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ABSTRACT 

After the first research declaring the generation of human induced pluripotent stem cells 

(hiPSCs) in 2007, several attempts have been made to model neurodegenerative disease in 

vitro during the past decade. Parkinson's disease (PD) is the second most common 

neurodegenerative disorder, which is mainly characterized by motor dysfunction. The 

formation of unique and filamentous inclusion bodies called Lewy bodies (LBs) is the 

hallmark of both PD and dementia with LBs. The key pathology in PD is generally 

considered to be the alpha-synuclein (α-syn) accumulation, although it is still controversial 

whether this protein aggregation is a cause or consequence of neurodegeneration. In the 

present work, the recently published researches which recapitulated the α-syn aggregation 

phenomena in sporadic and familial PD hiPSC models were reviewed. Furthermore, the 

advantages and potentials of using patient-derived PD hiPSC with focus on α-syn aggregation 

have been discussed. 
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INTRODUCTION 

Parkinson’s disease (PD) is a progressive, age-related neurodegenerative disease with 

noteworthy motor impairments, and is the second most common neurodegenerative disease 

after Alzheimer’s disease (AD). PD is primarily linked with the explicit loss of midbrain 

dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNpc), and it physically 

displays as weakened movements in affected individuals (1, 2). The formation of unique and 

filamentous inclusion bodies called Lewy bodies (LBs), comprised mostly of alpha-synuclein 

(α-syn, SNCA gene product), is considered as the hallmark of PD or dementia with LBs 

(DLB) (1-6). Although the key pathology in PD or DLB is commonly known to be the 

accumulation of misfolded- and aggregated-α-syn (2-7), the formation of pathological α-syn 

aggregates is not typically displayed in general neurotoxin-based PD animal models (8, 9). In 

addition, several trials for PD drugs continue to fail; this leads to a significant socioeconomic 

burden on our healthcare system and emphasizes the need for a new approach to model PD 

pathogenesis. 

 Human pluripotent stem cells (hPSCs), including embryonic stem or induced 

pluripotent stem cells (hESCs/hiPSCs), differentiated into specific types of neurons have 

emerged as a promising model for studying human neural diseases (10-14) and have the 

potential to be used as cell sources for transplantation (15, 16). Particularly, disease-specific 

hiPSCs provide us with an exceptional opportunity to recapitulate human disease phenotypes 

in vitro, thereby enabling disease investigation and drug development; although there are 

several challenges which need to be addressed [reviewed in (17)]. Using PD patients’ 

hiPSCs, many researchers have tested whether PD-relevant phenotypes are reproduced in the 

patient-derived mDA neurons in vitro to reveal PD pathology and to identify therapeutic 

targets; however, abnormally phosphorylated detergent-insoluble α-syn aggregates are rarely 

recapitulated in these model systems [reviewed in (18, 19)]. FO
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In this review, it was investigated whether the α-syn aggregation phenomena in PD 

or DLB can be reproduced in hiPSC-based models, the present extent of development, and 

the type of further researches necessitated in future. 

 

 

-Synuclein aggregation and -synucleinopathy 

At the time of initial cloning, α-syn was called as the ‘precursor of non-Aβ component of AD 

amyloid’ (precursor of NAC, NACP) because the NAC was first detected in and isolated 

from AD amyloid plaques (20). α-Syn protein is a soluble protein and exists in the form of an 

unfolded monomer (21). Furthermore, it has been considered that α-syn undergoes a 

conformational change to the α-helical structure only upon binding to lipid vesicles (22). As 

unstructured α-syn monomers tend to eagerly undergo a conformational change to β-sheet 

structure and aggregate together, it has been hypothesized that binding of lipid vesicles with 

the α-helical conformation of α-syn monomers is a crucial intrinsic mechanism for 

sequestering unfolded cytosolic α-syn to prevent spontaneous α-syn aggregation. However, 

recent studies indicate that α-syn exists in the form of an α-helically folded tetramer in the 

physiological conditions and not as a natively unfolded monomer, and rarely this tetramer is 

converted into the pathological aggregates (23, 24). The PD missense mutations located in 

the lipid-binding motif of α-syn increase the transition from tetramer to monomer (25), by the 

formation of β-sheet oligomers and eventually as insoluble aggregates in pathological 

conditions. A growing number of evidence indicates a causative role of α-syn misfolding and 

aggregation in the pathogenesis of PD (2-7, 26, 27). α-Synucleinopathies (also called 

synucleinopathies) are neurodegenerative diseases representing the abnormal accumulation of 

intracellular aggregates of α-syn in neurons (LB and Lewy neurite) or glial cells (28). Among 

α-synucleinopathies, PD, DLB, and multiple system atrophy (MSA) are of the most common FO
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occurrence. The incident rate of α-synucleinopathies related to parkinsonism was 21.0 per 

100,000 person-years (PD, 68% of α-synucleinopathies; DLB, 28%; MSA, 4%), based on the 

investigation of the medical records in Olmsted County, Minnesota, USA, 1991-2005 (29). 

Classical neurotoxin-based animal models do not model the molecular pathology of α-

synucleinopathies (8, 9). However, many attempts have been made to recapitulate α-

synucleinopathies in the mammalian system using α-syn transgenic mouse models, viral 

vector models of α-syn overexpression, and α-syn transmission models [reviewed in (9)]. 

 

Phosphorylation of -synuclein 

Phosphorylation is the most widely and deeply studied posttranslational modification of α-

syn. This modification may affect the ability of aggregate formation as well as the subcellular 

localization and function of α-syn. In recent years, an increasing number of studies have 

reported that α-syn within LBs is subjected to phosphorylation at serine 129 (S129), and it 

may have serious implications for α-syn-induced neurodegeneration (7, 30-34). Especially, 

S129-phosphorylated α-syn (pS129-α-syn) is an excellent marker for α-synucleinopathies 

because ~90% of α-syn in LBs is phosphorylated at S129, compared with only ~4% of α-syn 

under physiological conditions (7). However, the molecular and cellular mechanisms of α-syn 

aggregation controlled by phosphorylation and other effects of α-syn phosphorylation at 

S129, remain to be elucidated (35, 36), probably due to a lack of a pathophysiologically 

relevant model system for investigating α-syn aggregation of α-synucleinopathies. Therefore, 

it should be clearly addressed whether α-syn phosphorylation is a cause or a consequence of 

aggregation, or whether phosphorylation is neurotoxic or neuroprotective in α-

synucleinopathies including PD and DLB. 

 

Human pluripotent stem cell-derived midbrain dopaminergic neurons FO
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Developing the most ideal protocol for human mDA neuronal differentiation from hPSCs for 

applications in PD modeling and/or transplantation therapy has been an intense area of 

research during the past decade. Arenas et al. have reviewed the molecular mechanisms 

underlying mDA neuronal development in vivo and their applications for in vitro generation 

of human mDA neurons differentiated from hPSCs or directly induced from somatic cells 

[reviewed in (37)]. In this section, popular and major protocols for the human mDA neuronal 

differentiation from hPSCs are briefly introduced (Figure 1). 

 

Stromal feeder-induced midbrain dopaminergic neurons 

The classical approach to developing a protocol for the human mDA neuronal differentiation 

from hPSCs was based on adaptations of mouse neural stem cell (mNSC) and mESC 

protocols, which required co-culture with feeder cells (37). Three groups have published the 

initial protocols to derive mDA neurons from hESCs co-cultured with the murine stromal cell 

lines (38-40). In 2007, Sonntag et al. reported an enhanced protocol to generate neural 

rosette-derived mDA neurons from hESCs co-cultured with the MS-5 cells as a feeder, 

appropriate for cell therapy in PD (41) (Figure 1A). 

 

Embryonic body-derived midbrain dopaminergic neurons 

For initiating spontaneous differentiation from hPSC towards specific cell types, embryonic 

body (EB)-formation is often considered as a basic starting method. After inducing EB-

formation, putative mDA neurons are generated from hESCs (42, 43). In 2009, Swistowski et 

al. published a protocol to derive expandable mDA progenitors and mDA neurons from 

hESCs via EB-formation and neural rosette-isolation (44) (Figure 1B). 

 

Floor plate-derived midbrain dopaminergic neurons FO
R 
RE
VI
EW



 5

Studer group introduced a “dual-SMAD inhibition” method for differentiating hPSCs into 

neural cells in an exceedingly efficient manner to eliminate the influence of undefined 

factors, including unknown secreted molecules and unidentified effects of co-culturing with 

murine stromal cell lines or astrocytes, as well as to increase the efficiency and to reduce 

heterogenous nature on neuronal differentiation (45). Combined blockage of SMAD 

signaling at the beginning of the monolayer differentiation protocol using Noggin (to inhibit 

BMP-mediated SMAD signaling) and SB431542 (to inhibit TGF-β/nodal/activin-mediated 

SMAD signaling), synergistically facilitated neural induction of hPSCs and eliminated the 

need for feeder layers (45). 

The developing midbrain co-expresses the roof plate marker LMX1A and the floor 

plate (FP) marker FOXA2. Administration of high levels of SHH along with the dual-SMAD 

inhibition during neural induction has been considered as essential for FP specification (46). 

By synthesizing the existing knowledge of midbrain development, Studer group succeeded in 

generating correctly specified hPSC-derived mDA neurons in a reliable and efficient manner 

(47). A follow-up study has described the use of a small molecule, LDN193189 (to inhibit 

BMP-mediated SMAD signaling), that can replace Noggin for neural induction of hPSCs 

(48). Modified dual SMAD inhibition (termed ‘‘LSB’’ for two inhibitors LDN193189 and 

SB431542) along with activation of SHH and WNT signaling, enhances the efficiency and 

reproducibility of the monolayer differentiation of hPSC-derived mDA neurons via FP-

induction. 

 

Genetic models using patient-derived human induced pluripotent stem cell 

Jaenisch group reported the first example of PD modeling using PD patient-derived hiPSC-

based DA neurons in 2009, but the focus of the study did not cover the phenotypical 

differences between patient’s cells and healthy controls (49). After the pioneer study, many FO
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groups attempted to model PD in vitro using patient hiPSC-derived neuronal cells and 

reported various in vitro phenotypes consistent with PD pathophysiology [reviewed in (18, 

19)]. While tons of studies failed to repeat the aggregation of α-syn in PD hiPSC-based 

models, a handful of researches recapitulated α-syn aggregation in PD patient-derived hiPSC-

based neuronal models by employing unique conditions (Table 1). It is necessary to state that 

cases showing simple augmentation of α-syn expression were intentionally omitted in the 

present review. 

 

Sporadic PD hiPSC-based model 

The causes of sporadic PD and DLB are largely unknown; however, the aggregation of α-syn 

is heavily implicated in the degeneration of neurons in sporadic PD and DLB (50). In 2016, 

Krainc group reported the detection of the thioflavin S-positive α-syn aggregates in the FP-

derived 110 days old mDA neurons, which were differentiated from a sporadic PD hiPSC 

(51). The authors also showed that the level of pathogenic α-syn species detected by Syn303 

antibody (52) was significantly increased in the 1% Triton X-100-insoluble-and-2% SDS-

soluble fraction of the sporadic PD mDA neurons, as compared to healthy controls (51). 

Another report described the increased level of pS129-α-syn in the FP-derived 28-49 days old 

mDA neurons differentiated from a sporadic PD hiPSC, although the authors did not assess 

the formation of α-syn aggregates in these neurons (53). 

 

Familial PD hiPSC-based model: SCNA mutations 

Mutations in SCNA (also known as PARK1 and PARK4) gene, which encodes α-syn, lead to 

autosomal dominant PD (1). The thioflavin S-positive and proteinase K-resistant α-syn 

aggregates were detected in the EB-derived 50 days old neurons differentiated from a familial 

PD hiPSC with a point mutation in SNCA gene (c.[157G>A];[=]/p.[Ala53Thr];[=], also FO
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known as heterozygous A53T) (54). Moreover, the level of pS129-α-syn was increased in the 

A53T neurons (54). Ryan et al. also reported an increase in thioflavin T-positive or Ser129-

phosphorylated α-syn aggregates formation and ROS production in the FP-derived 35 days 

old A53T mDA neurons, as compared to genetically corrected controls (55). The authors 

have further revealed the susceptibility of A53T mDA neurons to apoptosis induced by 

environmental pesticides, such as paraquat, maneb, and rotenone, compared to the controls 

(55). The presence of thioflavin S-positive α-syn aggregates in the FP-derived 90 days old 

A53T mDA neurons has been demonstrated along with the reduction in aggregate formation 

upon treatment with β-glucocerebrosidase (GCase) activator, NCGC00188758 (56). 

Copy number variations in SNCA locus are also linked to familial PD [duplication 

(5), triplication (4)]. Using a familial PD hiPSC with SNCA locus duplication, Prots et al. 

reported a significant increase in the level of 1% Triton X-100/1% NP-40/1% SDS-insoluble-

and-8 M urea/5% SDS-soluble α-syn aggregates in the EB-derived PD neurons co-cultured 

with primary human cerebellar astrocytes, as compared to healthy controls (57). The authors 

performed sucrose density gradient centrifugation analysis to assess the composition of α-syn 

aggregates and revealed an increase in the presence of α-syn aggregation intermediates in the 

PD neurons (57). Other report exhibited the increased formation of filamentous α-syn 

aggregates and cell death in the 70-90 days old cortical neurons differentiated from a familial 

PD hiPSC with SNCA locus triplication, as compared to genetically corrected controls (58). 

In addition, Tagliafierro et al. described an increase in the number of punctate α-syn 

aggregates in the EB-derived 45-50 days old mDA neurons differentiated from a familial PD 

hiPSC with SNCA locus triplication compared to the controls (59). Moreover, the increment 

and the size of punctate α-syn aggregates were more augmented in >70 days old PD mDA 

neurons, as compared to 45-50 days old neurons (59). The authors have additionally shown 

an increase in the formation and size of diffused α-syn aggregates in >70 days old PD basal FO
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forebrain cholinergic neurons (BFCNs), which are primarily affected in DLB, compared to 

45-50 days old neurons (59). Mazzulli et al. reported the detection of thioflavin S-positive α-

syn aggregates in the FP-derived 100 or 120 days old mDA neurons differentiated from a 

familial PD hiPSC with SNCA locus triplication (51, 56). In addition, the amount of 

pathogenic α-syn detected by Syn303 antibody was increased in the 1% Triton X-100-

insoluble-and-2% SDS-soluble fraction of 55-330 days old PD mDA neurons carrying an 

SNCA locus triplication than healthy hiPSC-derived mDA neurons (51). Another report 

described the increased level of pS129-α-syn in the FP-derived 44-46 days old mDA neurons 

and revealed the increased susceptibility to neurotoxins in 34 days old mDA neurons, 

differentiated from a familial PD hiPSC with SNCA locus triplication compared to healthy 

hiPSCs (53). 

 

Familial PD hiPSC-based model: LRRK2 mutations 

Mutations in LRRK2 (also known as PARK8) gene, which encodes leucine-rich repeat 

serine/threonine-protein kinase 2, lead to autosomal dominant PD (60). Even though an 

attempt was made to analyze numerous articles which attempted to recapitulate PD 

phenotypes using PD hiPSCs with LRRK2 mutations, none of the reports provided solid 

evidence showing α-syn aggregation in patient-derived mDA neurons. Instead, one recently 

published paper reported an increase in α-syn puncta in 28 days old PD astrocytes with a 

point mutation in the LRRK2 gene (c.[6055G>A];[=]/p.[Gly2019Ser];[=], also known as 

heterozygous G2019S), as compared to healthy astrocytes (61). 

 

Familial PD hiPSC-based model: PRKN mutations 

Mutations in PRKN (also known as PARK2) gene, which encodes E3 ubiquitin-protein ligase 

parkin, lead to autosomal recessive PD (60). Shaltouki et al. demonstrated the formation of FO
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tentative α-syn aggregates in the EB-derived 28 days old mDA neurons differentiated from 

familial PD hiPSCs with various mutations in PRKN gene; i.e., p.[Arg42Pro];[=], 

p.[Arg275Trp];[=], p.[Arg42Pro];[EX3del], and p.[Asn52fs];[EX3_4del] (62). On the other 

hand, Chung et al. reported a significant increase in the level of 1% Triton X-100-insoluble-

and-2% SDS-soluble α-syn aggregates in the FP-derived 60 days old mDA neurons 

differentiated from a PD hiPSC with same point mutations in both the PRKN alleles 

(c.[971delT];[971delT]/p.[Val324Alafs*111];[Val324Alafs*111], also known as 

homozygous V324fs), as compared to healthy controls (63). Furthermore, the researchers 

provided evidence of the dependency on the type of differentiation protocol utilized; the FP-

derived PD mDA neurons recapitulated PD phenotypes in vitro while the neural rosette-

derived PD mDA neurons (40) did not recapitulate these phenotypes (63). 

 

Familial PD hiPSC-based model: PINK1 mutations 

Mutations in PINK1 (also known as PARK6) gene, which encodes serine/threonine-protein 

kinase PINK1 mitochondrial, lead to autosomal recessive PD (60). In the FP-derived 60 days 

old mDA neurons differentiated from a PD hiPSC with point mutations in the PINK1 gene 

(c.[1366C>T];[1366C>T]/p.[Gln456Ter];[Gln456Ter], also known as homozygous Q456X), 

the level of 1% Triton X-100-insoluble-and-2% SDS-soluble α-syn aggregates was 

significantly increased compared to healthy controls; however, it was not observed in the 

neural rosette-derived PD mDA neurons (63). 

 

Familial PD hiPSC-based model: ATP13A2 mutations 

Mutations in ATP13A2 (also known as PARK9) gene, which encodes cation-transporting 

ATPase 13A2, lead to autosomal recessive PD (60). Mazzulli et al. reported that the amount 

of 1% Triton X-100-insoluble-and-2% SDS-soluble α-syn was increased in the FP-derived 90 FO
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days old mDA neurons differentiated from a familial PD hiPSC with point mutations in 

ATP13A2 gene (c.[3176T>C];[3253delC]/p.[Leu1059Arg];[Leu1085Trpfs*4], also known as 

heterozygous L1059R;L1085fs) compared to healthy control (56). 

 

PD-related hiPSC-based model: GBA mutations 

GBA (also known as GBA1) gene, which encodes lysosomal acid glucosylceramidase (also 

known as β-glucocerebrosidase or GCase), has a critical role in glycolipid metabolism. Loss-

of-function mutations in the GBA gene cause lysosomal defects via accumulation of lipid 

substrates in the lysosome that results in autosomal recessive Gaucher disease (GD) (64). 

Moreover, mutations in the GBA gene are well-known to increase the risk of developing PD 

and DLB (65-70). Using a GD hiPSC with mutations in the GBA gene 

(c.[1226A>G];[84dupG]/p.[Asn409Ser];[Leu29Alafs*18], also known as heterozygous 

N409S; L29fs), Mazzulli et al reported the detection of thioflavin S-positive α-syn aggregates 

in the FP-derived 100 or 120 days old GD mDA neurons (51, 56). In addition, the authors 

demonstrated that the amount of pathogenic α-syn detected by Syn303 antibody was 

increased in the 1% Triton X-100-insoluble-and-2% SDS-soluble fraction of the 90 days old 

GD mDA neurons compared to healthy hiPSC-derived mDA neurons (51). 

Groundbreaking researches suggested that α-syn exists as a helically folded tetramer 

in the physiological conditions and not in the form of natively unfolded monomer; the 

tetramer is rarely gets converted into the pathological aggregates (23, 24). A recent study has 

reported that the ratio of α-syn tetramers and related multimers, which resist aggregation, to 

monomers was reduced in the FP-derived 60-65 days old mDA neurons differentiated from a 

PD hiPSC with a point mutation in GBA gene (c.[1226A>G];[=]/p.[Asn409Ser];[=], also 

known as heterozygous N409S) compared to healthy iPSCs; indirectly revealing that the level 

of α-syn aggregates may be increased in the cells of the patient (71). The authors also FO
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revealed an increase in the levels of 1% Triton X-100-insoluble-and-2% SDS-soluble α-syn 

aggregates and pS129-α-syn in the α-syn pre-formed fibril [α-PFFs (72)]-treated FP-derived 

73 days old PD mDA neurons compared to healthy controls (71). 

 

 

PERSPECTIVES 

It is feasible to reproduce the molecular pathology of α-synucleinopathies without using any 

exogenous factors and by employing only hiPSC-based PD modeling system along with the 

patient’s genetic background. However, only a handful of papers demonstrated success in 

recapitulating α-syn aggregation in vitro, among a large number of PD hiPSC-based models 

(Table 1). It is hypothesized that there might be three potential underlying causes of this 

problem: i) insufficient aging, ii) incomplete differentiation protocol, and iii) lack of 

environmental cues. 

Even though hiPSCs were generated by reprogramming of somatic cells from aged 

PD patients, their ages seemed to be reset to embryonic ages during the reprogramming 

process (73-76). Moreover, hiPSC-derived neurons, such as human mDA neurons, are largely 

regarded as embryonic stage neurons (73-76). Therefore, resolving an aging issue and/or a 

maturation issue is necessary to model late-onset diseases, such as PD and DLB. Apparently, 

the progerin-induced aging method could be used as one of the possible solutions (77). 

We are constantly attempting to improve mDA neuronal differentiation protocols for 

modeling PD more complete, beyond EB-derived, feeder-dependent, neural rosette-derived, 

and FP-derived methods (Figure 1). Very recently, the protocols to differentiate hPSCs or 

neuroepithelial stem cells into human midbrain organoids have been developed for the 

generation of more ideal human mDA neuronal models (78-80). These midbrain organoids FO
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will serve as a completer and more important biologically relevant cell sources for PD 

modeling. 

Environmental factors may cause PD along with genetic factors. Peng et al. 

demonstrated that environmental factors, such as neurotoxins, together with genetic 

mutations in PD in the same animal, synergistically accelerate age-related neurodegeneration 

(81). Similarly, only after treatment of α-PFFs, PD-relevant phenotypes including increased 

levels of detergent-insoluble α-syn aggregates and pS129-α-syn were detected in mDA 

neurons differentiated from PD hiPSC with a GBA mutation (p.N409S) (71). These results 

suggest that the addition of environmental factors to the PD iPSC models might be the key to 

reveal the hidden phenotypes. 
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FIGURE LEGENDS 

Figure 1. Derivation of human midbrain dopaminergic neurons from hPSC. (A) A 

protocol developed by Sonntag et al. for the generation of human mDA neurons via the 

neural rosette-isolation, from hESCs co-cultured with the MS-5 cells as a feeder (41). (B) A 

protocol developed by Swistowski et al. for the generation of expandable mDA progenitors 

and mDA neurons from hESCs via the embryonic body (EB)-formation and neural rosette-

isolation (44). (C) A protocol developed by Kriks et al. for the generation of hPSC-derived 

mDA neurons via the floor plate (FP)-induction (47). AA, ascorbic acid. CHIR, CHIR99021. 

dbcAMP, dibutyryl-cyclic AMP. LDN, LDN193189. MS-5-Wnt1, Wnt1 transgenic MS-5 

cells. PMP, purmorphamine. SB, SB431542. 
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Table 1. Selected reports showing the endogenous α-synuclein aggregation using PD hiPSC-derived cell models. 

 

Genetic Tested Differentiation Differentiation marker Stimulus Aggregate Cell Note Ref. 
mutation model protocol (ref.) 

  
WB ICC death 

  
          

Sporadic 
         

unknown mDA 2D-based (45, 47) n.d. no yes yes n.d. increased detergent-insoluble α-syn aggregates at 
day 110; thioflavin S-positive α-syn aggregates 
formation at day 110; lysosomal defects at day 90 

(51) 

          

SNCA 
         

p.[Ala53Thr] 
;[=] 

mDA 
GABAergic 
GLUergic 

EB-based (43, 45, 49) 
~20% TH+; ~25% 
GABA+; ~20% 
VGLUT1+ 

FOXA2, NURR1, PITX3, 
TH, MAP2, GAD67, 
VGLUT1 (qRT-PCR); 
TH, GABA, VGLUT1 
(ICC) 

no n.d. yes yes detection of thioflavin S-positive and proteinase K-
resistant α-syn aggregates at day 50; increased 
pS129-α-syn at day 50; decreased neurite length at 
day 50 

(54) 

p.[Ala53Thr] 
;[=] 

mDA 2D-based (45, 47) 
~73% TH+/GIRK2+ 

OTX2, LMX1A, FOXA2, 
NURR1, TH, GIRK2 
(ICC) 

no n.d. yes no increased thioflavin T-positive or S129-
phosphorylated α-syn aggregates formation and 
ROS production than genetically corrected controls 
at day 35 

(55) 

paraquat n.d. n.d. yes increased apoptosis than genetically corrected 
controls at day 35 

maneb n.d. n.d. yes increased apoptosis than genetically corrected 
controls at day 35 

rotenone n.d. n.d. yes increased apoptosis than genetically corrected 
controls at day 35 

p.[Ala53Thr] 
;[=] 

mDA 2D-based (45, 47) n.d. no n.d. yes n.d. detection of thioflavin S-positive α-syn aggregates at 
day 90; reduced aggregates formation by 758 
treatment at day 90 

(56) 

duplication neuron EB-based (82) n.d. no yes n.d. n.d. neural rosette-derived neurons co-cultured with 
astrocytes; increased detergent-insoluble α-syn 
aggregates; increased presence of α-syn 
aggregation intermediates 

(57) 

triplication cortical 2D-based (45) 
~70% neurons 
activated by glutamate 

Glutamate response 
(Ca2+ imaging) 

no n.d. yes yes increased filamentous α-syn aggregates formation 
and cell death than genetically corrected controls at 
day 70-90; increased NADH redox index than control 
at day 70-90 

(58) 

triplication mDA EB-based (53) 
~28% TH+/TUBB3+ 
(83) 

FOXA2, TH (qRT-PCR) 
FOXA2, TH (ICC) 

no n.d. yes n.d. neural rosette-derived mDA; increased number and 
size of punctate α-syn aggregates at day >71 than at 
day 45-50 

(59) 
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Genetic Tested Differentiation Differentiation marker Stimulus Aggregate Cell Note Ref. 
mutation model protocol (ref.) 

  
WB ICC death 

  

BFCN EB-based (84, 85) 
~36% VCHT+/TUBB3+ 
(83) 

CHAT (qRT-PCR) 
CHAT (ICC) 

no n.d. yes n.d. neural rosette-derived BFCN; increased number and 
size of diffused α-syn aggregates at day >71 than at 
day 45-50 

triplication mDA 2D-based (45, 47) 
~70% TH+/FOXA2+ 

LMX1A, FOXA2, TH 
(ICC) 

no yes yes n.d. increased detergent-insoluble α-syn aggregates at 
day 55-330; thioflavin S-positive α-syn aggregates 
formation at day 100 or 120; increased low 
expressing TH cells at day 330; lysosomal defects at 
day 180 or 330; reduced aggregates formation by 
758 treatment at day 120 

(51, 56) 

          

LRRK2 
         

p.[Gly2019Ser] 
;[=] 

astrocyte 3D-based (86) 
~95% GFAP+ 

AQP4, GFAP (qRT-
PCR); 
GFAP, S100, GLT1 
(ICC) 

no n.d. yes n.d. increased α-syn puncta area at day 28; transmitting 
α-syn to mDA neurons during 28 days co-culture 

(61) 

          

PRKN 
         

p.[Arg42Pro] 
;[=] 

mDA EB-based (44) 
~7% TH+ 

FOXA2, TH (ICC) no u.c. u.c. n.d. decreased mDA neuronal differentiation than healthy 
control (~22% TH+) at day 28 

(62) 

p.[Arg275Trp] 
;[=] 

mDA EB-based (44) 
~15% TH+ 

FOXA2, TH (ICC) no u.c. u.c. n.d. decreased mDA neuronal differentiation than healthy 
control (~22% TH+) at day 28 

(62) 

p.[Arg42Pro] 
;[EX3del] 

mDA EB-based (44) 
~7% TH+ 

FOXA2, TH (ICC) no u.c. u.c. n.d. decreased mDA neuronal differentiation than healthy 
control (~22% TH+) at day 28 

(62) 

p.[Asn52fs] 
;[EX3_4del] 

mDA EB-based (44) 
~7% TH+ 

FOXA2, TH (ICC) no u.c. u.c. n.d. decreased mDA neuronal differentiation than healthy 
control (~22% TH+) at day 28 

(62) 

p.[Val324fs] 
;[Val324fs] 

mDA 2D-based (45, 47) 
~70% TH+ 

LMX1A, FOXA2, 
NURR1, TH (ICC) 

no yes u.c. n.d. increased Triton X-100-insoluble α-syn aggregates at 
day 60; increased intracellular dopamine level; 
increased susceptibility to mitochondria toxin at day 
60 

(63) 

          

PINK1 
         

p.[Gln456Ter] 
;[Gln456Ter] 

mDA 2D-based (45, 47) 
~75% TH+ 

LMX1A, FOXA2, 
NURR1, TH (ICC) 

no yes u.c. n.d. increased Triton X-100-insoluble α-syn aggregates at 
day 60; increased susceptibility to mitochondria toxin 
at day 60 

(63) 

          

ATP13A2 
         

p.[Leu1059Arg] 
;[Leu1085fs] 

mDA 2D-based (45, 47) 
~60% TH+/FOXA2+ 

FOXA2, TH (ICC) no yes n.d. n.d. increased detergent-insoluble α-syn aggregates at 
day 90; lysosomal defects at day 90 

(56) 
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Genetic Tested Differentiation Differentiation marker Stimulus Aggregate Cell Note Ref. 
mutation model protocol (ref.) 

  
WB ICC death 

  

GBA 
         

p.[Asn409Ser] 
;[Leu29fs] 

mDA 2D-based (45, 47) 
~60% TH+/FOXA2+ 

LMX1A, FOXA2, TH 
(ICC) 

no yes yes n.d. increased detergent-insoluble α-syn aggregates at 
day 90; thioflavin S-positive α-syn aggregates 
formation at day 100 or 120; increased low 
expressing TH cells at day 330; lysosomal defects at 
day 110, 120 or 180; reduced aggregates formation 
by 758 treatment at day 120 

(51, 56) 

p.[Asn409Ser] 
;[=] 

mDA 2D-based (45, 47) 
~75% TH+ 

FOXA2, NURR1, TH 
(qRT-PCR); 
FOXA2, PITX3, TH (ICC) 

no u.c. n.d. no reduced ratio of tetramers and related multimers, 
which resist aggregation, to monomers at day 60-65 

(71) 

α-PFF yes n.d. yes increased detergent-insoluble α-syn aggregates at 
day 73; increased pS129-α-syn at day 73; increased 
cell death at day 73 or 79 

         
            

2D, monolayer differentiation. 3D, neurosphere differentiation. 758, NCGC00188758. α-PFF, α-syn pre-formed fibril (72). BFCN, basal forebrain cholinergic neuron. cortical, cortical neuron. del, 
deletion. EB, embryonic body differentiation. EX, exon. fs, frameshift. GABAergic, GABAergic neuron. GLUergic, glutamatergic neuron. ICC, confirmed by immunocytochemistry. mDA, midbrain 
dopaminergic neuron. n.d., not determined. NPC, neuronal precursor cell. p., protein sequence. qRT-PCR, quantitative real-time PCR. u.c., unclear. WB, confirmed by western blotting. 
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