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ABSTRACT 11 

The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer’s 12 

disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure 13 

of mitochondria, an organelle involved in diverse biological processes as well as energy production, 14 

maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an 15 

impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the 16 

disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria 17 

are involved in different biological processes depending on the specific functions of each cell type in 18 

the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological 19 

phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD 20 

pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in 21 

each cell type to AD pathogenesis. 22 
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INTRODUCTION 24 

Alzheimer’s disease (AD) accompanied by extracellular amyloid plaques and intracellular 25 

neurofibrillary tangles exhibits memory impairment and cognitive deficit in patients with AD (1). 26 

However, the underlying mechanisms of the pathogenesis of AD remain unclear, and therapeutic 27 

approaches directly targeting amyloid beta (Aβ) and tau have failed (2, 3). The development of 18F-28 

Fluorodeoxyglucose positron emission tomography (FDG-PET) which visualizes the usage of glucose 29 

in the tissue, reveals the association between reduced metabolism in the brain and AD pathogenesis 30 

(4). In the progress of AD, since metabolic defect of the brain has appeared as the early symptoms of 31 

AD even before onset of AD pathological symptoms with brain atrophy and memory loss, the 32 

reduction of FDG-PET has long been used for the imaging biomarker of AD (5). Hypometabolism in 33 

the brain of AD is attributed to abnormal morphology and impaired functions of mitochondria (6, 7). 34 

For this reason it is noted that mitochondria are responsible for energy supply and maintenance of 35 

different functions of cells and mitochondrial failure has been reported in patients with AD (8). It has 36 

been suggested that mitochondrial dysfunction and impaired dynamics appear to be critical roles in 37 

the pathogenesis of AD (9, 10). The mitochondrial cascade hypothesis has been postulated to explain 38 

the onset of bioenergetics dysfunction involved in the pathogenesis of AD (11, 12). The hypothesis 39 

assumes that gene inheritance and environmental factors regulate mitochondrial functions, which in 40 

turn determines the vulnerability to AD (13). Also, Both amyloid and tau pathology can induce 41 

mitochondrial alterations in vitro and vivo, indicating that bioenergetics dysfunction is closely 42 

associated with AD pathology (14, 15). In this review, we discuss the mitochondrial failure affected 43 

by AD pathology, and its implication in different cell types for the pathogenesis of AD.  44 

 45 

Mitochondrial dysfunction induced by Alzheimer’s disease pathogenesis  46 

1) Mitochondrial bioenergetics defects  47 FO
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The metabolism and glucose uptake of the brain tissue is down-regulated in patients with AD (16, 48 

17). The investigation of bioenergetics profiles of fibroblasts from late-onset AD (LOAD) and health 49 

control demonstrates that the cells from LOAD, have the metabolic shift from the mitochondrial 50 

oxidative phosphorylation system (OXPHOS) to glycolysis, indicating reduced mitochondrial 51 

metabolic potential in LOAD (18). Mitochondria fractioned from triple transgenic AD model mice 52 

(3xTg-AD) brains show a decrease in mitochondrial membrane potential, ATP/ADP ratio and an 53 

impairment of the respiratory activities (19). The brain tissue of APP/PS1 AD model mice contains 54 

fewer ATP contents compared to the wild-type mice brain sample from 5 months old (20). When Aβ 55 

is specifically accumulated in mitochondria by using mitochondria-targeted Aβ construct, various 56 

mitochondrial functions were impaired, including the mitochondrial membrane potential and ATP 57 

generation (21) (Fig. 1). The genetic isoforms of apolipoprotein E (ApoE), the leading risk factor for 58 

the onset of LOAD, are also known to affect cellular metabolism (22). When each ApoE isoform is 59 

overexpressed in the mouse neuroblastoma cell line, the levels of hexokinase, one of the glycolytic 60 

enzymes, and the glycolytic activity are reduced in ApoE4-overexpressing cells as compared to other 61 

isoforms. In addition, it is shown that the oxygen consumption rate and the ATP amounts produced 62 

through the OXPHOS system are also shown to decrease when ApoE4 is overexpressed (23).    63 

Many previous studies have investigated that there are distinct pathways how Aβ affects 64 

mitochondrial respiratory complexes. Both overexpression of amyloid precursor protein (APP) in 65 

cells and transgenic AD model mice represent reduced activities of adenosine 5’-triphosphate 66 

synthase (ATP synthase, mitochondrial complex Ⅴ), but not other complexes, leading to reducing 67 

oxygen consumption and ATP production (24, 25). Using proteomic and functional analysis, 68 

differentially expressed proteins in P301L tau transgenic mice brain are identified as compared to 69 

wild-type mice brain, which are involved in a metabolism and mitochondrial respiration process (26). 70 

A decrease in complex Ⅰ activity and ATP synthesis is observed in P301L mice brain. In addition, 71 

human FTDP-17 patients with P301L tau mutation show reduced complex Ⅴ levels in the cortex 72 

region of the brain. Here it is noted that the SH-SY5Y cell line overexpressing human P301L mutant 73 FO
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tau exhibits decreased complex Ⅰ activity, as accompanied by decreased ATP levels (27). When 74 

3xTg-AD mouse model with both amyloid and tau pathology is compared with AD mouse model with 75 

distinct single pathology, the synergistic effects of both pathologies are the impact on the OXPHOS. 76 

In consistent with previous reports, mitochondrial complex Ⅰ is down-regulated dependent of tau 77 

pathology whereas complex Ⅳ is affected by amyloid pathology at protein and activity levels (28). 78 

Together, each amyloid and tau pathology impact individually on the functions of mitochondrial 79 

components, and both pathologies synergistically induce mitochondrial failure in AD (Fig. 1). 80 

 81 

2) Interaction of Aβ with mitochondrial components 82 

It has been reported that Aβ is accumulated within the mitochondria of AD brain tissue (29, 30). Aβ 83 

can be translocated into mitochondrial matrix via the import machinery of mitochondria and APP is 84 

embedded in mitochondrial membrane, resulting in causing mitochondrial toxicity (21, 31, 32). Aβ 85 

located to the mitochondrial matrix can physically interact with mitochondrial components, thereby 86 

inhibiting their functions and producing excessive oxidative stress (33, 34) (Fig. 1). ATP synthase is 87 

localized in the inner membrane of mitochondria as the last component of the electron transport chain, 88 

where it produces ATP by the flux of a proton gradient across mitochondrial inner membrane (35). It 89 

has been reported that Aβ binds to ATP synthase and dysregulates its function, thereby inhibiting 90 

energy production. ATP synthase subunit α (ATP5A) activity which is regulated by the attachment of 91 

O-linked N-acetylglucosamine (O-GlcNAcylation) can be inhibited by the binding of Aβ to ATP5A. 92 

Aβ disrupts the interaction between ATP5A and O-GlcNAc transferase, resulting in blocking O-93 

GlcNAcylation of ATP5A (36).  94 

One of possible mechanisms to induce neuronal toxicity by Aβ is to form the mitochondrial 95 

permeability transition pore (mPTP), which activates the apoptotic pathway by the efflux of Ca2+ and 96 

apoptotic factors from the mitochondrial matrix (37, 38). Cyclophilin D, a peptidylprolyl isomerase F, 97 

is known to regulate the opening of mPTP pore in the mitochondrial matrix (39, 40). The physical 98 FO
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interaction of cyclophilin D with Aβ occurs in the mitochondrial matrix, resulting in the inhibition of 99 

cyclophilin D to close mPTP pore. The pathological features of AD including mitochondrial toxicity 100 

and neuronal dysfunction can be reduced by genetic deletion of cyclophilin D, indicating that the 101 

cyclophilin D- Aβ interaction resulting in mPTP opening promotes Aβ-induced pathology of AD (41). 102 

Also, oligomycin sensitivity conferring protein (OSCP) subunit of ATP synthase involved in the 103 

formation of mPTP with cyclophilin D, also has the physical interaction with Aβ. The interaction 104 

leads to disrupting the stability and activity of ATP synthase, increased oxidative stress, and activated 105 

mPTP but the activities of other OXPHOS complexes are noted to be relatiely unchanged (25).  106 

Alcohol dehydrogenase, which catalyzes the reduction of the nicotinamide adenine dinucleotide 107 

(NAD+) to NADH using alcohol, is suppressed by Aβ in the mitochondrial matrix of AD patients and 108 

transgenic model mice (42). In these cases, Aβ induces to deform the active site of alcohol 109 

dehydrogenase, resulting in the inhibition of NAD+ binding. The mouse model in which alcohol 110 

dehydrogenase is overexpressed in an Aβ-rich environment exhibits a memory deficit dependent of 111 

the hippocampus, indicating that Aβ-induced mitochondrial toxicity occurs through the interaction 112 

between alcohol dehydrogenase and Aβ. 113 

Mitochondrial proteins encoded by nucleus DNA possess the signal peptide to pull it into the 114 

mitochondrial matrix. After the import, the mitochondria-targeting sequence is cleaved by the 115 

mitochondrial processing peptidase (43). In the mitochondrial matrix, peptidasome Cym1/PreP 116 

degrades presequence peptides of mitochondrial proteins. Aβ accumulated in mitochondria can 117 

disrupt PreP, thereby inhibiting the cleavage of presequence peptides. Consequently, an accumulation 118 

of undegraded presequence peptides cause feedback inhibition of preprotein processing. Damaged 119 

mitochondrial protein maturation induces mitochondrial toxicity and alteration of the mitochondrial 120 

proteome in AD patients (44). 121 
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Since mitochondrial morphology and dynamics are closely associated with mitochondrial functions 124 

and their homeostatic maintenance, it is shown that mitochondria respond to energetic demands 125 

through a process of fusion/fission dynamics (45, 46). Using an electron microscopy, an abnormal 126 

mitochondrial morphology is observed in the brain of AD (47-49). The long connected mitochondria 127 

termed mitochondria-on a string (MOAS) as a result of fission arrest, are observed in the 128 

hippocampus and entorhinal cortex of AD patients and AD model (47, 50, 51). In AD model mice 129 

(APPswe:PSEN1∆E9), mitochondrial loss and abnormal structure of mitochondria, particularly 130 

mitochondrial swelling, are observed near amyloid plaques. The neurons affected by near amyloid 131 

plaques contain highly fragmented mitochondria as compared to distinct neurons from amyloid 132 

plaques and neurons of wild-type mice (52). In addition, fibroblasts obtained from AD patients 133 

presents a decrease in the mitochondrial length (53).  134 

With morphological changes of mitochondria, the machinery required for mitochondrial dynamics, 135 

such as mitochondrial fusion proteins (OPA1, MFN1, and MFN2), is altered in the hippocampus of 136 

AD brain, seemingly without any change of the total levels of mitochondrial components (45). The 137 

activity of dynamin-related protein1 (DRP1), one of key regulators for mitochondrial fission, is 138 

elevated in the brain of subjects with AD, which can translocate to mitochondrial outer membrane and 139 

then leads to mitochondrial fission, but mitochondrial fusion proteins, such as MFN1, MFN2 and 140 

OPA1, are decreased in AD patients (54). The pharmacological inhibition of DRP1 can restore 141 

mitochondrial homeostasis and functions, including membrane potential, ATP production and reactive 142 

oxygen species production, and attenuates memory impairment in AD model mice (55, 56). 143 

Overexpression of APP and Aβ can affect the mitochondrial dynamics and homeostasis. APP-144 

overexpressing cells exhibit fragmented mitochondria and altered mitochondrial distribution around 145 

the nucleus. The levels of DRP1 and OPA1 are decreased, but it is noted that the levels of FIS1 146 

(mitochondrial fission 1 protein) are increased in APP-overexpressing cells (57). Furthermore, DRP1 147 

oligomerization and recruitment on mitochondrial membrane are regulated by its posttranslational 148 

modification including phosphorylation of S-nitrosylation (58, 59). Aβ causes nitrosative stress to the 149 

cell which promotes S-nitrosylation modification on DRP1, leading to an increase in fission activity 150 
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and further mitochondrial fragmentation (60, 61) (Fig. 1). Increased DRP1 activity due to abnormal 151 

interaction with phosphorylated tau can elucidate excessive mitochondrial fragmentation (62). In this 152 

case, the genetic reduction of DRP1 protect the mitochondrial dysfunction and impaired dynamics in 153 

P301L tau transgenic mice (63). In addition, truncated tau causes mitochondrial fission and a 154 

reduction of OPA1 levels in neurons, as compared to wild full-length tau, indicating that different 155 

forms of tau have a distinct impact on the mitochondrial dynamics (64). Additionally, CR6-interacting 156 

factor 1 (Crif1) involved in both the translation of OXHPHOS proteins and their insertions into the 157 

mitochondrial inner membrane is down-regulated by Aβ-induced reactive oxygen species (ROS). As a 158 

result, a decrease of Crif1 results in fragmentation, dysfunction of mitochondria and even cell death in 159 

the subject with AD (65).  160 

Extensive neurites of neuron require a wide coverage of energy and material supply to maintain 161 

neuronal functions. In fact, to deliver the mitochondria to nerve terminals, the neuron uses a 162 

microtubule axonal transport system, which can be regulated diverse post-translational modifications, 163 

including phosphorylation and acetylation. The levels of acetylated α-tubulin are decreased in AD 164 

patient’s brains and in the hippocampal neurons which are treated with Aβ. The inhibition of histone 165 

deacetylase 6 which deacetylases α-tubulin rescues the inhibited mitochondrial axonal transport by Aβ 166 

(66) (Fig. 1). The patterns of mitochondrial distribution in hippocampal neurons are seen to be 167 

different in AD. Although mitochondria localize at both neuronal process and soma in control group, 168 

most mitochondria are confined to the soma area in AD (49). Since tau serves as microtubule-169 

associated protein to stabilize microtubule, tau pathology is therefore associated with an abnormal 170 

mitochondrial transport in AD. The overexpression of phosphorylated tau disrupts mitochondrial 171 

movement by regulating microtubule spacing (67). In other words, the mitochondrial distribution is 172 

altered in neurons with pathological tau aggregates of rTg4510 tau transgenic mice and AD patients. 173 

To this end, a reduction of soluble tau expression can restore the mitochondrial distribution, despite an 174 

existence of fibrillary tau inclusions (68). In addition to destabilizing microtubule network, tau also 175 

interact with kinesin motor protein, leading to preferential inhibition of anterograde transport along 176 FO
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microtubules (69) (Fig. 1). These evidences suggest that amyloid and tau pathology affect 177 

mitochondrial dynamics to induce fragmentation and influence microtubule-based transport.    178 

 179 

The effect of mitochondrial dysfunction on each cell type in Alzheimer’s disease  180 

Different cell types in the brain have distinct characteristics of metabolism, and exhibit specific roles 181 

related to their metabolic characteristics. Increasing evidences indicate that the mitochondria in 182 

different cell types vary in their function and morphology. Recently, the mitochondrial proteome of 183 

three major cerebellar cell types is identified, and it suggests that each cell type has differentially 184 

regulated mitochondrial proteins based on each biological role as utilized in the brain (70). In general, 185 

the metabolic coupling between neuron and astrocyte using mitochondria in different ways, manages 186 

and supports the functionality of the brain. In this case, the toxic fatty acids produced from 187 

hyperactive neurons are transferred into neighboring astrocytes, which can be stored in lipid droplets 188 

or detoxified by the β-oxidation process in mitochondria rather than processed in the neurons (71). 189 

Microglia undergo the metabolic reprogramming mediated by mitochondrial dynamics in response to 190 

external stimuli, which determine the inflammatory characteristics of microglia (72, 73). A better 191 

understanding of mitochondrial dysfunction as a pathological feature of AD requires a cell-type 192 

specific approach. We review mitochondrial dysfunction of each cell type, and note their contribution 193 

to AD pathogenesis. 194 

 195 

1) Neuron  196 

Neuron has different compartments with differentially functional units including axon and dendrite. 197 

The synaptic functions to release neurotransmitters and to respond signals at post-synaptic region 198 

require a high number of mitochondria, because of the high energy demand at the synapses (74). For 199 

this reason, the neuron has a high metabolic rate and the supply of glucose determines its functionality 200 

in the brain. The synaptic mitochondria especially have discrete metabolic characteristics that they are 201 FO
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susceptible to the inhibition of complex Ⅰ and Ca2+ overload compared to non-synaptic mitochondria 202 

(75, 76). Since it is noted that the tau pathology has adverse effect upon mitochondrial complex Ⅰ 203 

and Aβ activates synaptic terminals by the influx of Ca2+ into cytosol, it seems likely that the synaptic 204 

mitochondria are impaired in AD (27, 28, 77). The existence of Aβ in synaptic mitochondria has been 205 

reported by the immunogold electron microscope (78). Moreover, the synaptic mitochondria contain 206 

higher amounts of Aβ as compared to non-synaptic mitochondria in Tg mAPP AD model mice, 207 

resulting in the impairment of synaptic mitochondrial respiration and accumulation of oxidative stress 208 

at synapses (78) (Fig. 2). The AD patient brain has local differences in the number of synaptic 209 

mitochondria as well as functional abnormality. For example, it is seen that the presynaptic region in 210 

AD has fewer mitochondria with abnormal morphology and structure, as compared to control subject, 211 

but there is no difference in those of a comparison post-synaptic region (79).   212 

The synaptic communication between neurons is regulated by Ca2+ signaling through the binding of 213 

neurotransmitters and their receptors at post-synaptic region. In fact, the synaptic mitochondria 214 

damaged by oxidative stress or AD pathology lose the capability to buffer excessive cytosolic Ca2+ 215 

concentration. The expression of mitochondrial Ca2+ exchange transporter NCLX, Na2+/Ca2+ 216 

exchanger, is decreased in the brain of AD patients and 3xTg-AD model mice. Furthermore, the 217 

genetic deletion of NCLX leading to impaired mitochondrial Ca2+ efflux can cause memory loss, and 218 

aggravate both amyloid and tau pathology. Restoration of mitochondrial exchange transporter in 219 

neurons rescues mitochondrial dysfunction, cognitive impairment and AD pathology (80) (Fig. 2). 220 

Ca2+ dysregulation of presynaptic mitochondria in mossy fiber synapses is exhibited in Tg2576 AD 221 

model mice. Moreover, it is shown that an exposure of Aβ to granule cells of the dentate gyrus causes 222 

Ca2+ clearance failure. The results support that mitochondrial dysfunction by overproduced or 223 

existence of Aβ, particularly mitochondrial Ca2+ regulation, is implicated in the synaptic dysfunction 224 

of mossy fiber-CA3 synapses (81). Similarly, impaired long-term potentiation and short-term 225 

plasticity at the mossy fiber synapses in Presenilin knockout mice are resulted from the altered 226 

mitochondrial Ca2+ homeostasis in granule cells (82). The insulin-like growth factor-1 (IGF-1) 227 FO
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signaling increased in AD patients and AD model mice is regulated by mitochondrial Ca2+ 228 

homeostasis, which activates to release neurotransmitters and basal synaptic transmission (83-85). 229 

The pharmacological blockade of IGF-1 signaling can attenuate hippocampal hyperactivity in 230 

APP/PS1 model mice, indicating that mitochondrial dysfunction in AD conditions fails to control Aβ-231 

dependent neuronal activation which is caused by excessive IGF-1 signaling (83) (Fig. 2).  232 

 233 

2) Astrocyte 234 

Astrocyte has crucial roles in the support of a neuron which includes the supply of metabolite, 235 

maintenance of synaptic plasticity and a control of neuronal activity in the brain (86). To preserve 236 

neural environment through buffering excessive glutamate as a neurotransmitter, it is known that 237 

astrocyte disposes of excessive released glutamate converting to glutamine by glutamine synthetase 238 

and the tricarboxylic acid (TCA) cycle of mitochondria (87). For this reason, it is seen that astrocytic 239 

mitochondria stay near glutamate transporter-1 (GLT-1, EAAT2) to regulate extracellular glutamate 240 

levels, which are followed by neuronal activation. When neuronal activity or glutamate uptake of 241 

astrocyte is inhibited, the proportion of mobile astrocytic mitochondria is increased instead of halting 242 

near GLT-1 to buffer glutamate (88, 89). In addition to mitochondria, glycolytic enzymes are co-243 

localized with GLT-1. Although either the acute inhibition of glycolysis or the OXPHOS respiration 244 

in hippocampal slices cannot decrease glutamate uptake, simultaneous inhibition of both metabolisms 245 

reduce glutamate uptake, indicating that astrocytic metabolic state is a crucial factor for proper 246 

astrocytic functions (90) (Fig. 2). Using glia-specific mitochondrial gliotoxin being possible to impair 247 

selectively the OXPHOS system of glial cells, metabolic stress induced by mitochondrial dysfunction 248 

in glial cell inhibits the synaptic transmission (91). Thus, the differential metabolism of astrocyte 249 

satisfies the energetic demands of astrocytic functions, suggesting that the astrocytic metabolism has 250 

spatial and functional relation to the regulation of neuronal activity.  251 

Astrocyte represents highly glycolytic metabolism compared to neurons (92, 93). For this reason, the 252 

pharmacological inhibition of glycolytic enzymes in astrocyte causes an accumulation of Aβ near or 253 FO
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within astrocytes in the brain (94). It suggests that the glycolytic metabolism of astrocyte contributes 254 

to progress of AD pathogenesis. It is reported that 20 % of energy supplied to the brain comes from 255 

fatty acid oxidation, which is known to occur mainly in astrocyte (95). Hyperactive neurons release 256 

toxic fatty acids through lipoprotein-like particles with ApoE. At that point, the astrocytic 257 

mitochondria are used exclusively for β-oxidation consuming lipid droplets or free fatty acids as an 258 

energy source than for TCA cycle (71). These evidences suggest that toxic fatty acids released from 259 

hyperactive neurons by Aβ can induce cytotoxicity, especially if they are not consumed due to 260 

damaged mitochondria of astrocyte. Moreover, if the secretion efficiency of toxic fatty acids depends 261 

on the ApoE polymorphism, it can be explained brain toxicity and high incidence of LOAD according 262 

to ApoE4 allele, which is a major risk factor for LOAD (Fig. 2).   263 

Recently, research on the distinction of astrocytes between healthy individuals and AD has been 264 

investigated using an iPSC-derived model. Human iPSC-derived astrocyte model from early-onset 265 

familial AD (FAD) with PSEN1 M146L mutations or late-onset sporadic AD (SAD) with ApoE4+/+ 266 

exhibits morphological differences, as compared to those from healthy individuals. Moreover, most 267 

induced astrocytes from AD patients appear fibroblast-like cell morphology and display astrocytic 268 

atrophy, suggesting the alterations of astrocyte contribute to the pathogenesis of AD (96). Studies on 269 

the dysfunction of astrocytic mitochondria in AD have not investigated much more than those of other 270 

cell types in the brain. Astrocytes with PSEN1 ∆E9 mutations derived from AD patients made using 271 

an iPSC-derived model represent metabolic reprogramming from glycolysis to OXPHOS respiration, 272 

thereby increasing ROS production and reducing lactate secretion which supports neuronal functions 273 

(97). The astrocyte transcriptome comparing healthy control and AD subjects, which is isolated from 274 

the posterior cingulate region by laser capture microdissection following the staining with anti-275 

Aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) antibody specific to astrocyte cell type, 276 

describes that differentially expressed genes in astrocyte of AD include mitochondria-related genes 277 

and immune responsive genes, indicating that astrocytic mitochondria are affected by the 278 

pathogenesis of AD (98).   279 FO
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In the AD brain, astrocytes have been reported to be exposed to oxidative stress, resulting in DNA 280 

damage and functional disability (99, 100). The increase of oxidative stress in astrocytes can be 281 

detected in old hAPP model mice, suggesting that astrocytic dysfunction by increased oxidative stress 282 

can contribute to the progress of AD pathogenesis (101). Additionally, an exposure of Aβ to astrocyte 283 

can induce mitochondrial fragmentation and depolarization, therefore leading to increased ROS 284 

production and metabolic impairment (102, 103). In addition, Aβ decreases the mitochondrial 285 

membrane potential of astrocytes but not the neurons, indicating the vulnerability of astrocytic 286 

mitochondria in AD (104). Another way of toxicity in astrocyte is an accumulation of poly-ADP-287 

ribose polymers produced by poly-ADP-ribose polymerase that are activated by Aβ-induced oxidative 288 

stress. The increased poly-ADP-ribose polymers that limit the availability of nicotinamide adenine 289 

dinucleotide as substrate, are also known to reduce mitochondrial membrane potential and result in 290 

neuronal death (103).  291 

 292 

3) Microglia 293 

Microglia, brain-resident immune cell, respond to surrounding stimuli and alert the immune response. 294 

Furthermore, mitochondria are required for the inflammatory responses of microglia and determining 295 

their metabolic status (105). A short exposure of Aβ to microglia induces acute inflammatory 296 

response, including production of cytokines and phagocytosis of Aβ. Microglia acutely treated with 297 

Aβ undergo metabolic reprogramming from OXPHOS to glycolysis via mTOR-HIF-1α pathway. In 298 

the AD brain, a long-term exposure of Aβ and senile plaques leads microglia to convert to a tolerance 299 

status, in which they have defective metabolic system and their inflammatory responses are reduced, 300 

indicating that health metabolic system is important to maintain inflammatory responses to external 301 

stimuli (106) (Fig. 2).  302 

Using a method to generate iPSC-derived human microglia-like cells (iMGLs), the contribution of 303 

genetic backgrounds of AD, ApoE4, PSEN1∆E9, and APPswe, to functions and metabolism of iMGLs 304 

is elucidated. Both FAD mutations, PSEN1∆E9, and APPswe, have no effect on metabolic 305 FO
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reprogramming. However, ApoE4 iMGLs exhibit lower oxygen consumption rate and can result in a 306 

decrease in all mitochondrial parameters related to cellular respiration. In addition, ApoE4 iMGLs, but 307 

not PSEN1∆E9 or APPswe iMGLs show reduced phagocytic capability (107). Additionally, 308 

hypomorphic variants of TREM2, a rare risk factor for LOAD associated with microglial responses, 309 

regulate microglial metabolism via mTOR signaling. Microglia in TREM2-deficient 5XFAD model 310 

mice have been shown to exhibit an accumulation of autophagosomes and impaired mTOR signaling 311 

due to down-regulated energy metabolism. These results suggest that TREM2 and mTOR-mediated 312 

metabolic activation mediates the function of microglia, such as the removal of amyloid plaques (108) 313 

(Fig. 2).   314 

The mitochondria homeostasis is important to determine microglial inflammatory status, and its 315 

disruption can trigger neuronal death in neurodegenerative diseases. Recently, it has been suggested 316 

that microglial mitochondria are dysfunctional in neurodegenerative diseases, which are highly 317 

fragmented and released from microglia, thereby consequently inducing neuronal death. 318 

Dysfunctional mitochondria are detected in microglia-conditioned media when microglia are activated 319 

by Aβ. The treatment of P110 which is a selective inhibitor of mitochondrial fission and 320 

fragmentation, ameliorates glial activation and inflammatory responses in the brain of AD model mice 321 

(109) (Fig. 2). Reduced signaling of mitophagy that eliminate dysfunctional mitochondria has been 322 

identified as one of the pathological features of AD. An accumulation of defective mitochondria in 323 

microglia increases the release of cytokines and inhibits the removal of amyloid plaques, promoting 324 

the inflammatory responses in the brain. The restoration of mitophagy can mitigate inflammation and 325 

reduce the activation of NLRP3-inflammasome. Qualitative control of mitochondrial in microglia can 326 

alleviate AD pathogenesis by inducing an appropriate inflammatory response in the brain (110).  327 

 328 

CONCLUSION 329 

Mitochondrial dysfunction has been observed in the early stages of AD before the onset of clinical 330 

symptoms and interferes with the metabolism of the brain. Both Aβ and tau lesions induce the damage 331 FO
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in various aspects of mitochondria, including the capacity of energy production, the control of 332 

homeostasis, and the transport of mitochondria along microtubules. Since various cell types that 333 

constitute the brain contribute to AD pathogenesis in different ways, an understanding of 334 

mitochondrial dysfunction in AD needs to be interpreted based on cell type-specific functions. 335 

Mitochondria affected by Αβ and tau pathologies cause a vicious cycle that induces the pathological 336 

features of AD pathogenesis at each cellular level. For this reason, a proper understanding of cell 337 

type-specific mitochondrial dysfunction contributing to AD pathogenesis leads to elucidating the 338 

underlying mechanisms of AD pathogenesis and the discovery of therapeutic targets for AD.   339 

 340 

FIGURE LEGENDS 341 

Fig. 1. Mitochondrial alterations in AD. The effect of AD pathology on mitochondrial function for 342 

energy production, transport and dynamics.  343 

 344 

Fig. 2. Cell type-specific mitochondrial dysfunction in AD pathogenesis. Many mitochondria are 345 

located in nerve terminals, contributing to supply energy for the production of neurotransmitters and 346 

the transport and release of synaptic vesicles. The damage of synaptic mitochondria causes abnormal 347 

synaptic activity in AD. Astrocyte regulates neuronal activity by buffering excess neurotransmitters at 348 

synapses through its mitochondria and metabolism. When astrocytic mitochondria are disrupted, 349 

neuronal hyperactivity may be triggered in AD. Also, since the β-oxidation process in astrocytic 350 

mitochondria exclusively consumes toxic fatty acids or lipid particles, astrocytic mitochondria play 351 

crucial roles in the removal of lipid particles associated with APOE in AD. The inflammatory status 352 

of microglia is determined by mitochondria and metabolic signaling in response to external stimuli. 353 

AD pathology cause metabolic reprogramming in microglia with the inflammatory response to 354 

become the activated or tolerance status.  355 

 356 FO
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