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ABSTRACT 26 

 27 

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder 28 

characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and 29 

frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more 30 

comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, 31 

and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel 32 

treatment strategies should have two main functions, anti-inflammatory action and the 33 

regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown 34 

to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option 35 

for IC/BPS, but they come with several shortcomings, such as immune activation and 36 

tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic 37 

cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief 38 

overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we 39 

provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as 40 

well as the possible mechanisms. We believe our review will give an insight into the strengths 41 

and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further 42 

development. 43 

 44 

 45 

 46 
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INTRODUCTION 49 

 50 

Interstitial cystitis/bladder pain (IC/BPS) syndrome is a debilitating pain syndrome that 51 

presents with a wide range of symptoms including pelvic pain, urinary frequency, urgency, 52 

and cystoscopy findings, such as Hunner's lesion or glomerulation following hydrodistension. 53 

However, its diagnosis depends on the exclusion of other overlapping disorders. The 54 

prevalence of IC/BPS was long known to be higher in females (1). However, recent reports 55 

have demonstrated a higher prevalence in males (2, 3). Although no consensus exists on the 56 

actual pathophysiology of IC/BPS, numerous theories have emerged including mast cell 57 

infiltration, inflammation, glycosaminoglycan layer/urothelial dysfunction, and autoimmune 58 

dysregulation (4, 5).  59 

Urothelium, a special form of epithelial tissue that lines the urinary tract walls, including the 60 

proximal urethra and urinary bladder, serves as a vital barrier against pathogens, toxins, and 61 

wastes (6, 7). The urothelium, which is made up of uroplakins (UPs) complexes, forms the 62 

urine-blood barrier and is supported by a thick pseudostratified transitional epithelium (multi-63 

layered) and an asymmetric and fully differentiated superficial membrane (umbrella) (8-10). 64 

UPs are categorized into four subtypes: UP1a, UP1b, UP2, and UP3, which are implicated in 65 

the urothelium's permeability. These proteins coalesce together to form crystalline plaques on 66 

the bladder lumen's surface (10, 11). Proliferation or hyperplasia is a defensive reaction to 67 

any damage to the urothelium to rebuild the urine-blood barrier (12, 13). The main obstacles 68 

to bladder tissue regeneration are the scarcity of adequate tissue sources and senescence-69 

associated primary cultures of bladder cells for several passages (14). For example, some 70 

trials using gastrointestinal tract-derived tissue for bladder regeneration showed inefficiency 71 

due to tumor formation, recurrent infection, metabolic abnormalities, and stone formation 72 FO
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(15). Through the present comprehensive review article, we want to report risk and benefit of 73 

stem cell therapy for IC/BPS. In addition, we would introduce new approach with EVs from 74 

stem cell in order to push the limit of the stem cell therapy. 75 

 76 

CONTENTS 77 

 78 

Conventional treatment for IC/BPS 79 

 80 

There are several drugs and surgical methods which are recommended for IC/BPS therapy by 81 

global societies, such as the American Urological Association (AUA), the European Society 82 

for the Study of IC (ESSIC), and the Society of Interstitial Cystitis of Japan (SICJ) (16). 83 

Unfortunately, the current conventional drugs and alternative surgical interventions do not 84 

guarantee complete recovery and are associated with harmful side effects (16, 17).  85 

Because of its chronic nature and high prevalence, bladder dysfunction is an attractive target 86 

for stem cell therapy. Numerous preclinical trials for bladder dysfunction, such as detrusor 87 

underactivity, stress urinary incontinence, overactive bladder, and IC/BPS, have been 88 

established, although clinical investigations in patients are still sparse (18). 89 

 90 

 91 

Urgent need of new therapeutical strategy 92 

 93 

Stem cell-based bladder dysfunction therapy includes several mechanisms, such as anti-94 

inflammation, anti-fibrosis, urothelium regeneration, anti-oxidant, anti-apoptosis, and 95 

modulation of specific signaling pathways including Wnt and AKT/mTOR pathways (19). 96 FO
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Therefore, stem cell-based therapy has garnered attention as a robust alternative option.  97 

Mesenchymal stem cells (MSCs) have a proven record of therapeutic efficacy in human 98 

clinical trials and have been effective in a wide range of pre-clinical studies of tissue 99 

regeneration in various immunologic and degenerative diseases (20-22). MSCs secrete 100 

paracrine factors, which are the key mediators of MSC-associated therapeutic activities. Most, 101 

if not all, of the MSCs' paracrine activities, are mediated by extracellular vesicles (EVs), 102 

which are 50–1000 nm in diameter and secreted by all cell types (23, 24). EVs pass through 103 

biological barriers such as the blood-brain barrier (25) and synovial membranes (26). It is 104 

evidenced that EVs are carriers of the exogenous RNAs, such as siRNA (27), miRNA (28), 105 

and modified miRNAs (29), which could be functional molecules in vitro and in vivo. In 106 

addition, previous reports demonstrated the immunostimulatory or immunosuppressive 107 

capacities of EVs based on their target and cellular source (30). The immunomodulatory 108 

capacities of EVs could be beneficial for the treatment of inflammatory, autoimmune, and 109 

hypersensitivity diseases (31). Small EVs (sEVs), of 50 to 200 nm in diameter, isolated from 110 

MSC culture supernatants that are maintained under various culture conditions, have proved 111 

to be therapeutically effective in various preclinical models (23, 32).  112 

 113 

 114 

Pathophysiology of IC/BPS 115 

 116 

The aetiology of IC/BPS is perplexing (33). Nevertheless, numerous hypotheses endeavor to 117 

explain IC/BPS pathogenicity. Bladder epithelial damage, mast cell activation, 118 

neuroinflammation, suppression of tight junction protein, afferent nerve plasticity, infection, 119 

abnormal urothelial signaling, destruction of the superficial urothelial glycosaminoglycan 120 FO
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(GAG) layer, and psychological factors have been reported as the etiological factors that lead 121 

to IC/BPS as illustrated in Figure 1 (16, 34, 35). A commonly acknowledged postulation of 122 

IC/BPS pathophysiology proposes that the chronic inflammatory state is induced by early 123 

damage or defect in the mucosal membrane of the bladder. Urothelium, a unique type of 124 

epithelium, is composed of polysaccharides (chondroitin sulfate and hyaluronic acid) in its 125 

outer layers and glycoproteins in the deeper layers (36). The injured urothelium is the main 126 

culprit for the impaired barrier function, which allows urine solutes, such as potassium ions, 127 

to seep into the suburothelium, leading to neuronal and muscle cells depolarization and 128 

inflammation-related damage, urgency, and pain (37, 38).  129 

The bladder pain is aggravating, especially, during the bladder filling process. Besides its 130 

barrier function, urothelium is also implicated in sensory transduction through sensing 131 

physiological and chemical signals in the bladder wall and releasing signaling molecules (39). 132 

Urothelium-mediated signal transduction is not fully characterized; however, urothelial cells 133 

can produce substances P, acetylcholine, and ATP, which are involved in the activation of the 134 

bladder afferent neurons (40).  135 

Chronic inflammation possibly plays a key role in IC/BPS pathogenesis. In bladder biopsies 136 

of some patients with bladder pain, mast cells, leucocytes, and lymphocytes were found 137 

infiltrating the bladder wall and suburothelial layers, along with increased vasculature and 138 

thickening of the bladder wall. The clinical observations demonstrated subsequent chronic 139 

pain in patients with frequent reports of urinary tract infections (UTIs). UTIs are among the 140 

exacerbating factors of IC/BPS that commence at an early age and progress to IC/BPS in 141 

adulthood (41). In IC/BPS patients, the proliferating mast cells in the bladder wall have been 142 

linked to inflammation, allergic responses, and bladder hypersensitization (42, 43). 143 

Of note, a link has been shown between the incidence of clinical IC/BPS and autoimmune 144 FO
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diseases (44). Autoantibodies, which are involved in the autoimmunity mechanism, showed 145 

an adverse action on the bladder urothelium, connective tissues, and smooth muscles (44). 146 

Further, a nationwide study recently reported IC/BPS in patients with primary Sjögren's 147 

syndrome (45). Taken together, there is a strong link between autoimmune disorders and 148 

IC/BPS pathogenicity, as evidenced by the chronic inflammation and the presence of 149 

autoantibodies. 150 

 151 

Limitations of stem cell therapy 152 

 153 

Before discussing stem cell therapy limitations, we first need to briefly address the beneficial 154 

effects of stem cells in the treatment of various diseases, especially IC/BPS. Basically, MSC-155 

based therapies are attributed to their intertwined roles including suppressing inflammation 156 

by releasing cytokines, supporting healing by expressing growth factors, altering host 157 

immune responses by secreting immunomodulatory factors, augmenting responses from 158 

endogenous repair cells, and acting as mature functional cells such as bone cells (46). Stem 159 

cell-mediated IC/BPS therapy is ascribed to various mechanisms, including their direct 160 

differentiation into the main bladder cells, including urothelium and smooth muscles (SMCs), 161 

their transplantation via several routes, and the activation of the vital signaling pathways that 162 

are involved in bladder regeneration, such as mitogen activated protein kinases, AKT, Wnt-163 

GSK3β/β-catenin, and mTOR signaling pathways (16, 47-50). The possible application of 164 

stem cells in treatment of the bladder diseases at the preclinical level is also proved (18). 165 

However, Clinicaltrials.gov currently shows no ongoing stem cell treatment clinical trials in 166 

IC/BPS (18). On the other hand, the main concern over stem cell therapy is the lack of safety 167 

proof. It is difficult to implant foreign living cells into a sophisticated structure like the 168 FO
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human body. Due to the vision loss in patients with macular degeneration, an age-related eye 169 

condition, after the injection of autologous stem cells at a U.S. clinic (51), there has been a 170 

growing concern over the safety of unproven stem cell therapies are used. The risk of post-171 

transplantation tumorgenicity is associated with the donor’s age, growth modulation by the 172 

recipient tissues (52), and the dysfunction of the patient immune system due to long-term 173 

chemotherapy (53). Of note, long-term in vitro culture of MSCs could lead to unfavorable 174 

consequences, such as chromosomal abnormalities, senescence, and genetic instabilities, 175 

which negatively influence the engraftment (52, 54). Moreover, investigations in rodents and 176 

dogs demonstrated that intravenously injected MSCs are trapped in the pulmonary capillaries 177 

and large populations of MSCs are largely cleared, but some get through to the damaged 178 

target tissue (55-58). In addition, stem cell engraftment led to immune reaction-associated 179 

stress that resulted in unfavorable outcomes, such as cellular necrosis and differentiation 180 

anomalies (59).  181 

Specifically, stem cell therapy holds numerous limitations and challenges that hinder its 182 

clinical application in bladder disease therapies, such as the controversies over the 183 

transplantation route and the dose of the cells, the undefined mechanism of action of several 184 

stem cell-mediated bladder disease therapies, and the in vivo IC/BPS models used for 185 

verification of stem cell effects lack the reproducibility and needs further careful 186 

authentications (16, 60). 187 

Furthermore, when stem cells are introduced to target cells, the therapeutic effectiveness of 188 

MSCs may not correspond with engraftment, differentiation, or cell fusion (61). Overall, 189 

MSCs therapeutic actions are mediated via the paracrine effect, which is involved in tissue 190 

repair, and not replacement-based therapy (62). In this prime, numerous studies demonstrated 191 

that MSC-conditioned culture medium produced therapeutic effects similar to cell delivery in 192 FO
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rodent models of various disease models (63, 64), which has been supported by genomics 193 

data showing that MSCs secrete a huge array of bioactive proteins (65, 66).  194 

 195 

 196 

Overcoming the hurdles with stem cell-derived EVs  197 

 198 

MSCs application in urologic regenerative medicine has been widely studied due to their 199 

multilineage differentiation capacity (67, 68). However, the potential MSCs tissue 200 

regeneration mechanism is by their paracrine action via the released soluble factors including 201 

growth factors, cytokines, and chemokines rather than MSC differentiation and structural 202 

interaction with host tissue (69, 70). The paracrine effect is dependent on the transfer of 203 

proteins, bioactive lipids, and genetic material such as mRNA, miRNAs, and other non-204 

coding RNA. The paracrine impact of stem cells is also mediated via secreted EVs (71). 205 

MSCs can release a wide spectrum of soluble factors such as secretomes into the culture 206 

medium, which are less immunogenic and tumorigenic (72, 73). MSC paracrine activity 207 

could be classified into various activities, such as anti-apoptotic, anti-inflammatory, 208 

angiogenic, immunosuppressive, and immunomodulating impacts (74). 209 

The specific compositions of MSC-derived EVs (MSC-EVs) differ according to tissue source 210 

and in vitro cell stimulation approach (72); EVs isolation procedures include 211 

ultracentrifugation, filtration, immunoaffinity, precipitation, size exclusion, and microfluidic 212 

devices (75, 76). The basic criteria for EVs isolation and characterization are based on the 213 

recommendations by Minimal information for studies of extracellular vesicles 2018 214 

(MISEV2018) (77). However, the recent EVs isolation techniques are limited by lack of 215 

reproducibility and variation in the quality of the EVs produced, and therefore need further 216 FO
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considerations (78). Broadly, EVs could be categorized as "exosomes" or "microvesicles" 217 

(24). The term "exosome" commonly refers to a specific class of sEVs (sEVs) formed by the 218 

endosomal system (79), which vary from the "ectosomes" (microvesicles and microparticles) 219 

that emerge from the plasma membrane (80) or other similarly sized EVs with an undefined 220 

biogenesis pathway (81). "Small" in the term sEVs indicates a population range of 221 

approximately 50–200 nm in diameter. The production of sEVs is currently thought to be one 222 

of the mediators of MSC therapeutic properties (23). In numerous in vitro functional assays 223 

and relevant pre-clinical disease models, sEVs derived from in vitro MSC cells have been 224 

reported to have therapeutic activities that imitate those of MSCs (82, 83). Furthermore, 225 

MSC-EVs convey a large amount of verified therapeutic agents into target cells, such as 226 

nucleic acids, proteins, miRNA, and lipids, to modulate numerous biological functions (84). 227 

MSC-EV-associated tissue regeneration is majorly attributed to the MSC-EVs capacity to 228 

enhance the proliferation process and suppression of the apoptotic changes (85, 86). The 229 

prominent role of MSC-EVs in maintaining the immune hemostasis is attributed to the 230 

modulation of immune cell fate and inhibition of uncontrolled inflammation (85, 87). One of 231 

the key mechanisms of MSC-EVs in tissue regeneration is stimulation of the angiogenesis via 232 

activation of various signaling pathways (88, 89). The MSC-EVs urinary bladder wall 233 

diseases therapeutic activities are mediated via the bladder tissues regeneration and 234 

suppression of inflammation, which helps to prevent disease development and recurrence 235 

(90). Besides the possible effects of the purified EVs in the treatment of bladder diseases, we 236 

will also explain examples of the roles of stem cell conditioned medium (CM) or co-culture 237 

platforms in bladder disease therapy that represent the paracrine action of stem cells in which 238 

EVs are potently involved. In 2014, Adamowicz et al. demonstrated the regenerative capacity 239 

of MSC-derived conditioned media (MSC-CM) in the bladder wall when administered 240 FO
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intravesical in IC patients, which was attributed to its high content of cytokines, growth, and 241 

trophic factors that possess immunomodulatory, anti-inflammatory, and angiogenic activities 242 

(91). In 2018, Xie et al. demonstrated the potency of umbilical cord-derived mesenchymal 243 

stem cells (UC-MSCs) to alleviate the inflammatory-associated changes, enhance the 244 

proliferation, and block the apoptosis when co-cultured within human urothelial cells, SV-245 

HUC-1 cells that were pretreated with TNF-α (92). Interestingly, the application of siRNA 246 

targeting EGF in the UC-MSCs abolished the anti-inflammatory activity of UC-MSCs when 247 

co-cultured with TNF-α-exposed SV-HUC-1 cells. The authors showed that increased AKT 248 

and mTOR, as well as significant decrease in the protein expression level of the 249 

cleaved caspase-3, are involved in the therapeutic activity of UC-MSCs against the in vitro 250 

interstitial cystitis model using TNF-α-treated SV-HUC-1 cells (92).  251 

Hypoxia is implicated in the activation of the inflammatory events and the consequent 252 

fibrosis of the bladder smooth muscles (93). In this regard, a study by Wiafe and colleagues 253 

detected the in vitro upregulation of hypoxia-associated genes, TNF-α, IL-1β, IL-6, HIF3α, 254 

VEGF, TGF-β1, and αSMA, in 3% oxygen tension-exposed bladder SMCs and then tested 255 

the effects of direct and indirect co-culture with bone marrow-derived MSCs (BM-MSCs) in 256 

reducing hypoxia-related changes (94). Direct co-culture is reliant on cell-to-cell interaction, 257 

whereas indirect co-culture (based on trans-well system) is cell-to-cell interaction 258 

independent. Interestingly, both co-culture methods led to a significant downregulation of 259 

TGF-β1 and IL-6, which are associated with fibrosis and pro-inflammation, respectively. 260 

Moreover, the significant increase in the expression level of the potent anti-fibrotic cytokine, 261 

IL-10, and the marked decrease in the expression level of αSMA, collagen I and III 262 

transcripts, and the total collagen proteins were demonstrated upon co-culture with BM-263 

MSCs. Taken together, MSC-EVs were evidenced to be effective IC therapies via several 264 FO
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mechanisms, including delivery of therapeutic miRNA and growth factors, anti-inflammation, 265 

anti-fibrosis, and modulation of key signaling pathways (Figure 2). 266 

In 2017, Lv et al. affirmed the cross-link between miR-214 inhibition and the enhancement of 267 

epithelial-mesenchymal transition that leads to fibrosis of the bladder wall and subsequent 268 

interstitial cystitis in postmenopausal women, which is mediated via the upregulation of 269 

Mitofusin 2 (Mfn2) (95). Accordingly, another study confirmed the protective capacity of 270 

exosomes derived from miR-214-enriched BM-MSC, which were cultured under hypoxic 271 

conditions against the oxidative damage in the cardiac stem cells (96). This effect is mediated 272 

via the suppression of calcium/calmodulin-dependent protein kinase II (CaMKII). Taken 273 

together, this study paves the way for revisiting the effect of miR-214 as an attractive 274 

candidate in exosome-mediated IC/BPS therapy. Various MSC-EVs showed anti-275 

inflammatory (97), anti-fibrotic (98, 99), immunomodulatory (100) functions via modulation 276 

of a wide range of miRNAs, which need to be tested in IC/BPS therapy. In addition, there is a 277 

scarcity of studies that show the impact of stem cell derived EVs in IC/BPS therapy, which 278 

paves the way for further studies and clinical trials as well. A brief comparison between MSC 279 

and EVs in cystitis therapy is summarized in Table 1. 280 

 281 

 282 

 283 

CONCLUSIONS 284 

 285 

IC/BPS is a complicated chronic illness with unclear etiology. There are a variety of IC/BPS 286 

therapeutic options and surgical interventions, however, they are associated with detrimental 287 

side effects and do not guarantee a complete recovery. MSCs have shown unique therapeutic 288 FO
R 

RE
VI

EW



 

13 

 

activities and have been considered for the treatment of bladder diseases. However, stem cells 289 

engraftments for balder tissue regeneration face major challenges such as immune reaction, 290 

low survival rate, and tumorigenicity, which limit their clinical application. To overcome 291 

these constraints, numerous scientific works have demonstrated the efficiency of paracrine 292 

mechanisms of MSCs in the treatment of a wide range of diseases, which is represented in the 293 

secretion of a diverse range of growth factors, miRNAs, proteins, cytokines, and chemokines. 294 

EV secretion is considered the main mediator of MSCs paracrine mechanism. Here, we 295 

highlighted the advantages of the application of EVs as a cell-free platform over the direct 296 

use of stem cells in cystitis therapy. We explained how EVs contribute to cystitis treatment 297 

via the enhanced proliferation, anti-inflammatory, anti-fibrotic, and immunomodulatory 298 

functions. Furthermore, we showed the role of EVs as cargos for therapeutic molecules such 299 

as miRNAs and their role in the alleviation of cystitis. However, further investigations into 300 

miRNA carried by EVs in IC/BPS therapy are needed. Moreover, further in-depth 301 

comparative studies on MSCs and their EVs in IC/BPS treatment are required for the 302 

clarification of the effectiveness and efficacy of EVs over the parent MSCs before the clinical 303 

applications. We believe further improvements in separation, characterization, engineering, 304 

and efficacy evaluation of MSC-EVs are essential for deriving high quality EVs with utmost 305 

activity for IC/BPS therapy in the future. 306 

 307 
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FIGURE LEGENDS 337 

 338 

Fig. 1. IC/BPS Pathophysiology 339 

 340 

GAG: glycosaminoglycan, UTI: urinary tract infections, NGF: nerve growth factor, IL-6: 341 

interleukin-6, CNS: Central nervous system  342 

 343 

The figure is reproduced from the article by Abdal Dayem et al. 2020 (16). This article is an 344 

open access article distributed under the terms and conditions of the Creative Commons 345 

Attribution (CCBY) license (http://creativecommons.org/licenses/by/4.0/). 346 

 347 

348 
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Fig. 2. MSC-EVs mechanisms in IC/BPS therapy. A schematic diagram summarizing 349 

MSC-EV separation methods and their potential modes of action in IC/BPS therapy. Parts of 350 

this figure were created using Servier Medical Art (https://smart.servier.com), licensed under 351 

a Creative Commons Attribution 3.0. 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 
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Table 1. Comparison of stem cell therapy and EVs therapy. 365 

 366 

Item Stem cell therapy EVs therapy 

Source 
Primary tissues of various body 
organs 

Cultured media 

Interstitial 
cystitis therapy 
mechanisms 

-Cell replacement via their 
differentiation into urothelium and 
muscle layers 

-Migration to injured site 
-Anti-inflammation 
-Anti-fibrosis 
-Modulation of signaling pathways 

-Delivery of therapeutic 
molecules (miRNA and growth 
factors). 

-Enhance proliferation 
-Anti-fibrosis 
-Anti-apoptosis 
-Immunomodulation 

Pros 

-Availability 
-Easily isolated and expanded 
-Multilineage differentiation 
-Unique immunological properties 

-Cell-free platform 
-Carrier of the cell therapeutic 
molecules 

-Easily engineered. 
-Easily stored 

Cons 

-Post-transplantation tumorigenicity 
-Donor-dependent quality 
-Genetic instability and 
chromosomal abnormalities 

-Senescence 
-Short-term survival at the injured 
site 

-Engraftment failure 

-Costly 
-Irreproducible and inefficient 
separation methods 

-Heterogenicity 
-EVs characterization 
Difficulties 

-Scarcity of EVs specific 
markers 

AKT: serine/threonine kinase, mTOR: mechanistic target of rapamycin kinase, TGF-β: 367 

transforming growth factor- β 368 

 369 

 370 

 371 
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