) and HK2 

(Hexokinase 2) decreased once NSCs started to differentiate into neurons. Although changes 

in the level of some metabolism-related transcripts have been reported, a deeper analysis on 

the expression level changes of mitochondria- and metabolism-related genes in neurogenesis 

will augment mechanism studies of neuronal development. Further investigations to elucidate 

which mitochondrial genes and proteins contribute to mitochondrial maturation and functions 

at each stage of neurogenesis will be necessary. 

Mitochondrial dynamics and a metabolic shift have also been investigated in human 

neurogenesis by utilizing NPCs, derived from human pluripotent stem cells (60,61). 

Expression patterns of metabolic genes were analyzed at different stages of neuronal 

differentiation. The expression level of MFN2, a key player of mitochondrial fusion, increase 

along with the differentiation of NPCs (60). Depletion of MFN2 in NPCs delays neuronal 

development when the overexpression promotes neuronal development, indicating 

significance of mitochondrial dynamics in human neurogenesis. Expression of key glycolytic 

genes, HK2 and LDHA, are decreased while transcript levels of most OXPHOS genes do not FO
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change when NPCs are differentiated into neurons that correspond to the results from the 

study of adult hippocampal neurogenesis (61).  

The gene expression pattern indicates that human NPCs undergo a bioenergetic shift 

from glycolysis to OXPHOS. Increased mass of mitochondria in the process of NPC 

differentiation also support that NPCs rely on the mitochondrial function with differentiation 

(62,63). However, there is a caveat to understanding mitochondrial function based solely on 

the RNA transcript level. The level of transcripts does not always correlate to the level of 

proteins (64,65). Thus, additional layers of analysis on the translational and post-translational 

gene regulation should also be considered in order to interpret the functions of mitochondria.  

 Developing neurons extend neurites and generate axons required for migration of 

mitochondria from the soma toward axon terminals. Mitochondria supply ATPs to modulate 

actin filaments at the axon terminal. Regarding the transport system in mammals, two Rho 

GTPases of mitochondria: MIRO-1 and MIRO-2, have effects on the mitochondrial motility 

and transport (66). MIROs have calcium binding domains and are proteins of the OMM (67). 

They interact with calcium and regulate cellular motor proteins, mainly KINESIN-1. MIRO-1 

is also known to mediate mitochondrial fusion and fission depending on the level of calcium 

in human cell lines (68). In fully differentiated neurons, mitochondria are concentrated at the 

pre-synapse and the post-synapse: location where a lot of energy is necessary (33,69,70). 

Mitochondria at synaptic terminals provide regional ATPs to neurons and modulate cytosolic 

calcium levels. Thus, if mitochondria are unable to reach the signal exchanging center during 

development and even after development, neuronal function will be impaired (71).  

Mitochondrial dysfunctions due to mutations may affect the proliferation rate of 

NPCs and also change the efficiency of differentiation into neurons, resulting in delayed or 

paused neurogenesis (72). Dysfunctional mitochondria are associated with neurological 

diseases such as Leigh syndrome, Rett syndrome, Angelman syndrome, Autism Spectrum FO
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Disorder (ASD), Schizophrenia, and Bipolar disorder. Leigh syndrome is a representative 

mitochondrial disease of dysfunctional Complex I or IV and also occurring due to a mutation 

in MT-ATP6 gene belonging to Complex V (73–78). Defective Complex I and IV prevents 

the proton gradient from being maintained, but dysfunctional Complex V will not produce 

ATP even when sufficient proton gradient is generated. Rett syndrome caused by a mutation 

in MECP2 gene on X-chromosome is a neurodevelopmental disease (79–81).  A mutation in 

MECP2 can alter the epigenetic status of the nuclear genome (82,83). As most OXPHOS 

subunit proteins are encoded in the nuclear genome, transcription of these genes can be 

affected. Deficiency in Complex IV activity is observed in animal models of Rett syndrome 

(84). Angelman syndrome is caused by UBE3A loss-of-function (85). Reduced activity of 

Complex III and change in mitochondrial morphology are observed in the Angelman 

syndrome. ASD is not always associated with mitochondrial dysfunctions (86). However, it is 

reported to be more severe with mitochondrial dysfunctions and correlated with decreased 

level of an antioxidant defense mechanism and an elevated level of ROS and lactate (87–91). 

Schizophrenia can be caused due to defective Complex I, III, and/or IV that result in 

decreased ATP production, higher anaerobic metabolism of glucose, and increased lactate 

level (91–93). Bipolar disorder is also affected by oxidative stresses similar to that of 

schizophrenia: higher lactate level and decreased number of protons in the mitochondrial 

matrix (89,94,95). Hence, studies to reveal the hidden molecular mechanisms of the 

neurological disease-causing mitochondrial dysfunctions will be necessary. 

 

Perspectives 

Several studies have linked mitochondria to neurological diseases by observing stage-

dependent and metabolism-related changes of neurogenesis. This has opened an era of more 

in-depth investigations on neurometabolic diseases. Here, diverse aspects of metabolism as FO
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main factors associated with neurodevelopmental diseases examined by many research 

groups have been introduced. Although a correlation between mitochondria and neuronal 

differentiation has been demonstrated by many groups, most have not demonstrated the 

underlying mechanisms in connecting mitochondria and various neurological diseases. 

Especially, functional implications of mitochondria on neurological diseases are lacking 

scientific findings that may be applied to clinical settings. However, specific features of 

mitochondria have been identified and are used as biomarkers or in treatments for some 

diseases, leaving hope for such application in neurodevelopmental diseases (96–98). Studies 

using human NSCs and unbiased identifications of functional proteins in mitochondria will 

bring in novel insights and thought-provoking discoveries to the field. The significance and 

function of mitochondria in neurodevelopmental diseases should not be underestimated. 
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FIGURE LEGENDS 

Figure 1. Mitochondrial proteins, functions and dynamics 

(A) Major function of mitochondria is energy production through OXPHOS. Glycolysis 

occurring in the cytosol produce pyruvate, which is necessary to fuel the tricarboxylic acid FO
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(TCA) cycle. The pentose phosphate pathway (PPP) is a shunt for glycolysis. Through the 

PPP, cells acquire required components for other cellular processes including nucleotide 

synthesis. In mitochondria, beta-oxidation occurs as the other mechanism of converting lipid 

to generate energy. (B) Most proteins localized in the mitochondria are produced from the 

nuclear genome (nDNA) and transported into mitochondria. Mitochondria contain its own 

genome (mitochondrial DNA, mtDNA) and produce 13 proteins comprising oxidative 

phosphorylation (OXPHOS) complex. (C) Dynamically changing morphology of 

mitochondria through continuous cycle of fusion and fission. 

Figure 2. Mitochondrial features and bioenergetics during neuronal development. 

Neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs, also referred to as 

IPCs) have self-renewing capacities. NSCs are differentiated into NPCs, which are then 

differentiated into neurons. The changes in mitochondrial morphology during neuronal 

development should be noted. In corticogenesis in developing brains (A), the mitochondrial 

morphology change from elongated structure to fragmented, then elongated again, followed 

by more complex structure due to further elongation. In adult hippocampal neurogenesis (B), 

the mitochondrial morphology changes from mixed globular and tubular structures to thin 

and elongated, then elongated more, followed by a wider and more complex structure due to 

further elongation. Level of glycolysis is decreased in both (A) and (B) when level of 

OXPHOS is increased along with neuronal differentiation. 
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