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ABSTRACT 

Cell  cycle progress ion i s  regulated by both t ranscr ipt ional  and 

post - t ranscript ional  mechanisms.  MicroRNAs (miRNAs)  emerge  as  a  

new class  of  smal l  non-coding RNA regulators  of  cel l  cycle  as  recent  

evidence  suggests .  It  i s  hypothesized that  expression  of  specif ic  

miRNAs osci l la tes  orderly along with cel l  cycle  progression.  

However,  the osci l la ted expression pat te rns  of  many candidate  

miRNAs have ye t  to  be determined .  Here ,  we describe miRNA 

expression  profi l ing  in  double-thymidine synchronized HeLa ce l ls  as  

cel l  cyc le  progresses .  Twenty-f ive  di fferent ial l y expressed  miRNAs  

were c lass i f i ed into  f ive groups based on thei r  cel l  cycle-dependent  

expression  pat terns .  The  cycl ic  expression of  s ix  miRNAs ( miR-221,  

le t -7a,  miR-21,  miR-34a,  miR-24,  miR-376b) was val idated  b y 

real - t ime quant i ta t ive RT-PCR (qRT-PCR).  These resul t s  suggest  that  

speci f ic  miRNAs,  along with  o ther  key factors  are required for  

main ta ining and regulat ing proper cel l  cycle  progression .  The s tudy 

deepens our  understanding on ce l l  cyc le  regula t ion.  

Keywords:  microRNA, cel l  cyc le ,  HeLa cel ls ,  synchronizat ion,  

microarray,  real - t ime quant i t a t ive RT-PCR 

 

 

 

 

 

 



 3

INTRODUCTION 

Proper regula t ion  of  cel l  cyc le  is  l ikely to  govern cr i t i cal  aspects  

of  diverse processes ,  whi le  dysregulat ion of  cel l  cycle i s  l ike ly to  

lead  to  pro l i ferat ive  di seases ,  mos t  notably cancer  (1) .  Indeed ,  

previous  s tudies  suggest ed that  a  l a rge number of  genes  would be  

regulated  in  a  ce l l -cycle-specif ic  manner  in  normal  and  cancer  cel ls  

(2-4) .  Thus,  a  global  perspect ive on gene regulat ion  throughout  the  

cel l  cycle  would  expand our unders tanding of  both  normal  cel l  

divis ion  and  the  abnormal  phenotypes  observed in  certain  

pathological  processes .  

MicroRNAs (miRNAs) are endogenous smal l  non-coding RNAs 

that  a re  bel ieved  to  be  important  in  many bio logical  p rocesses  by 

regulat ing gene  expression via degradat ion or  t ranslat ional  inhib i t ion 

of  t a rget  mRNAs.  Numerous miRNAs and thei r  ta rgets  have been  

ident i f i ed  in  many species .  Al though the  funct ional  aspects  of  most  

miRNAs remain  unknown or  obscure,  a  smal l  number of  miRNAs  

have been shown to play importan t  ro les  in  cel l  cycle  progression  

(5-8) .  If  miRNAs have control  over  cel l  cycle,  i t  i s  ant icipated tha t  

thei r  cycl ic  express ion should  be readi ly  observed in  a  t imely manner 

(9) .  Invest igat ing miRNAs express ion pat te rn  in  di fferen t  cel l  cyc le  

phases  would  provide  insights  into  miRNA-dependent  regulat ion  of  

cel l  cycle progression.  

In  the present  s tudy,  we sought  to  invest iga te  the express ion 

pat terns  of  miRNAs throughout  the cel l  cyc le in  synchroniz ing HeLa  

cel ls  t rea ted by double-thymidine block .  Twenty-f ive miRNAs were 
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detected  to  be di fferent ial l y expressed  and  c lass i f i ed  in to  f ive  groups  

based on thei r  dis t inc t  cycl ic  expression  pat terns .  Our  f indings  

suppor t  the not ion that  speci f ic  miRNAs,  along with  other  factors ,  

funct ion in  cel l  cycle to  achieve proper regulat ion ,  which might  

represent  a  novel  mechanism for  regula t ing cel l  cyc le  progress ion . 

 

RESULTS AND DISCUSSION 

The s tudy of  cel l  cycle -speci f ic  regula t ion  requi res  cel l  cul tures  

growing in  the  same phase  of  the  cycle .  The most  commonly used  cel l  

cyc le  synchronizat ion procedures  include select ion methods such as  

elut r iat ion and mitot ic  shake off ,  and  ind uct ion methods  such as  

double  thymidine  block,  serum starvat ion and drug-induced cel l  cyc le  

ar rest  (10) .  However ,  the sensi t ivi t y wi th  which one can detect  

periodic  act ivi t i es  in  synchronized ce l l  cu l tures  depends almost  

ent i rely on  the degree to  which  cel l s  can be synchronized  (4) .  To 

ident i fy miRNA act ivi t y th roughout  the  cel l  cyc le ,  here  we used  

HeLa cel ls ,  a  ep i thel ial  cel l  l ine der ived f rom cervical  carc inoma,  

which  has  been  widely used  for  cel l  cycle  s tudies  due to  i t s  robust  

cel l  cycle  synchronizat ion.  A double thymidine  block was ut i l ized to  

ar rest  cel l s  a t  the G1/S boundary,  then the complete  cel l  populat ion  

t raversed the cel l  cycle at  a  s imi lar  ra te  fol lowing release f rom 

thymidine arres t .  Synchronized populat ion of  cel l s was obta ined at  12 

t ime poin ts  every 2  h af ter  the  release ,  and cel l  cycle  was  moni tored  

by f low cytomet ry (FACS)  analys is .   

Fig.1  i l lus t ra ted the cel l  cyc le  di s t r ibut ion based on the DNA 
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content  in  HeLa cel l s  growing asynchronously or  synchronized  by the 

double-thymidine b lock.  The percentage of  cel l  cycle  phase of  

asynchronous ly growing cel ls  (general  HeLa cel l s)  was  55 .6% in G1 

phase,  28 .8% in G2/M phase,  15.6% in S phase  (Fig.1A,  Control) .  As  

evident  f rom the  DNA  content  f requency hi s tograms (Fig.  1B)  and  

actual  percentage  of  cel l s  in  respect ive  phases  of  the  cel l  cycle  (Fig.  

1A),  the  cel l s  were ef fect ively synchronized upon ent rance  to  S phase 

fol lowing the  double - thymidine  block.  At  the t ime of  release f rom the  

block,  nearly a l l  cel ls  were res iding in  the  G1/S  boundary.  Upon 

re lease  from the  thymidine  block,  the  synchrony was  main ta ined  

throughout  the cel l  cyc le .  Thus,  most  of  the cel ls  (~80%) were  

progressing through  S phase 4  h  af te r  removal  of  thymidine from the  

medium,  and  most  cel ls  were  entering G2/M phase  at  about  6  to  10  h  

and re -entering G1 phase between 12 and 16 h af t er  release .   

To compare the expression levels  of  miRNAs at  di f ferent  phases  of  

the cel l  cyc le in  synchronized HeLa cel ls ,  total  RNA was isolated  

from HeLa cel ls  growing asynchronously (cont rol )  and  synchronized  

at  G1  (16 h) ,  S  (4 h)  or  G2/M (10 h)  phase,  r espect ively.  The quali ty 

and yie ld  of  the to tal  RNA were sat is factory when assessed  with  

Agi len t  2100 Bioanalyzer .   

Recent  s tudies  documented speci f ic  miRNAs in  cel l  cyc le  

regulat ion  and suggested that  dysfunct ion of  miRNA -media ted  

cel l -cycle  control  cont r ibu tes  to  mal ignancies  (11) .  To  address  this  

quest ion,  the  genome-wide  express ion profi l ing of  miRNAs in  

synchronized HeLa  cel l s  was invest igated using a microar ray 
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conta ining 698 mature human miRNA ol igonucleot ide probes . 

Twenty-f ive  di f ferent ial l y expressed  miRNAs showing 

cel l -cycle-dependent  pat te rns  were  ident i f i ed  and class i f ied  into  f ive 

groups  based  on  the ir  expression  pat te rns  (Fig.2) .  These  f ive  groups  

and the fold changes of  each dif ferent ial l y expressed miRNA are 

l i s ted in  Table 1 .  S t r ik ingly,  some miRNAs in group C3 and C4 has  

been  repor ted to  par t icipa te  in  cel l  cycle control  and tumorigenesis.   

Expression  profi l ing revealed  that  the express ion of  miR-221,  

miR-222 and miR-21 was  low at  G1,  s tar ted to  increase  a t  S  phase,  

and peaked  as  cel l s  enter  G2/M.  In terest ingly,  miR-221 and miR-222  

have been shown to  be oncogenic  and up-regula ted in  several  

tumor-derived cel l  l ines ,  as  wel l  as  in  cancer  pat ients  (12,  13) .  

Furthermore,  miR-221 and miR-222 are  up-regulated  upon exi t  f rom 

quiescence and they are growth  regulatory mediators  that  

coordinately modulate the levels  of  two cri t i cal  inhibi tors  (p27 and  

p57) of  CDK2/cycl in  complexes  in  l a te  G1 when competency for  cel l  

cyc le  progress ion i s  moni tored (6) .  Moreover ,  by cont rol l ing these  

two CDK inhibi tors ,  up-regulat ion of  miR-221 and  miR-222 can  

promote the growth of  human hepatocel lular  carcinoma cel ls  and  

thyroid  papi l l ary carcinoma cel l  l ine  (TPC-1)  by increasing the  

number of  ce l ls  in  S -phase  (14 ,  15) .  S imilar ly,  miR-21 a lso  funct ions 

as  an oncogene  af fect ing tumorigenesi s ,  in  par t  th rough regulat ion of  

the tumor suppressor  genes  TPM1 (16) ,  PDCD4 (17),  PTEN (18)  and  

the  ant i -apoptot ic  protein  BCL2 (19) .  Addi t ional l y,  down-regulat ion  

of  miR-21 in  gl ioblastoma cel l s  has  been shown to  suppress  cancer  
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cel l  growth ,  increased apoptosis ,  and ce l l  cycle arrest  (20) .  Together  

wi th  our  f indings  that  miR-221,  miR-222 and miR-21 are  

s igni f icant ly up-regulated as  ce l ls  progress  through the  G1/S  

t ransi t ion ,  these  resul ts  indicate  that  up-regulat ion of  ei ther  miR 

might  promote G1/S t ransi t ion  and  cel l  p rol i ferat ion ,  whereas  

down-regula t ion of  these  miRNAs might  cause cel l  cycle  arres t  and 

inhib i t  cancer  cel l  growth.  

In  cont ras t  to  miR-221,  miR-222 and miR-21,  expression of  le t -7a  

and miR-34a  was  down-regula ted dur ing G1 and S  phases  wi th  

minimal  levels  of  express ion  in  S phase,  especia l l y for  l e t -7a .  

However,  they both  were  then s ignif icant ly up-regulated when cel ls  

entered  G2/M.  It  i s  notable that  the le t -7  miRNA is  a  founding 

member  of  the  miRNA family,  which  cont rols  the  t iming of  cel l  cyc le  

ex i t  and  terminal  di f feren t iat ion in  Caenorhabdi t i s  e legans  (21) .  

Furthermore,  previous  s tudies  have a lso shown that  l e t -7  miRNA 

family funct ions  as  tumor suppressors  by inhibi t ing the mRNAs of  

wel l  character ized  oncogenes ,  such  as  the  Ras  family (22) ,  HMGA2 

(23) ,  c-Myc (24 ,  25) ,  IMP-1  (26) ,  and cel l  cycle regulators  including 

CDC25A,  CDK6,  and CCND2 (27) .  Int roduct ion of  le t -7a  into l iver  

cancer  cel l s  causes  growth  inhibi t ion  and cel l  cycle  changes  (27) .  

Likewise ,  miR-34a ,  located at  1p36 in  the human genome,  i s  

frequent ly deleted  in  diverse  mal ignancies ,  po int ing  to  thi s  miRNA 

as  a  bona  f ide  tumor suppressor  (11) .  Several  groups have  

demonst rated tha t  miR-34a as  a  miRNA component  of  the p53  

network  and as  a  d i rec t  t ranscript ional  t arge ts  of  p53  (19 ,  28,  29) .  
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Further  evidence  has  revealed that  miR-34a induces  G1 ar res t  by 

regulat ion of  severa l  cel l  cycle genes ,  including CCNE2,  CDK4 and  

hepatocyte growth factor  receptor  (MET) (19).  Sun et  al  sugges ted  

that  miR-34a t r iggers  G1 ar rest  in  A549 cel ls  by regulat ing other  

downst ream effectors  including CCND1 and CDK6  (5) .  In  addi t ion ,  

ectopic  expression  of  miR-34a reduces the levels  of  E2F3 by 

target ing i t s  mRNA (30) .  The  ant i -apopto t ic  protein BCL2 is  

down-regula ted  by miR-34a in  several  cel l  t ypes ,  which  is  consis tent  

wi th  a  role  for  miR-34a in  p53-mediated  apoptosis  (19) .  In  summary,  

numerous  l ines  of  evidence impl icate  le t -7a or  miR-34a as  major  

regulators  of  the  cel l  cycle and  of  the G1-to-S  t ransi t ion  in  part i cular,  

and thei r  inact ivat ion might  cont r ibu te  to  the  development  of  cer tain  

cancers .  Signi f icant ly,  these funct ional  aspects  of  l e t -7a or  miR-34a 

on cel l  cycle  and oncogenesis  are consis tent  wi th our  f indings.   

To val idate the  microarray resul t s ,  qRT-PCR was  performed on s ix  

selected  miRNAs including four  di f ferent ial l y expressed  miRNAs  

(hsa-let -7a,  hsa-miR-21,  hsa-miR-221,  miR-34a) and two miRNAs 

(hsa-miR-24,  hsa-miR-376b)  whose  expression  remain la rgel y 

unchanged.  The  expression levels  of  these miRNAs were calculated  

re la t ive to  the expression  a t  G1  (Fig.  3) .  In  general ,  the  resul t s  of  

qRT-PCR were al l  in  accordance wi th the  microarray da ta .   

In  conclusions,  the  focus  of  thi s  s tudy was  to  ident i fy speci f ic  

miRNAs regulat ing the cel l  cycle in  HeLa cel ls .  The resul ts  

demonst rated  for  the f i rs t  t ime tha t  a t  l eas t  25 miRNAs expressed  in  a  

cel l  cycle -dependent  manner .  Our  data suppor ts  the  involvement  of  
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cel l  cycle -regulat ing miRNAs and demands for  further  invest iga t ion  

on  how these  miRNAs might  part i cipate in  ce l l  c ycle  process  and  

tumorigenes is .   

 

MATERIALS AND METHODS  

Cel l  l ine and cel l  culture condi t ions  

The human cervical  carcinoma cel l  l ine HeLa was obtained f rom 

the  American  Type Cul ture Col lec t ion  (ATCC;  Manassas ,  VA,  USA).  

The cel l  l ine  was main ta ined in  RPMI-1640 medium supplemented  

with  10% fetal  bovine serum,  100  uni ts /ml  penici l l in ,  100  μg/ml  

s t reptomycin,  and 2 mM L-glutamine in  a  humid  atmosphere  wi th  5% 

CO2  a t  37°C.  Al l  medium,  supplements ,  and sera were  purchased f rom 

Invi t rogen (Grand Is land,  NY, USA) .  Cul tures  were passaged by 

di lut ion  to  a  cel l  concent rat ion  of  2×10 5 /ml  to  maintain  asynchronous  

and exponent ial  growth.  

Cel l  synchronization 

A double- thymidine  block was used to  arres t  HeLa cel l s  a t  G1/S  

t ransi t ion  (31) .  A s tock solut ion  of  100 mM thymidine  (S igma 

Chemical  Co. ,  St .  Louis ,  MO, USA) was made by d issolving  

thymidine in  media wi thout  serum and s tored at  4°C.  HeLa cel ls  were  

cul tured in  RPMI-1640 supplemented  wi th 10% FBS.  HeLa cel ls  were  

f i rs t  synchronized by the addi t ion of  2  mM th ymidine f rom a 100 mM 

stock solut ion  for  18 h.  Cel ls  were then  washed  twice with  phosphate 

buffer  sal ine  (PBS) fol lowed by the addi t ion of  regular  cul ture  media.  

Then,  9  h  af ter  the release ,  the  media  was  changed to  that  containing 
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2 mM thymidine  for  another  17  h.  Cel ls  were  col lected  by 0 .01% 

trypsin-EDTA every two hours  af ter  they were released  f rom the  

second thymidine b lock.  Trypsin  was neut ral ized by adding medium 

conta ining 10% FBS. To determine the t ime poin t  at  which the  

majori t y of  the  synchronized cel l s  were in  G1,  S  or  G2/M phase,  cel ls  

were col lected at  d i fferent  intervals  and f ixed in  70% ethanol  and  

analyzed  by propidium iodide (P I)  s tain ing and f low cytometry.  

Flow cytometry  

Cells  were  washed  once  in  PBS,  and f ixed in  70% ethanol  

overnight  a t  4˚C.  Stain ing for  DNA content  was per formed wi th  50  

mg/ml  PI and  1  mg/ml  RNase A for  30 min at  37˚C in  the  dark  prior  to  

f low cytometry analys is .  Analys i s  was performed on a  FACScal ibur  

f low cytometer  (Becton Dickinson,  Frankl in Lakes,  NJ ,  USA) with  

Cel l  Quest  Pro  software.  Cel l -cycle  model ing was  performed with  

Modfi t  3 .0  software  (Veri t y Software House ,  Topsham, ME,  USA).  

For each sample,  10,000 events  were  col lected  and  aggregated cel l s  

were ga ted out .  Percentages  of  ce l ls  ex is t ing wi th in the  di fferent  

phases  of  the cel l  cycle were  ca lculated  using Cel l  Quest  by gat ing on 

G1,  S  and G2+M cel l  populat ions .   

RNA extraction and qual i ty  control  

Total  RNA was  ex t racted from HeLa harvested af ter  4  h ,  10  h,  and 

16 h af ter  release from the second thymidine block using a  mirVana 

miRNA Isolat ion  ki t  (Ambion,  Aust in ,  TX,  USA) according to  the  

manufacturers’ ins t ruct ions .  The  integri t y and  s tabi l i t y of  RNA 

samples  were  assessed  by Agi lent  2100 Bioanalyzer  (Agi lent  
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Technologies ,  Palo  Alto ,  CA).   

miRNA microarray analysi s  

A poly(A) tai l  was  appended to  the 3’-end of  enriched miRNAs 

from al l  the above samples  with  a  mix ture  of  unmodif ied  and  

amine-modi f ied  nucleot ides  (Ambion) .  The tai led samples  were 

f luorescent ly labeled using an  amine -react ive  Cy3 dye  (Amersham),  

and the unincorporated  dyes  were  removed wi th  glass  f iber  f i l t e rs .  

The samples  were hybridized  for  18 hr  onto s l ides  ar rayed  wi th  

miRNA probes  f rom the NCodeT M  human miRNA Microarray Probe  

Set  ( Invi t rogen) .  Sl ides  were  then  washed 3  × 2  min  in  2×SSC and  

scanned using a Generat ion III  a r ray scanner (Amersham Pharmacia) .   

Bioinformatics  Analysis  

Raw miRNA expression da ta  were  preprocessed s tepwise:  

background s ignals  were subtracted  f rom foreground s ignals  fol lowed 

by robust  ca l ibrat ion and variance s tabi l i zat ion  (32);  Values  of  

dupl icated  probes  were averaged  and  data  for  miRNAs conta ining  

“hsa-“in thei r  l abels  were retained.  This  produced a l i s t  o f  698  

unique  miRNAs.  Di fferent ial l y expressed miRNAs showing 

cel l -cycle-dependent  pa t terns  were enriched by “Mult iclass” t es t ing 

in  SAM or t es t - f i t t ing with lmFit /eBayes as  sugges ted  by the  R  

“l imma” package  (33) .  In  addi t ion,  SOM  (34)  was used to  class i fy 25  

different ial  miRNAs into f ive groups  based on thei r  cel l  

cyc le-dependent  expression pa t te rns .  

qRT-PCR analysi s  for miRNAs expression  

Total  RNA with good qual i t y was  used  for  the  fol lowing analys is .  
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The miRNA sequence-specif ic  primers  for  hsa -let -7a (Cat#  

AM30000) ,  hsa-miR-24 (Cat#  AM30121) ,  hsa-miR-376b (Cat#  

AM30269) ,  hsa-miR-21 (Cat#  AM30102),  hsa-miR-221(Cat#  

AM30115),  miR-34a (Cat# AM30168)  and endogenous cont rol  5S  

rRNA (Cat# AM30302) were purchased f rom Ambion.  Real - t ime 

qRT-PCR analysi s  was car r ied  out  on a  St ra tagene  MX3000P 

inst rument  wi th  mi rVana qRT-PCR miRNA detect ion  ki t  (Ambion,  Cat  

#AM1558,  USA) and ampli f ied product  l evels  were de tected by 

real - t ime moni toring of  SYBR Green I  dye f luorescence under  the  

fol lowing condi t ions:  37°C,  30 minutes ;  95°C,  10 minutes  of  reverse  

t ranscript ion;  95°C,  3  minutes;  40 cycles  of  95°C,  15  seconds,  60°C,  

30 seconds for  the  ampli f icat ion .  Each PCR react ion was done  in  

t r ip l icate .  

The relat ive  quant i f icat ion values  for  each  miRNA were  calculated 

by the  2− Δ Δ C
T  method (35 ,  36)  using 5S  rRNA as  an internal  reference .  

The level  of  expression  at  S  and G2/M for  each  miRNA is  presented 

re la t ive to  i ts  expression  a t  G1 af ter  normal iz ing for  5S rRNA. The 

ΔC T  was calculated  by subt rac t ing the  C T  o f  5S  rRNA from the C T  o f  

the  miRNA of  interes t .  The  ΔΔC T  was  calculated  by subtract ing the  

ΔC T  o f  the  reference sample  f rom the ΔC T  o f  each  sample .  Fold  

change was  calculated  using the equat ion 2− Δ Δ C
T .   

Statis t ical  analys is  

Data  were  presented  as  Mean ± SD and independent  t  t es t  analys is  

was performed by SPSS13.0 software to  compare the di fference  
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between di fferent  phases .  A value of  P <0 .05 was  considered 

s tat is t i cal l y s igni f icant .  
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Tables  

Table  1 .  Class i f i ca t ion  of  di f ferent ial ly expressed  miRNAs during 

the  cel l  cyc le  in  HeLa cel l s .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 22

Figure l egends  

Fig.  1 .  The synchronizat ion of  HeLa cel ls  by double-thymidine  block.  

The percentages  of  the cel ls  in  each  phases  of  the cel l  cycle were 

determined by f low cytometry analys is .  The resul t s  are  those of  a  

t ypical  experiment .  (A) DNA content  f requency h i s tograms 

represent ing  exponent ia l l y and asynchronously growing ce l ls  in  the  

control  cu l ture (Con .)  and  synchronized cel l  popula t ions  a t  di fferent  

t ime points .  (B) The percentage of  cel ls  at  d i f feren t  phases  of  the cel l  

cyc le  a f ter  release f rom thymidine  t reatment .   

Fig.  2 .  Five groups based on cel l  cycle-dependent  expression pat terns  

of  di fferent ial l y expressed  miRNAs.   

Fig.  3 .  Relat ive expression levels  of  le t -7a,  miR-34a,  miR-221,  

miR-21,  miR-376b,  miR-24.  Relat ive express ion leve ls  were  

calculated  accord ing to  the  2− Δ Δ C
T  method ,  us ing 5S  rRNA as  an  

internal  re ference  gene and G1 phase  as  cal ibrator  ( relat ive  

expression  = 1) .  Data  represent  the average of  th ree independent  

experiments  ±  1SD.  
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Table 1. 

miRNA Name Group 
Microarray 

S/G1 G2M/G1 G2M/S 
hsa-miR-19a C0 1.28 0.11 0.09 
hsa-miR-34b C0 1.48 0.15 0.10 

hsa-miR-34c-3p C0 1.35 0.19 0.14 
hsa-miR-933 C0 1.62 0.11 0.07 
hsa-miR-329 C1 3.05 1.76 0.58 
hsa-miR-519d C1 2.29 1.30 0.57 

hsa-miR-590-3p C1 2.58 1.22 0.47 
hsa-miR-618 C1 1.80 0.79 0.44 
hsa-miR-924 C1 3.17 3.52 1.11 
hsa-miR-126* C2 0.36 0.55 1.53 
hsa-miR-147b C2 1.18 0.37 0.31 
hsa-miR-224 C2 0.29 0.82 2.77 

hsa-miR-299-5p C2 0.98 0.45 0.46 
hsa-miR-524-5p C2 1.69 0.70 0.42 

hsa-miR-553 C2 1.05 0.47 0.45 
hsa-miR-582-5p C2 0.43 0.60 1.37 

hsa-miR-653 C2 0.37 0.39 1.06 
hsa-miR-34a C3 0.64 3.71 5.80 
hsa-miR-30b C3 0.50 0.43 0.87 
hsa-miR-22 C3 0.12 0.22 1.82 
hsa-miR-510 C3 0.26 0.94 3.60 

hsa-let-7a C4 0.79 2.33 2.94 
hsa-miR-21 C4 2.63 3.95 1.50 
hsa-miR-221 C4 3.82 5.23 1.37 
hsa-miR-222 C4 2.14 3.44 1.60 

 

 


