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ABSTRACT 

Synapse is a basic structural and functional component for neural communication in the brain. 

To initiate and maintain continuous functional neural information flow, the presynaptic 

terminal is a structurally and functionally essential place as an initiator for communication. It 

contains synaptic vesicles (SV) filled with neurotransmitter, active zone for release place, and 

a number of proteins for SV fusion and retrieval. The structural and functional synaptic 

plasticity is one of the representative characteristics however it is also highly vulnerable in 

various pathological circumstances. In fact, synaptic alteration is thought to be central to the 

neural disease process. In particular alteration of the structural and functional phenotype of 

the presynaptic terminal is one of the most significant evidence for neural diseases. In this 

review, we specifically describe structural and functional alteration of nerve terminals in 

several neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).  
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INTRODUCTION 

Synapse is a fundamental unit for brain function. Neural information flow between neurons is 

ignited from presynaptic terminals by releasing small chemical ingredient called 

neurotransmitter. It is stored in the small endosomal compartment, synaptic vesicle (SV) and 

released by fusion of SV upon a series of neuronal-activity triggered action of molecular 

players in release area, active zone, at presynaptic terminals.   

Presynaptic terminal is composed of several structural and functional components. 

Cytomatrix proteins (Basson and Piccolo) and cytoskeletal protein (actin) provide a structural 

framework. Active zone (AZ) is a critical area as the site for neurotransmitter release. Many 

of essential molecular machinery are localized in AZ such as SNARE components for fusion, 

voltage-gated Ca2+ channels, cell adhesion molecules and so on. Each nerve terminal 

possesses around 100~200 synaptic vesicles. Synaptic vesicle (SV), a tiny endosomal 

compartment (~40nm diameter), contains neurotransmitter and it associates directly and/or 

indirectly with more than a hundred proteins for its proper function. As such a number of 

proteins are placed in nerve terminals for appropriate physiological function. Physiologically, 

how neurotransmitter release is regulated and maintained are critical questions. Several 

distinct SV pools distributed in presynaptic terminal and SV exocytosis is tightly regulated by 

Ca2+ and its molecular players. Subsequently, SV retrieval occurs to continuously maintain 

synaptic communication via several endocytic pathways. However, morphological and 

physiological intact can be easily altered in various neurological diseases. From synaptic 

vesicle and synaptic protein depletion to neurotransmission and Ca2+ dynamics impairment, a 

number of alteration in the aspect of structure and function of nerve terminal can be exhibited 

in neurological disease. Furthermore, these presynaptic dysfunctions are thought to be the 

very early symptoms of neuronal disorders.    

In this review, we specifically describe structural and functional presynaptic alteration in 
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neurodegenerative diseases. Alzheimer’s disease (AD) is one of the highest impact 

neurodegenerative diseases. Several pathogenic factors were identified such as amyloid beta 

(Aβ) plaque, neurofibrillary tangle, and ApoE4. However exact pathological etiology still 

need to be more explored. It is important understanding synaptic alteration by these factors at 

the very initial stage before eventually occurring neuronal cell death. Parkinson’s disease 

(PD) is the second most common neurodegenerative disease. It’s been known degeneration of 

dopaminergic neurons in the substantia nigra pars compacta. Consequently, it causes 

dopamine depletion in the brain, which causes several neurological symptoms, tremor, 

bradykinesia, rigidity. A number of sporadic and familial factors have been discovered. Some 

of the evidences have reported that these factors are deeply implicated with presynaptic 

function, although it is still much less unknown how PD is initially developed. Other 

neurodegenerative diseases Huntington disease (HD), amyotrophic lateral sclerosis (ALS) are 

also involved in synaptic dysfunction. We describe in depth normal and pathological 

phenotype of these factors at presynaptic terminals. 

 

1. Nerve terminals in Alzheimer’s disease 

Alzheimer’s disease (AD), the most common type of dementia, is fast growing and one of the 

most prominent neurodegenerative diseases. It progressively loses the memory and decline 

cognition and eventually it reach to die because of the death of brain cells. Several causative 

genetic factors have been revealed. Oligomerization of amyloid beta (Aβ) plaque from 

amyloid precursor protein (APP) by BACE and γ-secretase is a well-known factor for AD. 

Mutation or modification of Tau protein can aggregate to form neurofibrillary tangle (NFT) 

or paired helical filaments (PHF), called Tauopathy, which is also known one of the causative 

facts of AD. A critical genetic factor for late-onset AD is apolipoprotein E, particularly ε4 

isoforms (ApoE4). Although these genetic factors are identified and characterized, a number 
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of complicities are still emerging and remained elusive. Here we describe these genetic 

factors regarding function and dysfunction in presynaptic terminals.  

 

1.1. Amyloid precursor protein (APP) and Amyloid beta (Aβ)  

Amyloid precursor protein or APP is an essential source for amyloid beta 40 or 42 (Aβ 40 or 

42) which are known as one of the major pathogenic factors in AD. APP normally 

participates in presynaptic function, although primary function of APP is still not much 

explored. APP is enriched in nerve terminals with Rab5 positive large vesicular organelle (1) 

or small set of synaptic vesicles (2) and involved in structure and function of nerve terminals. 

Firstly APP modulates nerve terminal formation. Cultured neurons from APP knock-out brain 

revealed up-regulate of synaptophysin, a presynaptic marker. Consistently, 

immunohistochemistry from a slice of APP KO brain showed the high intensity of 

synaptophysin indicating that APP is a negative regulator of synaptic formation. Secondly, it 

is also involved in physiological modulation of synaptic function. APP KO neurons 

significantly increased readily releasable pool (RRP) of synaptic vesicle (3). According to 

computational analysis of APP, it is likely to serve as a hub protein in the presynaptic active 

zone (PAZ) and it is context regulator in hippocampal active zone network (4).  

Amyloid beta (Aβ) is a fragment peptide from APP cleaved by BACE and γ-secretase. 

Oligomeric aggregation of Aβ peptide is one of the critical pathogenic factors in AD. Several 

reports exhibited Aβ tangle had affected in nerve terminal phenotype. Treatment of Aβ 

oligomer in neurons resulted significantly in decreased presynaptic protein expression but not 

post-synapse (5) indicating that Aβ initially affects the structural formation of presynaptic 

terminals. Physiologically soluble Aβ bound APP and that induced APP-APP homodimer. 

Consequently, it caused boosting of Ca2+ influx, eventually release probability was increased 
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(6, 7) indicating that Aβ is a positive regulator of neurotransmission at nerve terminal. 

However in a pathological condition, increased Aβ can also perturb release probability by 

altering spike probability of neurons (8). Internalized Aβ was localized to nerve terminal, 

subsequently disrupted synaptic vesicle protein VAMP2 function for vesicle fusion (9). In 

addition, it induced depletion of presynaptic mitochondria and its motility and decreased the 

size of synaptic vesicle pool. 

Another important point regarding Aβ at synapses is that synaptic activity for 

neurotransmission and release of Aβ is tightly correlated and a nerve terminal is a major 

place for Aβ release. The brain interstitial fluid (ISF) revealed that synaptic activity influence 

Aβ level. The more synaptic activity was the higher Aβ level in the ISF. This result is also 

correlated with APP endocytosis. Because cleavage of APP to produce Aβ occurred in 

endosomes or a small fraction of SV, not in the surface of the plasma membrane (2). And 

synaptic vesicle exocytosis was required for more endocytosis of APP. Thus production and 

release of Aβ are modulated by activity-dependent synaptic transmission and endocytosis at 

nerve terminals (10, 11).  

 

1.2. Beta-secretase (BACE)     

β-site amyloid precursor protein-cleaving enzyme 1(BACE1) is a key enzyme to produce 

Amyloid beta in the pathological condition. However, BACE1 itself is also important for 

synaptic function since BACE1 was localized synaptic vesicles and more than dozens of the 

potential substrate had been identified, which contained several synaptic proteins in addition 

to APP (12). Furthermore, biochemically BACE1 was detected in the fractionation of 

synaptic vesicle enriched fraction, indicating that synaptic vesicle is likely the place for APP 

processing (13, 14). BACE1 KO mice revealed that basal excitatory synaptic transmission 
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was augmented. It is likely that downstream of BACE1 at synapse was decreased, which 

resulted from scaling of homeostatic synaptic plasticity (15). Synaptic adhesion protein 

Neuroligin1 and voltage-gated sodium channel were also known substrates for BACE1 

however it is still not known how these substrates are functionally regulated by BACE1.  

 

1.3. γ-secretase and presenilin 

γ-secretase is an essential member for Aβ40, 42 peptide production by cooperating with 

BACE1. Several functions of γ-secretase or presenilin, one of the subunits in γ-secretase 

complex at synapses were reported. The localization study revealed that γ-secretase had 

found in synaptic endosomal fraction of rat brain which is highly overlapped with the 

localization of BACE1 protein (16). In neurons with conditional knockout of presenilin, 

presynaptic short-term plasticity and synaptic facilitation were severely altered, which are 

mainly mediated by presynaptic functions and these impairments resulted from intracellular 

Ca2+ release in presynaptic terminals (17). In addition, hippocampal neurons derived from 

presenilin KO mice failed to the homeostatic scaling of excitatory synapses (18). Collectively, 

presenilin regulates neurotransmission in nerve terminals.  

 

1.4. Tau 

Tau has originally discovered as a microtubule-associated protein. It has been known that 

neurofibrillary tangle (NFT) or paired helical filament (PHF), one of the major hallmarks of 

AD is formed by Tau protein aggregation. However, it is reported that tau had functioned at 

synapses. Due to regulate microtubule stability, it participated in axonal transport and 

synaptic protein stability (19). In addition, it also provided structural support to form and 

maintain synapses (20). Truncated tau which contained specific phosphor-pattern can be 

localized both pre- and post-synaptic compartment. Particularly in presynaptic terminal, it 
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impaired the stability of microtubule, which caused reduction of synaptic vesicles (21).  

In pathological condition, Tau protein strongly influenced synaptic dysfunction. The brain of 

the rTg4510 mouse, human mutant P301L tau overexpressed mouse model, revealed age-

dependent synaptic loss both pre- and post- synaptic region and resulted in synaptic 

dysfunction. Tauopathy exhibited strong impairment of synaptic transmission and in 

combined with APP models synaptic impairment was aggravated, suggesting that two 

pathological protein both Tau and APP act in concert with synaptic function and 

dysregulation (22, 23). 

 

1.5. Apolipoprotein (APOE) 

ApoE is a lipoprotein that mainly involves in the transport of lipoprotein, cholesterol, and 

lipid-related materials. It has been known that ApoE is heavily related to the pathology of AD 

and correlated with another AD factor such as Amyloid-beta. Particularly, the apolipoprotein 

E4 (ApoE4) allele is a major form of a causative allele in ApoE. It also has a functional role 

in nerve terminals. Hippocampal neurons with ApoE4 allele expression had high sensitivity 

to an environmental factor that caused a lower level of presynaptic proteins such as 

synaptophysin. (24, 25), although the synaptic area in the dentate gyrus was increased (26). In 

addition to that, ApoE4 targeted replacement mice showed down-regulation of glutaminase 

which converted glutamine to glutamate, and up-regulation of vesicular glutamate transporter. 

Consequently, neuron replaced with ApoE4 released decrease level of glutamate at nerve 

terminals (27). Interestingly, this effect on presynaptic terminals appeared restrictively only in 

ApoE4 allele but no other E2 and E3 allele, suggesting that structural and functional 

regulation is specifically influenced by particular ApoE4 allele. Recently it has discovered 

that several ApoE receptors (e.g. Apoer2 and Vldlr) were expressed at nerve terminal 

membrane. Reelin a ligand for ApoE receptor signaled a transient increase of intracellular 
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Ca2+ resulting in elevation of spontaneous vesicle release by VAMP7 mediated fusion (28).    

ApoE4 also had a cooperative pathological behavior with amyloid beta in AD. In a patient 

with ApoE4 AD, apolipoprotein E4 was colocalized with oligomeric Aβ and enhanced 

synaptic localization of oligomeric Aβ. These suggest that ApoE4 is a stimulator for 

oligomeric Aβ toxicity for synapses (29). The proteomic response in nerve terminals is more 

susceptible than in the cell body, suggesting that ApoE has a nerve terminal region-specific 

functional effect.  

 

2. Nerve terminals in Parkinson’s disease 

Parkinson’s disease (PD) is the second common neurodegenerative disorder. It is known as a 

movement disorder characterized by bradykinesia, postural instability, and rigidity following 

the progressive loss of dopaminergic neuron in the midbrain. Pathogenesis of PD can be 

classified into sporadic and familial case developed by environmental and genetic factors. 

About two dozen genetic factors of PD have been identified by far, however a few genetic 

factors including α-synuclein, LRRK2 (Leucine-rich repeat kinase 2), Parkin, PINK-1 (PTEN 

Induced Putative Kinase 1) and DJ-1 were heavily studied primarily in pathogenesis of PD, 

Accumulating evidence has shown that the genetic factors of PD are associated with 

alteration of synaptic functions (30, 31).  

 

2.1. α-synuclein 

α-synuclein is a small protein, which is containing 140 amino acid and contributes to early-

onset PD (32). Generally α-synuclein localizes at presynaptic terminal. It associated with 

synaptic vesicles and controlled synaptic vesicle trafficking and SNARE complex formation 

in nerve terminal (33-35). In the pathological conditions, α-synuclein has been implicated in 
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alteration of synaptic functions. Human α-synuclein overexpressing animal models showed 

the protein aggregations in nerve terminals (36, 37) and overexpression of human α-

synuclein by viral vector injection into substantia nigra in animal models led to impaired 

dopamine release (38). And inhibition of neurotransmission might be related to the 

impairment of synaptic vesicle endocytosis (39) or synaptic vesicle reclustering after synaptic 

vesicle endocytosis (40). In addition, overexpression pathogenic mutants of α-synuclein 

(A30P and A53T) in primary midbrain neurons led to abnormal neurite growing and reduced 

recycling pool of synaptic vesicles (41). This evidence suggests that α-synuclein aggregation 

alters synaptic formation and functions.  

 

2.2. LRRK2 

LRRK2 is a large multidomain protein including kinase, GTPase, and protein-protein 

interaction domains. It is one of the prominent familial PD factors, particularly gain-of-

function mutant of LRRK2 (G2019S) was strongly associated with familial PD as well as 

sporadic PD (42, 43). Several studies had reported that LRRK2 is implicated in the structural 

and functional regulation of synapses through kinase-dependent mechanisms. It regulated 

presynaptic and postsynaptic morphology by the phosphorylation-dependent interaction of 

Futsch and 4E-BP in fly models (44). LRRK2 participated in synaptic vesicle endocytosis by 

phosphorylating endophilin (45), which is related with delayed endocytosis of synaptic 

vesicles, and subsequently affected neurotransmission impairment (46). LRRK2 also 

phosphorylated NSF (N-ethylmaleimide-Sensitive Factor) D2 domain (Threonine 645) which 

plays a key role in SNARE complex disassembly after synaptic vesicle exocytosis. NSF 

phosphorylation by LRRK2 exhibited an elevated rate of SNARE disassembly (47). BAC 

transgenic animals for LRRK2 G2019S mutation characterized by elevated kinase activity 

showed impairment of striatal dopamine release and a decrease of dopamine uptake without 
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dopaminergic neuron loss in the substantia nigra pars compacta (SNpC) (48). Furthermore, a 

neuron with LRRK2 G2019S expression showed elevated release probability with increased 

synaptic density (49) and altered glutamatergic synaptic plasticity (50).  

 

2.4. Parkin 

Parkin is an E3 ubiquitin ligase and has an important role in cellular homeostasis due to 

regulating mitophagy and protein degradation, but the loss-of-function mutation of Parkin is 

associated with juvenile-onset PD (51, 52). The function of Parkin had been implicated in the 

modulation of synaptic functions. Parkin KO mice showed a decrease of evoked dopamine 

release in the striatum and striatal medium spiny neuron exhibited impairments of synaptic 

plasticity which are long-term depression and long-term potentiation (53). Parkin also 

negatively regulated the number and strength of excitatory synapse (54) and 

neurotransmission was impaired by reduced AMPA receptor endocytosis in loss of function 

of Parkin (55). Several studies reported that functional loss of Parkin impaired degradation of 

synaptic proteins including α-synuclein, synphilin-1, and CDCrel-1 thereby, contributing 

protein aggregation (56-58).  

 

2.5. PINK1 

Inherited nonsense and missense mutation of PINK1 (PTEN-induced putative kinase1) is a 

known early-onset familial PD factor (59). It has an N-terminal mitochondrial targeting motif 

and a conserved kinase domain (60). PINK1 was closely related to mitochondrial function, 

and mitochondrial quality control (61). Pathologic mutation of PINK1 showed the abnormal 

morphology of mitochondria. In addition, it also showed impairment of dopamine release, 

which presumably related in synaptic mitochondrial dysfunction by pathogenic PINK1 (62). 

Loss of PINK1 impaired normal development of dopaminergic neuron. Consequently, it 
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revealed locomotor dysfunction (63). PINK1-deficient mice showed a normal number of 

dopaminergic neurons, however, evoked release of dopamine was significantly decreased 

suggesting that PINK1 has a role in synaptic transmission (64).       

 

2.6. DJ-1 

Generally, DJ-1 acts as a sensor for cellular redox homeostasis (65). However functional 

mutation of DJ-1 is one of a causative familial factor for autosomal recessive early-onset PD 

(66). Localization study revealed that DJ-1 localized in synaptic membrane. The binding 

affinity for synaptic membrane was reduced with pathogenic DJ-1 compared to WT DJ-1(67) 

indicating that it is likely involved in synaptic function. In fact, DJ-1 depleted mice revealed 

defect of LTD (long-term depression) through inhibitory effects of the D2 receptor by loss of 

DJ-1 (68).  

 

2.7. Synaptojanin-1 

Synaptojanin-1 known as a phosphoinositide phosphatase has a role in endocytosis process. It 

interacts with several endocytic proteins such as dynamin, Dap160/intersectin, and BAR 

proteins including endophilin and amphiphysin (69, 70), suggesting that it plays a key role in 

synaptic vesicle recycling processing particularly clathrin-coated pit uncoating (71). Recently, 

Sac1 domain mutation of synaptojanin-1 (p.Arg258Gln) has been reported in a family with 

early-onset progressive Parkinsonism (72, 73). Although synaptojanin-1 mutation mediated 

pathogenesis of PD has been less explored yet, pathogenic phenotype exhibited that the 

mutations of synaptojanin-1 associated with PD as well as early onset refractory seizures and 

neurological decline (74, 75) suggesting that the loss-of-function of Synaptojanin-1 may 

contribute pathogenesis of PD and other neurological diseases by impaired synaptic vesicle 

recycling. 
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2.8.Endophilin 

Endophilin is one of the key factors in synaptic vesicle recycling. Recently, however, some 

papers reported that it is related to PD genetic factors including LRRK2, parkin, and 

synaptojanin-1(45, 76, 77). Endo-A, fly ortholog of endophilin was a substrate for LRRK2. 

BAR domain (Serine75) in Endo-A is phosphorylated, and recruitment of Endo-A to 

endocytic complex during endocytosis was modulated. Consequently, hyper-phosphorylation 

of BAR domain of Endo-A in LRRK2 G2019S mutant had shown impairment of synaptic 

endocytosis in presynaptic terminals (45). In addition, endophilin phosphorylation by LRRK2 

had increased recruitment of atg3 to membrane area of presynaptic terminals, resulting in 

macroautophagy induction by affecting membrane curvature induction for autophagy (78). 

Interestingly, endophilin mutant mice exhibited that parkin expression was strongly increased, 

suggesting that endophilin genetically interacts with parkin (76).   

 

3. Nerve terminals in other neurodegenerative diseases 

3.1. ALS 

Amyotrophic lateral sclerosis (ALS) is a motor neuron disorder characterized by progressive 

loss of motor neuron in the cortex, brainstem and spinal cord. The loss of motor neuron leads 

to muscle atrophy and weakness, thereby eventually it leads to death. Superoxide dismutase-1 

(SOD-1) one of the most prominent ALS genetic factors is an antioxidant enzyme involved in 

the conversion of free superoxide radicals to oxygen and hydrogen peroxide. Both a dominant 

and a recessive mutation of SOD-1 had been identified in ALS patients (79-81). It had been 

reported that the mutations of SOD-1 were implicated in synaptic dysfunctions. Both wild 

type of SOD-1 and pathogenic SOD-1 were localized in pre and post-synapse. The G93A 

SOD-1 mutant one of pathogenic SOD-1 mutant showed mislocalization in presynaptic 



FO
R R

EV
IE

W

terminals as well as post-synapse, thereby impairing axonal transport and contributing 

neuronal cell death (82, 83). SOD1 mutant mouse also showed length-dependent axonopathy 

with synaptic degeneration (84) and decreased synaptophysin-positive presynaptic bouton in 

the remaining motor neuron (85). TDP-43 a DNA-/RNA-binding protein which modulates 

RNA splicing and micro RNA biogenesis (86, 87) were identified in familial ALS. 

Transgenic animals of the mutant with human TDP-43 exhibited a reduced level of 

synaptophysin, a presynaptic protein, in the brain as well as cognitive and motor deficit in 

behavior tests (88), and synaptic transmission was attenuated (89). FUS (Fused-in-Sarcoma) 

is also one of the DNA/RNA-binding proteins and have similar structure and functions in 

comparison with TDP-43 (90). The mutation in nuclear localization signal (NLS) of FUS led 

to increased cytoplasmic FUS position, which induced aggregation of FUS mutants as a 

pathogenesis ALS (91, 92). FUS mutations were also linked to synaptic dysfunctions. 

Overexpression FUS mutant disrupted formation presynaptic active zones, consequently 

reduced synaptic transmission with decreased quantal size (93).  

 

3.2. Huntington’s disease 

Huntington’s disease (HD) is an inherited autosomal dominant neurodegenerative disorder. It 

is mainly caused by mutation of huntingtin (htt) protein which has an abnormally high copy 

of polyglutamine (polyQ) repeat in N-terminus. General symptoms of HD are motor 

dysfunction and cognitive deficits, which are correlated with neurodegeneration of specific 

regions such as the striatum and cerebral cortex. Some of the presynaptic alterations in HD 

were reported in various genetic models. HD model system by expressing 128 polyQ 

expansion in Drosophila revealed that it had significantly increased neurotransmitter release 

and release probability (94). Presynaptic specific protein alterations were also reported. For 

example, rabphilin 3A expression level was decreased (95) however level of SCAMP5, one 
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of the synaptic vesicle proteins was increased (96) suggesting that these alterations of 

presynaptic protein level results in impairment of synaptic vesicle fusion or endocytosis 

process.   

 

CONCLUSION 

We here review structural and functional alteration of presynaptic terminals by genetic factors 

in several neurodegenerative diseases. In AD, APP an original source for Aβ peptide is a 

molecular hub in PAZ. It negatively regulated nerve terminal formation and readily releasable 

synaptic vesicle pool. Pathological Aβ (aggregate Aβ) strongly inhibited synaptic vesicle 

fusion machinery however soluble Aβ increased release probability. BACE1 and presenilin 

were also the important regulators for presynaptic physiology. In addition to that, other 

genetic factors for AD Tau and ApoE4 were also involved in synaptic stability and synaptic 

release. In PD, numerous studies for the genetic factors of PD had also shown the implication 

in presynaptic functions. α-synuclein expression controlled release probability and recycling 

pool size, and LRRK2 modulated dopamine release and synaptic vesicle endocytosis by 

phosphorylating several endocytic proteins (e.g. endophilin). Interestingly recently 

accumulating reports showed that endocytic proteins (e.g. synaptojanin1, endophilin) were 

strongly related in PD, indicating that synaptic vesicle endocytosis process might be an 

important pathway related with the pathogenesis of PD.   

A number of the genetic factors for neurodegenerative diseases have been closely related with 

synaptic function and its alteration. However, most studies just display the phenotype of 

synaptic dysfunctions without detailed mechanisms how the genetic factors lead to the 

synaptic dysfunctions. By far most studies for the pathogenesis of neurodegenerative diseases 

tend to focus on mechanisms how neuronal cell death or neurodegeneration occur. Most of 

the neurodegenerative diseases generally thought to be chronic diseases. Ultimately neurons 
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are likely to be dead after experiencing a number of abnormal processes during 

neurodegeneration. Synapses possess high variability and plasticity and are also highly 

vulnerable to pathological condition. It is likely to reveal abnormal phenotype or alteration of 

the synaptic function at the very early period of neurodegeneration, suggesting that 

investigation for synaptic dysfunction in depth may provide a new approach to the 

understanding of the early pathogenesis of neurodegenerative diseases.         
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FIGURE LEGENDS 

Figure 1. Summarization of diagram for alteration of presynaptic terminals in various 

neurodegenerative diseases 
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Table1. Summary of presynaptic phenotype by AD genetic factors  
 

 

 
Table2 Summary of presynaptic phenotype by PD genetic factors  
 

• Parkinson’s Disease 

Factor Phenotype at Presynaptic terminal Ref 

α-synuclein 

• Impairment of dopamine release in SNpc 

• Impairment of synaptic vesicle endocytosis and reclustering 

• Reduction of synaptic vesicle recycling pool  

38 

39,40 

41 

LRRK2 
• Impairment of release and decreased DA uptake in SNpc 

• Impairment of synaptic endocytosis in presynaptic terminals 

48 

45 

Parkin 
• Reduction of dopamine release 

• Impairment of synaptic plasticity in striatal cells 

55 

53 

PINK1 • Impairment of synaptic plasticity and release of dopaminergic neuron 62 

DJ-1 • Defect of LTD through inhibitory effects of D2 receptor 68 

Synaptojanin1 • Slowed endocytosis rate for small stimulation by defect of phosphatase activity 74,75 

Endophilin • Regulation of Parkin expression  76 

• Alzheimer’s Disease 

Factor Phenotype at Presynaptic terminal Ref 

Amyloid Precursor 

Protein (APP) 

• Negative regulator of synapse formation 

• Negative regulator for readily releasable pool of synaptic vesicle 

• Molecular Hub in presynaptic active zone (PAZ)    

3 

3 

4 

Amyloid beta 

(Aβ) 

• Downregulation of presynaptic protein expression  

• Increase release probability (soluble Aβ- normal condition) 

• Disruption of vesicle fusion ability by inhibiting VAMP2 function (pathologic Aβ) 

5 

7 

9 

BACE1 • Negative regulator for excitatory synaptic transmission (homeostatic synaptic plasticity) 15 

γ-secretase / 

Presenilin 

• Presynaptic short-term plasticity, synaptic facilitation 

• Homeostatic synaptic scaling of excitatory synapses 

17 

18 

Tau • Synaptic stability (presynaptic proteins, synaptic vesicle) 19, 20 

ApoE4 
• Downregulation of amount glutamate 

• Modulation of spontaneous vesicle release  

27 

28 
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Table3. Summary of presynaptic phenotype by ALS and HD genetic factors  

 

 

 

 

• ALS and Huntington’s Disease 

Factor Phenotype at Presynaptic terminal Ref 

ALS 

SOD-1 
• Axonal transport 

• Synaptic degeneration 

83 

84,85 

TDP-43 
• Expression regulation of presynaptic protein 

• Attenuation of synaptic transmission 

88 

89 

FUS • Active zone formation, synaptic transmission 93 

HD HTT 
• Synaptic transmission, release probability 

• Synaptic vesicle dynamics 

94 

95,96 


