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ABSTRACT 

Protein glycosylation is a common post-translational modification found in all living 

organisms.  This modification in bacterial pathogens plays a pivotal role in their infectious 

processes including pathogenicity, immune evasion, and host-pathogen interactions.  

Importantly, many key proteins of host immune systems are also glycosylated and bacterial 

pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis 

through the induction of abnormal host protein activity and abundance.  In recent years, 

interest in studying the regulation of host protein glycosylation caused by bacterial pathogens 

is increasing to fully understand bacterial pathogenesis.  In this review, we focus on how 

bacterial pathogens regulate remodeling of host glycoproteins during infections to promote 

the pathogenesis. 
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INTRODUCTION 

Protein glycosylation, a well-known post-translational modification found in all 

living organisms, affects a wide range of protein properties including folding, stability, 

enzyme activity, interactions, signal transduction, tissue targeting, and resistance to 

proteolysis (1-3).  Protein glycosylation plays an essential role in diverse functions of the 

immune system.  Therefore, glycans are reasonable targets for bacterial pathogenesis.  

Glycans in the immune system have various roles such as protecting proteins from proteases, 

regulating protein interactions, and contributing to protein activity and stability (4, 5).  In 

eukaryote organisms, protein glycosylation has two major forms: N-linked and O-linked 

glycosylation.  Both glycosylation systems have been also identified in pathogenic bacteria 

(6, 7).  Glycosylated molecules such as glycoproteins, capsular polysaccharides, and 

lipooligosaccharides or lipopolysaccharides on pathogenic bacteria are presented to the host.  

They are involved in the colonization, pathogenicity, and virulence (8).  Glycans on the host 

cell surface are used by many bacterial pathogens for adhesion, nutrients, and targets of 

toxins (1, 8, 9, 10).  Recently, studies on the mechanisms by which pathogenic bacteria can 

regulate host glycosylation are increasing to understand the pathogenic mechanism in host 

immune system.  Bacterial glycosyltransferases and glycosidases can modify host protein 

glycosylation for the pathogenic process.  Furthermore, pathogenic bacterial infection can 

modify host glycans by activating host glycosyltransferases and glycosidases.  In this short 

review, we will discuss how bacterial infections remodel host protein glycosylation that has a 

pivotal role in bacterial pathogenesis and host immune system. 
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Bacterial pathogens can modify host protein glycosylation using various bacterial 

glycosyltransferases and glycosidases (Table 1).  The modification of host glycans gives 

bacterial pathogens host adaptation functions including nutrients acquisition and cell 

attachment (8).  Neuraminidases (sialidases) are well-known modifying enzymes that can 

cleave sialic acid from glycans.  Many types of bacteria produce neuraminidase with various 

specificities (11).  Streptococcus pneumoniae, a common cause of sepsis, can produce 

neuraminidase to induce rapid desialylation and clearance of platelets during systemic S. 

pneumoniae infection (12).  Host danger-associated molecular patterns (DAMPs) can 

diminish pro-inflammatory TLR signaling by forming a complex with sialylated CD24 and 

SiglecG/10.  However, sialidases from S. pneumoniae can disrupt the CD24-SiglecG/10 

inhibitory complex and lead to elevated cytokine production through cleaving sialic acids on 

CD24 during S. pneumoniae sepsis (13, 14).  A cell surface neuraminidase of Treponema 

denticola, an oral spirochete, can remove sialic acids on human serum glycoprotein for 

bacterial growth (15). 

Besides bacterial neuraminidases that are well characterized, other bacterial 

glycosidases can also modify host glycoproteins.  Endoglycosidase S (EndoS) from 

Streptococcus pyogenes, a cause of necrotizing fasciitis and streptococcal toxic shock, can 

hydrolyze glycans from host IgG to evade host adaptive immunity (16, 17).  EndoE from 

Enterococcus faecalis, a cause of nosocomial infection, can cleave glycans of host IgG, 

RNase B, and lactoferrin for modulating host immune responses and bacterial growth (18, 

19).  Capnocytophaga canimorsus is detected in the saliva of healthy dogs and cats.  

However, it can cause illness in humans.  Endo-β-N-acetylglucosaminidase (GpdG) of the 

N-glycan glycoprotein deglycosylation complex from C. canimorsus can deglycosylate 

human IgG to use released sugars as nutrients for bacterial growth (20).   FO
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Enteropathogenic E. coli use type III secretion systems for translocating effector 

proteins into host cells.  One such effector is arginine glycosyltransferase NleB that 

catalyzes arginine GlcNAcylation of Fas-associated via death domain (FADD) proteins to 

block host defense (21-23).  Entomopathogenic Photorhabdus asymbiotica is an emerging 

human pathogen.  P. asymbiotica protein toxin (PaTox) with a glycosyltransferase domain 

can induce tyrosine-O-glycosylation of host Rho GTPases by using UDP-GlcNAc, resulting 

in actin disassembly, inhibition of phagocytosis, and toxicity toward host cells (24).  

Legionella pneumophila infection causes Legionnaires’ disease pneumonia.  Legionella 

glucosyltransferase proteins are Legionella virulence factors with UDP-glucosyltransferase 

activity.  They can inhibit host protein synthesis through eEF1A (eukaryotic elongation 

factor 1A) glucosylation, resulting in host cell death (25, 26).  Clostridium difficile is 

associated with hospital-acquired infectious diarrhea and pseudomembranous colitis.  It 

produces toxin A (TcdA) and toxin B (TcdB) as predominant virulence factors (27).  TcdA 

and TcdB are internalized into host cells.  The glycosyltransferase domain of these toxins is 

then released into the cytosol, where Rho GTPases including Rho (RhoA/B/C), Rac (Rac1–3), 

and Cdc42 are mono-O-glucosylated and inactivated, resulting in impaired epithelial barrier 

functions, inflammation, and host cell death (28). 

 

Remodeling of host glycoproteins by the activation of host glycosyltransferases and 

glycosidases during bacterial infections 

Bacterial pathogens can modify host protein glycosylation by modulating the 

expression of numerous host glycosyltransferases and glycosidases (Table 2).  Helicobacter 

pylori, a cause of gastrointestinal diseases such as chronic gastritis and gastric cancer, is 

related to IgA nephropathy.  Cytotoxin associated gene A protein (CagA), a major virulence FO
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factor of Helicobacter pylori, can promote abnormal glycosylation of host IgA by 

downregulating host 1,3-galactosyltransferase.  Abnormal glycosylation of IgA is involved 

in the pathogenesis of IgA nephropathy (29, 30).  Recurrent nonlethal gastric infections of 

Salmonella enterica Typhimurium, a leading cause of human food poisoning, can induce 

chronic intestinal inflammation in a mouse model.  The disease mechanism involves the 

deficiency of intestinal alkaline phosphatase (IAP), which can dephosphorylate and detoxify 

the lipopolysaccharide (LPS) endotoxin produced by commensal Gam-negative microbiota in 

the host (31, 32).  Recurrent S. enterica Typhimurium reinfection can induce host 

endogenous neuraminidase activity, which accelerates the desialylation and clearance of IAP.  

The administration of zanamivir, an antiviral neuraminidase inhibitor, has therapeutic effect 

through maintaining IAP abundance and function (32).  In mouse experimental sepsis 

elicited by Gram-negative Salmonella and E. coli, a host protective mechanism through LPS 

detoxification by circulating alkaline phosphatase (AP) isozymes is debilitated through host 

neuraminidase induction (33).  Increased neuraminidase activity can accelerate the 

clearance of AP isozymes mediated by the hepatic lectin Ashwell-Morell receptor.  The 

inhibition of neuraminidase activity can diminish inflammation and promote host survival 

(33).  The bacterial pathogen Francisella tularensis is an agent of zoonotic disease 

tularemia.  It can modulate numerous host glycosyltransferases and glycosidases such as β-

N-acetylglucosaminyltransferase B3GNT2, B3GNT3, β-galactosyltransferase B4GALT1, 

B4GALT3, B4GALT5, N-acetylgalactosamine-β-galactosyltransferase C1GALT1, N-

acetylgalactosaminyltransferase GALNT2, GALNT11, -2,3-Sialyltransferase ST3GAL1, 

Hexosaminidase A, ER Degradation Enhancing Alpha-Mannosidase Like Protein EDEM1, 

EDEM2, EDEM3, and glucosidase II  subunit GANAB.  It can also modify various N-

glycosyproteins and O-glycosylproteins, including the multifunctional ER chaperone binding FO
R 

RE
VI

EW



immunoglobulin protein (BiP) (34).  Pathogenic bacteria such as Salmonella typhimurium, 

Helicobacter bilis, and Citrobacter rodentium can induce intestinal epithelial 

fucosyltransferase 2 expression and 1,2-fucosylation.  The intestinal epithelial 1,2-

fucosylation is important for various immune reactions, including host defense and host-

commensal bacteria interplay (35-38). 

 

Concluding Remarks 

A large number of pathogenic bacterial glycosyltransferases and glycosidases have 

been discovered and characterized.  Functions of these enzymes on glycans of host key 

proteins in the immune system contribute to the pathogenesis of bacterial pathogens through 

increased adhesion, nutrient acquisition, targets of bacterial toxins, evading the immune 

response, and persisting bacterial survival in the host.  In addition, bacterial pathogens can 

modify glycans on many key proteins in host immune system through inducing various host 

glycosyltransferases and glycosidases, thus contributing to the pathogenesis.  Alteration in 

protein glycosylation can affect protein activity, abundance, stability, and interaction with 

other proteins regardless whether glycosyltransferases and glycosidases come from bacterial 

pathogens or hosts.  Thus, it is an essential step to analyze remodeling of host glycoprotein 

during bacterial infection to fully understand the pathogenesis.  Although it is difficult to 

understand bacterial modulation of host glycosylation while bacterial infections induce 

various host glycosyltransferases and glycosidases, recent advances in glycoengineering 

make it possible to thoroughly analyze remodeling of host glycans.  Taken together, this 

study about remodeling of host glycoproteins during bacterial infection provides potentially a 

new insight into bacterial pathogenesis and an opportunity to develop novel therapeutic and 

preventive strategies to fight infectious diseases. FO
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Table 1.  Bacterial glycosyltransferases and glycosidases discussed in this review 

Bacterial 
pathogen 

Bacterial glycosyltransferase or 
glycosidase 

Host substrate Reference 

Streptococcus 

pneumoniae 
Sialidase Platelets, CD24 [12, 13, 14] 

Treponema 
denticola 

Sialidase Serum glycoprotein [15] 

Streptococcus 

pyogenes 
Endoglycosidase S (EndoS) IgG [16, 17] 

Enterococcus 
faecalis 

Endoglycosidase E (EndoE) IgG, RNase B, lactoferrin [18, 19] 

Capnocytophaga 

canimorsus 

Endo-β-N-acetylglucosaminidase 

(GpdG) 
IgG [20] 

Enteropathogenic 
E. coli 

arginine glycosyltransferase NleB 
Fas-associated via death 
domain (FADD) proteins 

[21, 22, 23] 

Photorhabdus 

asymbiotica 
PaTox Rho GTPases [24] 

Legionella 
pneumophila 

Legionella glucosyltransferase eEF1A [25, 26] 

Clostridium 

difficile 
TcdA and TcdB glucosyltransferase 

Rho (RhoA/B/C), Rac 

(Rac1–3), and Cdc42 
[27, 28] 

 

 

Table 2.  Bacterial pathogen-induced activation of host glycosyltransferases and glycosidases 

discussed in this review 

Bacterial 
pathogen 

Host glycosyltransferase or 
glycosidase 

Host substrate Reference 

Helicobacter 

pylori 
1,3-galactosyltransferase IgA [29, 30] 

Salmonella 
enterica 

Typhimurium 

Sialidase 
Intestinal alkaline 

phosphatase 
[32] 

Salmonella, 

E. coli 
Sialidase 

Circulating alkaline 

phosphatase isozymes 
[33] 

Francisella 

tularensis 

B3GNT2, B3GNT3, B4GALT1, 

B4GALT3, B4GALT5, C1GALT1, 

GALNT2, GALNT11, ST3GAL1, 
Hexosaminidase A, EDEM1, EDEM2, 

EDEM3, GANAB 

Various N-glycosyproteins 

and O-glycosylproteins 
[34] 

Salmonella 

typhimurium, 
Helicobacter 

bilis, 

Citrobacter 
rodentium 

Fucosyltransferase 2 
Intestinal epithelial 

glycoproteins 

[35, 36, 

37, 38] 
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