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Abstract 

Cell reprogramming has been considered a powerful technique in the regenerative medicine 

field. In addition to diverse its strengths, cell reprogramming technology also has several 

drawbacks generated during the process of reprogramming. Telomere shortening caused by 

the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription 

factors used for reprogramming alter genomic contents and result in genetic mutations. 

Additionally, defective mitochondria functioning such as excessive mitochondrial fission 

leads to the limitation of pluripotency and ultimately reduces the efficiency of 

reprogramming. These problems including genomic instability and impaired mitochondrial 

dynamics should be resolved to apply cell reprograming in clinical research and to address 

efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been 

known to control the chromatin state of the telomere and influence mitochondria function in 

cells. Recently, several studies reported that Sirtuins could control for genomic instability in 

cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell 

reprogramming. And we propose that the manipulation of Sirtuins may improve defects that 

result from the steps of cell reprogramming. 
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Introduction  

Cell reprogramming techniques have emerged with novel techniques to treat a variety 

of human diseases in the regenerative medicine field (1). In the reprogramming process, 

‘immortality’ is regarded as a key to develop rejuvenation strategies (2). Takahashi et al.  

stated that cell reprogramming using four transcription factors such as Oct4, Sox2, Klf4, and 

c-Myc could convert terminally differentiated cells into induced pluripotent stem cells (iPSCs) 

(1). The pluripotency of iPSCs has opened up numerous possibilities for regenerative 

medicine to treat many diseases (3). Despite the powerful ability of iPSCs to treat numerous 

diseases, major concerns in recent iPSCs research include enhancing reprogramming 

efficiency and genomic stability. Genomic instability in iPSCs is generated in several steps of 

the cell reprogramming process (4). Cellular reprogramming goes through an intricate 

process that is similar to biological pathways of tumorigenesis (5). The essential factors for 

cell reprogramming are associated with tumorigenesis. For example, c-Myc and Klf4 play 

central roles in tumorigenesis, and Oct4 acts as an important initiator for germ cell tumors (5). 

In addition, to inducing changes in the original cell identity, cell reprogramming needs 

reactivation of the telomerase to continue to survive (6). Maintenance of telomere as an 

enzyme for telomere elongation is important for genomic stability during reprogramming (7). 

Telomerase is reactivated during reprogramming and the length and epigenetic state of the 

telomere contributes to rejuvenation in iPSCs. Shortening of the telomeres influences the 

reprogramming efficiency and the quality of the iPSCs (8). The strategy to solve the genome 

instability in cell reprogramming research for application in disease modeling and clinical 

cell therapy (9). During cell reprogramming, cells experience a metabolic shift into the 

glycolytic state (10). Oxidative stress and DNA damage from the cell reprogramming process 

results in a metabolic imbalance (11). Because of these metabolic shifts, mitochondrial 

activity is hampered and cannot react when energy is demanded due to cellular respiration. 

The reduction of mitochondrial activity during cell reprogramming is a matter that should be 

resolved for increasing iPSCs efficiency. Sirtuins known as histone deacetylases are relevant 

to the control of longevity, energy metabolism, and cell development in mammals (12). It was 

reported that sirtuins can affect the fate of stem cells through deacetylation of histone and 

non-histone proteins involved in gene expression (13). Recent studies demonstrated that the 

deficiency of Sirtuins influences reprogramming efficiency (14) and contributes to genomic 

instability, which as we noted, is an important issue in the cell reprogramming process (15). FO
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Here, we review evidence on the significant role of Sirtuins in the cell reprogramming 

process.    

 

Genomic instability in cell reprogramming 

Genomic instability occurs during the cell reprogramming process (16). A number 

of studies report that after reprogramming iPSCs exhibit the genomic abnormalities such as 

chromosomal aberrations (17). Because of the transcription factors used in cell 

reprogramming cells have an increased risk of both tumor formation and genetic mutation 

(18). Telomerase is significantly upregulated during cell programming (8). Pluripotent cells 

show high activity of telomerase responsible for synthesizing telomeres in the 

reprogramming process (19). The iPSCs generation process showed that telomerase reverse 

transcriptase was upregulated in cells during cellular reprogramming (1). Telomerase activity 

and telomere length affect the state of pluripotency (20). In cell reprogramming, reactivation 

of telomerase has been shown to promote efficiency of iPSC reprogramming by maintaining 

telomere length and self-renewal potential for a relatively long time (21). Upon 

reprogramming, telomere lengthening is affected by a decrease of DNA methylation (22) and 

a reduction of methylation in histone H3 at lysine 9 (H3K9) m3 and histone H4 at lysine 20 

(H4K20) m3 (8). Some studies investigated the differences in the telomere dynamics during 

reprogramming (21). Telomere shortening is a crucial issue in reprogramming process in that 

it hampers sufficient iPSCs generation. During the cell reprogramming process the 

proliferation rate increases causing replication stress and genomic structural variation (23). 

Additionally, recent studies show that pluripotent stem cells have an abnormal cell-cycle 

regulation such as a shorter G1 phase. The ataxia telangiectasia mutated Rad3 (ATR)-

mediated checkpoint pathway is an essential replication stress response that generates 

genomic instability during reprogramming (24). Other studies report that Checkpoint kinase 1 

(CHK1) overexpression could enhance both the reprogramming efficiency and the iPSCs 

quality (25). Abnormal cell cycle regulation is a distinct feature and the control over it is 

considered important to current reprogramming research. Accordingly, to realize the 

application of iPSCs in clinical research, we need a comprehensive understanding of genetic 

instability and should find an appropriate solution for it in cell reprogramming. 

 

Mitochondrial dynamics in cell reprogramming 

Mitochondria is a multifunctional organelle and plays a crucial role in many cellular FO
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mechanisms such as energy production, apoptosis, reactive oxygen species (ROS) production, 

senescence, and metabolism (26). Mitochondrial homeostasis has been shown to be essential 

for maintenance of a pluripotent state. Ji et al. report that a decrease of ROS production in the 

mitochondria could improve iPSCs quality (27). Also excessive mitochondrial fission and 

knockdown of the mitochondrial DNA polymerase could trigger a lack of pluripotency (28). 

Tricyclic antidepressant (TCA)-derived cytosolic acetyl-CoA is essential for maintaining 

histone acetylation and an open chromatin state during cell reprogramming (29). 

Reprogramming somatic cells into iPSCs triggers impairment of the mitochondrial network 

during the reprograming process (30). Besides, during cell reprogramming, cells show 

particular characteristics including immature and globular mitochondria (31), and poorly 

developed cristae (32). Reduced expression 1 (REX1) known as a pluripotency marker 

regulates cell fate through its effect on mitochondrial dynamics (33). The knockdown of 

Dynamin-related GTPases-1 (DRP1) triggers the elongation of the mitochondrial network (34) 

and regulates membrane dynamics in a variety of cellular mechanisms and in mitochondrial 

fusion (35). One study demonstrated that the DRP1-GTPase inhibitor impedes cell 

reprogramming of human fibroblasts to iPSCs. The mechanistic target of rapamycin (mTOR) 

promotes cellular homeostasis and multiple signaling events that affect reprogramming (1). 

Inhibition of mTOR leads to an immediate decrease in mitochondrial respiration (36) and 

subsequently influences the generation of iPSCs (37). Taken together, cell reprogramming 

influences abnormal mitochondria function and homeostasis, and mitochondrial dynamics 

should be a focus for future cell reprogramming research. 

 

Sirtuins in genomic instability derived from cell reprogramming 

Sirtuins as an NAD+-dependent histone deacetylase have been involved in the 

improvement of longevity and metabolism in mammals (38). Given that histone acetylation is 

associated with gene activation (39), Sirtuins act as an epigenetic regulator of gene 

expression by histone deacetylation (40). Sirtuins have been shown to be essential for the 

silent chromatin state of the ribosomal RNA genes and telomeres. In mammals, Sirt6 has 

been reported to maintain telomeric chromatin and to enhance replicative capacity (41). 

According to cell reprogramming research the activation of Sirtuins considerably enhances 

the efficiency of cell reprogramming (42). Several studies demonstrate that the inhibition of 

histone deacetylases leads to increases of histone acetylation levels, chromatin opening, and 

ultimately could enhance efficiency of cell reprogramming (43). Sirtuins could possibly FO
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control the chromatin state by modulating the activation of enzymes such as H4K16Ac (44) 

and H3K4me3 that can upregulate cell reprogramming. Sirt1 is intimately linked to the 

maintenance of human embryonic stem cells pluripotency by inactivating p53 (45). Besides 

stem cells derived from Sirt6, knockout mice cells exhibit expression of Oct4, Sox2 and 

Nanog and present Sirt6’s function in balance between pluripotency and differentiation (46). 

Sirt1 could lead to the deacetylatization of Sox2 (14) and Sirt1’s overexpression induces the 

demethylation of the Oct4 promoter (47) and also affects reprogramming efficiency. Myc 

stability, important in cell reprogramming, could also be regulated by Sirt2 (48). Sirt1 

deacetylates c-Myc by interacting physically with the C-terminus of c-Myc (49). Sirt1 

induces p53 translocation into the mitochondria (50) and modulates Nanog expression (51) 

and is an important reprogramming factor. Judging by the metabolic state of the cell, Sirt1 

can affect the epigenome change and the activity of chromatin-modifying enzymes (52). Sirt1 

histone deacetylase regulates the epigenetical change and gene expressions in cells by 

translating a metabolic shift in the reprogramming process (53). A recent study showed that 

Sirt6 inhibits the transcription of Hypoxia-inducible factors (HIF1)-alpha and Myc (54). Sirt6 

is essential for the maintenance of the telomere position in cells (55) and the deficiency of it 

leads to DNA damage and genomic instability (15). In addition, Sirt6 protects cells against 

stress by repairing DNA damage and preserving telomere integrity and controlling metabolic 

homeostasis (56). Sirt6 can deacetylate lysine 9 on histone H3 (H3K9Ac) (41) and lysine 56 

on histone H3 (H3K56Ac) (57). And Sirt6 can recruit the chromatin remodeler Sucrose 

Nonfermenting Protein 2 Homolog (SNF2H) (58). As we have seen, Sirtuins influence cell 

reprogramming efficiency by regulating the activities of histone deacetylases, by controlling 

the chromatin state of telomere, and by being involved in metabolic shifts during cell 

reprogramming (Figure 1). 

 

Activators and inhibitors of Sirtuins. 

Several compounds are known to be activators of Sirtuin. Resveratrol (3,5,4’-

trihydroxy-trans-stilbene), SRT1720, Oxazolo [4,5-b] pyridines derivative, imidazole [1,2-b] 

thiazole derivative, and 1,4-dihydropyridine (DHP) derivatives are typical compounds that 

are known activators of Sirtuins (59). The exact mechanisms of Sirt1 activation by these 

activators is still unclear, but many of them seem to activate Sirt1 through allosteric 

activation, particularly, the resveratrol mediate activation of Protein Kinase AMP-Activated 

Catalytic Subunit Alpha 2 (AMPK), which is an initial sensor that increases NAD+ levels FO
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leading to activation of Sirt1 (60).  

The metabolic effects of Resveratrol, the most common Sirtuin activator, relate to the cAMP 

level elevation in muscles (61). Also the general health in mice fed with a high caloric diet 

improved and they showed a marked reduction in sings of aging (62). These results open the 

possibility of clinical use of commercial micronized Respiratory Syncytial Virus (RSV) 

formulation, SRT501, for lowering blood glucose and improving insulin sensitivity in 

patients with type 2 diabetes (63). Moreover, SRT1720 has been shown to induce cell death 

in multiple myeloma cells (64) and significantly decrease tumor growth in a preclinical 

evaluation for cancer treatment (65). Also, as a new activators of Sirt1 unrelated to 

Resveratrol, a series of oxazolo pyridines was identified for potential therapeutic targets to 

treat different diseases (66). For example, compound 29 showed antidiabetic activity in types 

2 diabetes (67) and SRT2104 was tested in a clinical trial of patients with metabolic 

inflammatory (68) and cardiovascular diseases (69).  

 In contrast, Splitomicin, HR73, Sirtinol, AGK2, Cambinol, Salermide, Tenovin, and 

Suramin are inhibitors of Sirtuin (70). The reaction mechanism of Sirtuins is the cleavage of 

nicotinamide (NIC) from NAD+ whereas ADP-ribose binds its acetyl-peptide with the 

formation of an o-alkylamidate intermediate. Sirtuin inhibitors hamper cleavage of NIC from 

NAD+. Suramin is an especially potent inhibitor of Sirt1, Sirt2 and Sirt5 (71). It inhibits 

NAD+-dependent deacetylase activity with an IC50 value of 22uM leading to mitochondrial 

dynamics disruptions (72). Several studies revealed that pharmacological inhibition of 

Sirtuin1 by Sirtinol inhibits prostate cancer cell proliferation in which Sirtuin1 is highly 

enriched (73). Moreover, Salermide, a sirtinol derivative, induces cell death via inhibiting 

MAP kinases erk1/2, p38 and JNK paring Sirtuin1 and Sirtuin2 in various human cancer cell 

lines derived from leukemia, lymphoma, colon, and breast primary malignancies (74). 6-

Chloro-2,3,4,9-tetrahydro-1 H-Carbazole-1-carboxamide (EX527) is also known as a Sirtuin1 

inhibitor and EX-527/SEN0014196 reduced neuronal death caused by mutant Huntington 

proteins in cell-based assays in preclinical studies of Huntington’s disease (75). More 

importantly, activation and inhibition of Sirtuin by small molecules is a complicated process 

and the effects of activation and inhibition of Sirtuin occasionally depend on the 

physiological state of the specific cells for its activity. For instance, increased activity of 

SIRT1 after treatment with resveratrol in the immediate immune response reduced the NFkB 

activation in the NFkB-dependent inflammatory genes in microglia and neuronal loss (76). 

This suggests that Sirt1 is working as anti-inflammatory mediator, whereas decreasing Sirt1 FO
R 

RE
VI

EW



activity by sirtinol potentiates inflammatory responses, presumably occur via Sirt1-mediated 

deacetylation of p65 (77). Moreover, unlike Sirt1 effects on the inflammation, Sirt6 activity is 

positive for a given pro-inflammatory gene expression upregulating Tumor necrosis factor 

alpha (TNFa) and Interferon Production Regulator (IFNr) synthesis on both innate and 

adaptive immune cells (78). Such complexity of sirtuin activity in the various physiological 

states of cells lead to the difficulties of Sirtuin activators or inhibitors in determining the 

desired outcome of cell reprogramming efforts.  

 

Sirtuins in mitochondria dynamics during cell reprogramming 

Mitochondrial dynamics are controlled by many cellular proteins such as fission 

proteins DRP1 (79), fusion proteins Mitofusins 1 and 2 (Mfn1/2) (80), and optic atrophy 1 

(OPA1) proteins (81). The mitochondrial network was reported to have changed during the 

cell-cycle progression and mitosis processes (82). Mitochondrial distribution during mitosis 

acts in a critical role during asymmetric cell division in stem cells. Mitochondrial fusion, 

fission, and biogenesis are linked with mitochondrial dynamics as well (83). One study 

showed that mitochondrial fission and fusion contributes to the maintenance of pluripotency 

(84). Loss of mitochondrial fusion proteins such as Mfn1/2 (85) leads to a metabolic 

transition by activating HIF-1alpha signaling in iPSC reprogramming (86). Sirt1 can exert 

nuclear localization signals and nuclear export signals and can come and go between the 

cytoplasm and the nucleus (87). Sirt3 regulates the activity of both mitochondrial enzymes 

(88) and mitochondrial biogenesis through activation of the Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1-alpha) (89). OPA1 is a GTPase anchored to the 

mitochondria’s inner membrane and is linked to the maintenance of mitochondria crista 

structure and protection of cells against stimuli (90). Sirt3 has been known to bind directly to 

OPA1 and subsequently modulates mitochondrial dynamics (91). Sirt1 can enhance 

mitochondrial function by involving PI3K/Beclin 1 and mTOR signaling (92). Additionally, 

Sirt1 can destruct damaged mitochondria through a mitophagy process (93). Mitophagy is 

dependent on the activities of specific factors such as PTEN-induced putative kinase 1 

(PINK1) and E3 ubiquitin ligase Parkin (94). According to genetic research, Sirtuins affect 

mitophagy by inhibiting mitochondrial defects in PINK1-null mutants (95). In addition, Sirt1 

suppresses the activity of the HIF1-alpha (96) that inhibits mitochondrial function. Sirt3 is 

known as a powerful regulator of the ROS detoxification via deacetylation of Mangano-

Superoxide Dismutase (MnSOD) in mitochondria (97). Sirt3 eliminates excessive ROS FO
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production through activation of a Forkhead box O3 FOXO3-alpha (98) and then regulates 

mitochondrial dynamics (99). Proceeding from what has been said above, Sirtuins may affect 

cell reprogramming efficiency through the regulation of mitochondrial dynamics including 

the regulation of fission proteins, the regulation of mitophagy, the modulation of mTOR 

signaling, and the control of ROS production (Figure 2). 

 

Perspectives and conclusions 

In conclusion, cell reprogramming has limitations including genomic instability and 

impaired mitochondrial dynamics. Until now, the appropriate solution to overcome these 

limitations was not fully investigated. Sirtuins contribute to genomic stability and 

mitochondrial dynamics through several signaling reactions and the activation of enzymes. 

After examining the roles of Sirtuins, we propose further research should look at the multiple 

other functions of Sirtuins in cell reprogramming. We suggest investigating more advanced 

manipulation of Sirtuins in cell reprogramming and ultimately expect to promote more 

efficient and safe cell reprogramming processes and technology. 
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Abbreviation list 

Sirt: Sirtuin 

iPSCs: induced pluripotent stem cells 

ATR: Ataxia telangiectasia mutated Rad3 

CHK1: Checkpoint kinase 1 

ROS: reactive oxygen species 

TCA: Tricyclic antidepressants 

REX1: Reduced expression 1 

DRP1: Dynamin-related GTPases-1 

mTOR: The mechanistic target of rapamycin 

HIF1: Hypoxia-inducible factors 

SNF2H: Sucrose Nonfermenting Protein 2 Homolog 

DHP: 1,4-dihydropyridine 

AMPK: Protein Kinase AMP-Activated Catalytic Subunit Alpha 2 

RSV: Respiratory Syncytial Virus 

EX527: H-Carbazole-1-carboxamide 

TNFa: Tumor necrosis factor alpha 

IFNr: Interferon Production Regulator 

Mfn1/2: Mitofusins 1 and 2 

OPA1: Optic atrophy 1 

PGC1-alpha: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

PINK: PTEN-induced putative kinase 1 

MnSOD: Mangano-Superoxide Dismutase 
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Figure legends 

Figure 1. The function of sirtuins on genome stability  

Sirt 1, 2, and 6 control the chromatin state by regulating the activation of enzymes during 

chromatic remodeling. Sirt1 removes acetylates in Sox2 and Myc removes methylates in 

Oct4. Also, Sirt2 modulates the stability of the Myc protein. SIRT6 can deacetylate H3K9Ac 

and H3K56Ac and is involved in the transcription of c- Myc. AC: Acetylation, ME: 

Methylation, SIRT: Surtuin.  

 

Figure 2. The relationship between sirtuins and mitochondrial dynamics caused by cell 

reprogramming 

Cell reprogramming leads to mitochondrial dynamics such as changes in fission and fusion. 

The mitochondrial dynamics are linked with the maintenance of the pluripotent state. Sirtuins 

regulates mitochondria fission by binding with fission proteins such as OPA1 proteins.  

Also, sirtuins promote mTOR signaling, the activity of PGC1-alpha, and ultimately eliminate 

ROS production during cell reprogramming. mTOR: The mechanistic target of rapamycin, 

OPA1: Optic atrophy 1, PGC1-alpha: Peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha, ROS: reactive oxygen species. 
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