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In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in 

order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL 

expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from 

the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor 

cells, including immune cells. Considering the extensive interaction between T cells and other 

immune cells within the tumor microenvironment, ICL expression on immune cells can be as 

significant as that of ICLs on tumor cells in promoting anti-tumor immune responses. Here, we 

introduce various regulators known to induce or suppress ICL expression in either tumor cells 

or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the 

clinical significance of understanding the mechanisms of ICLs for an optimized 

immunotherapy for individual cancer patients. 

 

INTRODUCTION 

 

In cancer, it is the cytolytic action of cytotoxic lymphocytes that the immune system mainly 

elicits to restrain disease progression. However, CD8 T cells frequently undergo ‘exhaustion’, 

which is a distinct developmental process, because CD8 T cells in the tumor microenvironment 

are faced with sustained antigenic stimulation. Exhausted CD8 T cells persist but gradually 

lose their effector function, cytotoxicity, and proliferative capacity, leading to incompetent 

immunosurveillance. 

Exhausted CD8 T cells typically express a panoply of inhibitory immune checkpoint 

receptors (ICRs), which are triggered by cognate ligands to regulate T-cell response via a 

downstream signaling pathway. For instance, programmed cell-death 1 (PD-1, CD279), one of 

the notable ICRs, is expressed on exhausted CD8 T cells. Upon being bound with programmed 

cell-death 1 ligand 1 (PD-L1, B7-H1, CD274), PD-1 counters either CD28 signaling or a T-cell 

receptor (TCR) by activating SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) UN
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and renders the T cells hypofunctional in many ways (1). Therefore, in exhausted CD8 T cells, 

blocking the interactions between ICRs and immune checkpoint ligands (ICLs) is a plausible 

strategy for de-repressing CD8 T cells. Indeed, immune checkpoint blockade therapy has 

demonstrated clinical efficacy against various types of tumors (2). Multiple immune 

checkpoint pathways other than PD-1/ PD-L1 (3) have been investigated, and the pathways 

differ from patient to patient because of the heterogeneity of the tumor microenvironment. 

Since most ICRs were co-expressed as part of a larger co-inhibitory gene program (4), the 

‘functional’ inhibitory pathways are determined by the expression of ICLs. Therefore, it is 

essential to understand which factors contribute to the inter-patient differences in ICL 

expressions. In this review, we summarize various factors that modulate the expression of ICLs 

within the tumor microenvironment (Table. 1). 

 

PD-1 ligands 

The promising outcome of therapies targeting the PD-1 axis has highlighted the need to 

elucidate the molecular regulation of its ligands. PD-1-mediated T-cell inhibition can be 

attributed to both of two well-known ligands of PD-1, which are PD-L1 and programmed death 

1 ligand 2 (PD-L2, B7-DC, CD273) (Fig. 1,2). 

 

PD-L1 

Given that antibodies against PD-L1 have shown an efficacy similar to that of the antibodies 

against PD-1, which can block interactions with both PD-L1 and PD-L2, PD-L1 is a more 

dominant ligand of PD-1 than is PD-L2. PD-L1 expression by tumor cells often occurs during 

malignant transformation and without ongoing immune response (5). However, apart from 

intrinsic factors, which give rise to constitutive expression of PD-L1 in tumor cells, extrinsic 

factors within the tumor microenvironment can contribute to PD-L1 expression. Many of the UN
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factors in the tumor vicinity, such as nutrient deprivation (6, 7), metabolite accumulation (8), 

and hypoxia (9), are observed in common in different types of tumors, concomitantly causing 

PD-L1 upregulation. Further, an inflammatory tumor microenvironment provides the assorted 

factors that modulate PD-L1 expression. IFN-γ, primarily secreted by effector T cells and NK 

cells, is the most potent inducer of PD-L1 for various tumor-cell lines (10); hence PD-L1 

expression in tumor cells may reflect concurrent T-cell responses. Mechanistically, in human 

melanoma cell lines, IFN-γ-induced upregulation of PD-L1 is mediated by JAK1/2 – STAT1 

activation and, eventually, directs binding of Interferon Regulatory Factor 1 (IRF1) to PD-L1 

promoter (11). Garcia-Diaz et al. also clarify that IFN-α and IFN-β induce PD-L1 expression, 

but to a lesser extent than does IFN-γ (11). Besides IFN, other inflammatory mediators regulate 

PD-L1 expression as well. For example, TNF-α increases PD-L1 expression in human breast-

cancer cells by promoting deubiquitination mediated by COP9 signalosome complex subunit 

5 (CSN5) (12). When treated alone or in combination with IL-17, TNF-α upregulates PD-L1 

expression in both human prostate-cancer and colon-cancer cells, mediated by the Akt/NF-κB 

and ERK/NF-κB pathways, respectively (13). In human renal-carcinoma cells, TNF-α or IL-4 

increases PD-L1 expression, accompanied by NF-κB or STAT6 activation, respectively. 

Combined treatment of the two has additive effects (14). IL-6 has been reported to increase 

transcription of the PD-L1 gene by means of either JAK/STAT3 signaling in human prostate-

cancer cells (15) or MEK/ERK signaling in human lung-cancer cells (16). IL-6 also increases 

PD-L1 expression at the post-transcriptional level by JAK1-mediated phosphorylation, which 

promotes glycosylation and stabilization of the PD-L1 protein in hepatocellular carcinoma cells 

(17). Likewise, IL-27 can upregulate PD-L1 by means of STAT3 signaling in human ovarian-

cancer cell lines (18). Among anti-inflammatory cytokines, TGFβ was reported to increase PD-

L1 expression in an Smad2-dependent manner in human lung-cancer cells (19). Other than 

cytokines, stimulation of Toll-Like Receptor 4 (TLR4) by a lipopolysaccharide (LPS) induces UN
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PD-L1 expression in human bladder-cancer cells via the ERK/JNK pathway (20). In human 

neuroblastoma cells, PD-L1 can be upregulated in response to TLR3 stimulation, with 

simultaneous TLR9 ligation mitigating TLR3-mediated upregulation of PD-L1 (21) . 

Though PD-L1 expression is often represented by a tumor proportion score, which quantifies 

PD-L1 expression solely from viable tumor cells, accumulating evidence supports that a 

combined positive score, which integrates PD-L1 expression of tumor and non-tumor cells, is 

a more predictive biomarker (22), implying the significance of PD-L1 expressed by non-tumor 

cells in PD-1 blockade. Indeed, PD-L1 expressed by tumor-infiltrating immune cells promotes 

immune escape via diverse mechanisms (23). PD-L1 expressed on antigen-presenting cells, 

including dendritic cells and macrophages, delivers inhibitory signals during crosstalk with 

PD-1-expressing T cells or sequesters co-stimulatory molecule, CD80, in cis. Also, PD-L1 

from activated T cells engages with PD-1 expressed on other T cells or macrophages, the latter 

promoting M2 polarization. By the way, PD-L1 expressed on T cells can lead to an anergic 

state or apoptosis in activated T cells by acting as a receptor per se. 

As in tumor cells, IFN-γ induces PD-L1 in multiple types of immune cells, including 

monocytes (24, 25), monocytes-derived dendritic cells (24, 26), macrophages (26), and 

neutrophils (27). Although marginal, IFN-β also increases PD-L1 expression in neutrophils (27) 

and dendritic cells (28). Among other pro-inflammatory cytokines, TNF-α, IL-1β, or IL-6 

upregulates PD-L1 expressed on monocyte-derived dendritic cells (29), whereas PD-L1 

expressed on monocytes/macrophages is upregulated by TNF-α (30, 31), IL-6 (32), or IL-17 

(33). However, IL-17-induced upregulation of PD-L1 is indirectly mediated by several 

cytokines, particularly IL-10, produced by IL-17-activated monocytes. Another inflammatory 

cytokine, IL-12, upregulates PD-L1 expressed on macrophages (34). Though IL-12 upregulates 

PD-L1 expression in monocyte-derived macrophages by means of increased IFN-γ production, 

it also can downregulate PD-L1 expression in THP-1, a human monocytic cell line, presumably UN
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by decreasing IL-10 production with inability to produce IFN-γ.  

The role of anti-inflammatory cytokines in regulation of PD-L1 expression has also been 

investigated. As briefly mentioned above, IL-10 upregulates PD-L1 expression in monocytes 

(33, 35, 36) and dendritic cells (37). Yet, IL-10-induced upregulation of PD-L1 is observed 

only in immature, monocyte-derived dendritic cells, not in LPS-matured one. The contradictory 

role of TGFβ in determining PD-L1 expression was observed, in that it upregulates PD-L1 

expression in dendritic cells (38, 39), but downregulates it in monocytes (30). Not classified as 

cytokines, TLR3 signaling induces PD-L1 expression in dendritic cells (40), and TLR4 

signaling induces PD-L1 expression in monocytes (41), macrophages (42), and dendritic cells 

(43). Prostaglandin E2 (PGE2), which is a bioactive lipid that is closely connected with 

inflammation, is also involved in the induction of PD-L1 expression in myeloid cells, including 

macrophages and myeloid-derived suppressor cells (MDSCs) (44). 

 

PD-L2 

As a second ligand for PD-1, PD-L2 also endows PD-1 with an inhibitory function, although 

its mechanisms are not fully understood. Given that PD-L2 binds to PD-1 with a higher affinity 

than that of PD-L1 (45) and that its expression has been reported in many human malignancies, 

it is worth speculating about how its expression is regulated within the tumor 

microenvironment. PD-L2 expression was initially thought to be restricted to dendritic cells or 

macrophages, but recent studies reveal that PD-L2 expression is less restricted than previously 

thought. For example, a considerable proportion of peritoneal B1 B cells constitutively express 

PD-L2, which positivity enriches Phosphatidylcholine (Ptc)-specific B1 cells, as is crucial for 

innate defense against invading pathogens (46). 

Like PD-L1, PD-L2 is upregulated by IFN-γ treatment in tumor cells (11, 19, 47, 48). In line 

with how IFN-γ orchestrates PD-L2 upregulation in tumor cells, IFN-β has a similar effect via UN
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promoting STAT3 interaction with PD-L2 promoter (11). IL-4 and IL-13, Th2-type cytokines 

produced during Barrett’s metaplasia, have been reported to induce PD-L2 expression in 

esophageal adenocarcinoma (49). 

In immune cells, IFN-γ and Th2 cytokines are involved in PD-L2 expression. IFN-γ induces 

PD-L2 expression in human monocytes (24, 36, 50), and IL-4 induces in murine macrophages 

(42, 51, 52) and dendritic cells (51) in a STAT6-dependent manner. Yamazaki et al. also 

identified the granulocyte-macrophage colony stimulating factor (GM-CSF) as an inducer of 

PD-L2 in both macrophages and dendritic cells, but its regulatory mechanism, which 

encompasses a transactivation effect of PU.1/ IRF4 and histone modification by PU.1/ p300, 

has been demonstrated recently (53). Additionally, common γ chain cytokines, such as IL-2, 

IL-15, and IL-21, can induce PD-L2 expression in monocytes or macrophages (54). IL-10 also 

upregulates PD-L2 in monocytes (36), but downregulates PD-L2 in mature dendritic cells (24). 

 

T cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands 

TIGIT is an inhibitory receptor, mainly expressed by NK cells, regulatory T cells, memory 

T cells, and exhausted CD8 T cells. When TIGIT was identified for the first time, it was also 

reported that human TIGIT can bind to three ligands, Poliovirus receptor (PVR, NECL5, 

CD155), PVR-related 2 (PVRL2, Nectin2, CD112), and PVR-related 3 (PVRL3, Nectin3, 

CD113), among which PVR has the highest affinity for TIGIT (55). PVR/ TIGIT engagement 

suppresses T-cell responses by phosphorylating ITIM in the cytoplasmic tail of TIGIT or 

disturbing PVR/ DNAX-associated molecule 1 (DNAM-1, CD226) engagement, which 

bolsters T-cell response.  

PVR is an adhesion molecule frequently overexpressed in many types of solid and 

hematological malignancies, and its overexpression is associated with poor prognosis (56-59). 

Since PVR is a member of the Nectins and Nectin-like (Necl) family of molecules and is UN
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involved in various physiological processes, including cell-cell adhesion, movement, 

proliferation, and differentiation, its overexpression can have a pro-tumorigenic effect in a 

manner intrinsic to tumor cells. In parallel, the oncogenic RAS/RAF/MEK/ERK signaling 

pathway upregulates PVR expression by means of direct binding of AP-1 to PVR promoter in 

mouse fibroblasts (60), a fact that is expected to be applicable to murine tumor cells. Despite 

the presence of the AP-1 binding sequence within the PVR promoter/enhancer in some human 

tumor-cell lines (61), it is unclear if the RAS/RAF/MEK/ERK signaling increases PVR 

expression in human tumor cells as well. However, in terms of anti-tumor immune responses, 

whether PVR overexpression has a pro-tumorigenic or anti-tumorigenic role remains uncertain. 

In regulating the anti-tumor immune response, PVR can bind to three different receptors—

DNAM-1, TIGIT, and CD96—and contradictory effects can occur depending on the receptor 

that it binds to (62). Nevertheless, many previous studies present PVR as a stimulator of NK-

cell function, emphasizing its interaction with activating receptor DNAM-1. For example, PVR 

can be induced as a part of an ATM/ATR-dependent DNA damage response ignited by either 

inherent genotoxic stress or genotoxic drug treatment in human multiple myeloma. Particularly, 

when genotoxic stress imposed by nitric oxide (NO) and the related reactive nitrogen species 

(RNS) induces PVR, the effect depends on transcriptional regulation by E2F1. Subsequently, 

induced PVR makes these tumors eliminatable by NK cells by means of DNAM-1 ligation in 

vitro (63, 64). Also, immuno-modulatory drugs targeting Cereblon, which breaks down 

transcriptional repressors of PVR, such as Ikaros family zinc finger protein-1 and -3 (IKZF1/3), 

also upregulate PVR expression and provoke NK-cell-mediated cytolysis in vitro (65). In terms 

of post-transcriptional regulation, when there is Endoplasmic reticulum (ER) stress, ER-

associated degradation-related molecule HRD1 increases and promotes PVR degradation in 

human hepatoma cell lines (66). In parallel, dysregulated small ubiquitin-like modifier (SUMO) 

conjugation, which results from SUMO conjugating enzyme overexpression, also facilitates UN
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PVR degradation in human MM cell lines (67). Both studies demonstrated that diminished 

PVR expression caused tumor cells to evade recognition and elimination by NK cells. However, 

given that TIGIT binds to PVR with higher affinity than that of DNAM-1 (55, 68) and that 

TIGIT is highly expressed on tumor-infiltrating lymphocytes, how PVR expression on target 

cells affects effector cells in vivo needs further investigations. 

Regarding tumor-infiltrating immune cells, it was reported that tumor-associated antigen-

presenting cells (APCs) represent a higher level of PVR than did circulating APCs, although 

factors responsible for upregulated PVR were not addressed in the study (69). However, since 

NF-kB signaling increases PVR expression on APCs upon TLR stimulation (70), an 

inflammatory microenvironment within tumor tissue may contribute to PVR upregulation in 

APCs (Fig. 1). 

 

T-cell immunoglobulin domain and mucin domain 3 (Tim-3) ligands 

Tim-3, known as a hallmark of exhausted T cells, is one of the most commonly targeted 

checkpoints for immunotherapy. Four ligands have been described for Tim-3: Galectin-9 (Gal-

9), Phosphatidylserine (PtdSer), High-mobility group box 1 (HMGB1), and Carcinoembryonic 

antigen-related cell adhesion molecule 1 (CEACAM1). Among them, Gal-9 and CEACAM1 

have been reported to attenuate TCR signaling by dissociating HLA B-associated transcript 3 

(BAT3) from Tim-3 (71, 72). Specifically, in the absence of the two ligands, Tim-3 is bound to 

BAT3, which interacts with Lymphocyte-specific protein tyrosine kinase (Lck). Since Lck-

mediated phosphorylation of the TCR complex is critical for TCR downstream signaling, 

dissociation of BAT3 and subsequently Lck, upon Tim-3 ligation, results in impaired TCR 

downstream signaling and, ultimately, apoptotic cell death. Furthermore, the intracellular 

interaction between Tim-3 and CEACAM1 supports maturation and surface trafficking of Tim-

3. Therefore, the absence of CEACAM1 within T cells leads to intracellular accumulation of UN
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Tim-3 and its inability to interact with ligands, unleashing T cells from Tim-3-mediated 

inhibition. PtdSer, which is exposed on the outer leaflet of apoptotic cells, triggers Tim-3 

expressed on CD8+ dendritic cells or a subset of macrophages and induces phagocytosis; or 

extracellular HMGB1, a kind of alarmin, can be released into the tumor microenvironment and 

form a complex with free DNA. Since the formation of the complex assists internalization of 

DNA into DCs to activate endosomal TLRs, sequestration of HMGB1 by Tim-3 can curtail the 

formation of the complex and the following DC activation. Even supposing that interaction 

between Tim-3 and PtdSer or HMGB1 may affect T-cell function indirectly, at least, to date, 

whether PtdSer or HMGB1 directly affects Tim-3-expressing T cells has to be evaluated.  

Although expression of Gal-9 (73-75) or CEACAM1 (72, 76-78) in tumor cells and/or 

immune cells has been addressed, the factors implicated in their regulation have not been well 

explored. It has been reported that expression of Gal-9, the first ligand for Tim-3, is regulated 

by IFN (73, 74, 79). Unlike PD-1 ligands, IFN-β is a more robust regulator of Gal-9 expression 

in various cell lines than is IFN-γ. Moreover, Gal-9 has to be released extracellularly to serve 

as a ligand for Tim-3, and IFN-β or IFN-γ also increases Gal-9 secretion even in some of the 

tumor cells in which IFN-β or IFN-γ fails to increase Gal-9 expression or macrophages that 

possess constitutive Gal-9 expression (73). However, the other two studies delineated IFN-γ-

mediated upregulation of Gal-9 in monocytes and granulocytic MDSCs, respectively, without 

covering the effect of IFN-β. Also, microRNA-dependent post-transcriptional regulation (80, 

81) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A)-mediated epigenetic modulation 

(82) of Gal-9 in tumor cells have been reported (Fig. 1). 

 

Lymphocyte Activation Gene-3 (LAG-3, CD223) ligands 

LAG-3 inhibits the anti-tumor immune response by synergizing with PD-1; a dual blockade 

of PD-1 and LAG-3 is undergoing clinical trials. Notwithstanding the incomplete picture of UN
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molecular mechanisms, five ligands for LAG-3 have been discovered so far: MHC II, galectin-

3 (Gal-3), Liver sinusoidal endothelial cell lectin (LSECtin), α-synuclein fibrils (α-syn), and 

fibrinogen-like protein 1 (FGL1). Unlike other ligands, LAG-3 bound to α-syn is associated 

with intercellular delivery of pathological α-syn fibrils in the nervous system, which is 

irrelevant to immune response. Although it had been reported that LAG-3 can bind to MHC II 

with high affinity and regulate CD4 T cells by impeding interaction between MHC II and CD4, 

more recent studies have shown that discriminatory binding of LAG-3 to a stable MHC II/ 

peptide complex (pMHC II) suppresses CD4 T cells by transducing inhibitory signals (83). 

Moreover, Maruhashi et al. also found that APCs that abundantly express stable pMHC II 

inhibit activation of CD8 T cells via LAG-3-dependent mechanism. In this regard, since MHC 

II transactivator (CIITA) can induce expression of MHC II accessory molecules, which are 

involved in pMHC II formation, as well as MHC II, IFN-γ-mediated upregulation of CIITA 

expression may increase pMHC II in various types of cells, including certain tumor cells (84). 

Alternatively, other ligands, Gal-3 (85), LSECtin (86), and FGL1 (87), have been reported to 

engage with LAG-3 to negatively regulate CD8 T cells in the tumor microenvironment. Even 

though Kouo et al. demonstrated that intratumoral CD8 T cells and stromal cells are major 

sources of Gal-3 (85), Gal-3 is also secreted by many types of tumor cells and stromal cells 

(88). It is reported that Gal-3 is exocytosed from stromal cells and endocytosed by tumor cells 

in pre-B cell lymphoma. Afterwards, internalized Gal-3 auto-activates both Gal-3 transcription 

in tumor cells and NF-κB signaling (89). Though the study rarely provides direct evidence for 

causality between NF-κB and Gal-3, it is conceivable that increased Gal-3 transcription is a 

result of NF-κB activation, taking into account the NF-κB-mediated Gal-3 expression in other 

types of cells (90, 91). LSECtin or FGL1 is expressed in the liver under normal physiological 

conditions and is highly upregulated in some tumor cells (86). Although LSECtin is induced 

by IL-6 or IL-10 treatment in tumor cells, it is also detected on human monocyte-derived UN
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dendritic cells and is induced by IL-4 (92). IL-6 also increases FGL1 in human hepatoma cells 

(93). Future studies are required to verify the precise molecular mechanisms of these ligands 

and the possibility of their cooperation in LAG-3-mediated T cell inhibition (Fig. 1). 

 

Conclusions 

In the tumor microenvironment, tumor cells build a permissive environment for growth, 

executing distinct strategies. As a tumor progresses, ICRs are simultaneously induced by 

common factors, whereas the expression of the corresponding ICL has overlapping but 

independent regulation. Further, there are diverse regulators in the tumor microenvironment, 

each of which may have inconsistent effects on ICL expression depending on the cellular 

context, creating individually different expressions of ICLs. Because ICL expression patterns 

could be of relevance to indicate the activity of immune checkpoint pathways, differential 

expression profiles of ICLs among individuals can be used to predict the treatment response of 

the immune checkpoint blockade. For instance, many studies have shown that PD-L1 

expression is associated with superior response to PD-1 blockade (94). Our previous study 

demonstrated that the complementary expression patterns of PVR and PD-L1 are key 

determinants for PD-1 blockade (95). Another study revealed that CD276, which is an 

incompletely elucidated ICL, could be used as potential biomarker for PD-1 blockade (96). By 

querying a set of verified ICLs and identifying robust ICL-based biomarkers, it is possible to 

achieve a higher responder rate and tailor precision immunotherapies. (Fig. 3). 
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FIGURE LEGENDS 

Fig 1. Multiple immune checkpoint receptor-ligand interactions between T cells and APCs or 

tumor cells. The regulators of each immune checkpoint ligand are indicated on the right side. 

Cell types and references of regulators are provided in Table 1. (Up : positive regulator, Down : 

negative regulator) 

Fig 2. Schematic overview of PD-L1 and PD-L2 positive-expression regulators in APCs (Up) 

or Tumor cells (Down). Molecules colored by orange or green regulate PD-L1 or PD-L2 

expression, respectively. Molecules colored by orange and green regulate PD-L1 and PD-L2 

expression at the same time. 

Fig 3. ICRs are co-regulated and simultaneously expressed by common factors. In contrast, 

Individual difference in TME-derived factors or signaling network induce diverse patterns of 

ICLs. Heterogeneity in expression of ICLs can afford patient stratification for customized ICB 

therapy. 

Table 1. Overview of multiple immune check point ligand regulators. (M : mouse, H : human) 
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Table 1. 

Receptor Ligand Regulator 
Expression 

Tumor cell Immune cell 

PD-1 

PD-L1 

IFNγ Multiple tumor cell (10,11) 
Dendritic cell (24,25), Neutrophil (27), 
Monocyte/ Macrophage (24,26) 

IFNβ H melanoma (11) Dendritic cell (28), Neutrophil (27) 

TNFα 
H breast cancer (12), H prostate/ colon cancer (13), 
H renal cell carcinoma (14) 

Dendritic cell (29), Monocyte/ Macrophage (30,31)  

IL-6 H prostate cancer (15), H lung cancer (16) Dendritic cell (29), Monocyte/ Macrophage (32) 

TLR3 H neuroblastoma (21) Dendritic cell (40) 

TLR4 H bladder cancer (20) Dendritic cell (43), Monocyte/ Macrophage (41,42)  

IL-4 H renal cell carcinoma (14) - 

IL-27 H ovarian cancer (18) - 

TGFβ H lung cancer (19) - 

IL-10 - Monocyte (33,35,36) 

IL-17 - Monocyte/ Macrophage (33) 

IL-1β - Dendritic cell (29)  

PGE2 - Monocyte/ Macrophage (44) 

Nutrient deprivation Multiple tumor cell (6,7) - 

Metabolite accumulation H lung cancer (8) - 

Hypoxia Multiple tumor cell (9) - 

Oncogenic signaling Multiple tumor cell (5) - 

microRNA Multiple tumor cell (5) - 

PD-L2 

IL-4 H esophageal adenocarcinoma (49) 
Dendritic cell (51),  
Monocyte/ Macrophage (42,51,52)  

IFNγ 
H melanoma (11), H lung cancer (19), 
H colorectal cancer (47), H brain tumor (48) 

Monocyte/ Macrophage (24,36,50)  

IFNβ H melanoma (11)  

IL-13 H esophageal adenocarcinoma (49)  

IL-2/IL-15/IL-21 - Monocyte/ Macrophage (54) 

GM-CSF - Dendritic cell/ Macrophage (53) 

TIGIT PVR 

RAS/RAF/MEK/ERK Fibroblast (60) - 

DNA damage H melanoma (63,64) - 

IKZF-1/3 H melanoma (65) - 

ER stress H hepatoma (66) - 

SUMO-conjugating enzyme 
UBC9 

H melanoma (67) - 

TLR1/2/3/4/7/8/9 - Dendritic cell/ Macrophage (69) 

TIM3 Galectin-9 

IFNγ - Monocytes/ gMDSCs (74,79) 

IFNβ H leukemia/ M colon cancer (73) - 

microRNA H chondrosarcoma (80), liver cancer (81) - 

DNMT3A H cervical cancer (82) - 

LAG3 

MHCII IFNγ H osteosarcoma/ H melanoma (84) - 

Galectin-3 NF-kB H leukemia (89) Macrophage (90) 

LSECtin 
IL-6/IL-10 H/M melanoma (86) - 

IL-4 - Dendritic cell (91) 

FGL-1 IL-6 H hepatocellular carcinoma (93) - 
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