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ABSTRACT 

Increasing evidence suggests that cancer stem cell (CSC) theory represents an important 

mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate 

cancers. In addition to their more established role in maintaining minimal residual disease after 

treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor 

recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent 

one of the most important treatment strategies. Emerging evidence has shown that CSCs have 

a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific 

metabolic activities directly participate in the process of CSC transformation or support the 

biological processes that enable tumor progression. Exploring the role of CSC metabolism and 

the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer 

research. The targeting of CSC metabolism may provide new effective therapies to reduce the 

risk of recurrence and metastasis. In this review, we summarize the most significant discoveries 

regarding the metabolism of CSCs and highlight recent approaches in targeting CSC 

metabolism. 

 

INTRODUCTION 

Otto Warburg, a German biochemist who won the Nobel Prize in the 1930s, first discovered 

that tumor cells use a different metabolic pathway than normal cells. Since then, the field of 

cancer metabolism has become a new area of interest, especially in the last decade. Through 

the technical development of new biochemical tools such as metabolomics, studies of cancer 

cell metabolism have extended our knowledge of the mechanisms and role of metabolic 

reprogramming in cancer for tumor growth, metastasis, and drug resistance (1). Genomic 

instability and the diverse microenvironment condition contribute to the heterogeneity of 

tumors, and the existence of small subpopulations of cancer cells with high capacity for self-

renewal and the ability to initiate tumorigenesis found in primary tumors, which are referred to 

as cancer stem cells (CSCs) (2, 3). CSCs are considered as the source from which cancer cells 

arise, and they are therapy resistant and responsible for metastatic dissemination, thereby CSC-

targeted therapy would be an important challenge in cancer research (3). It is well-known that 

the metabolic reprogramming of pluripotent stem cells is essential for stem cell function (4, 5). 

Similar to normal stem cells, recent studies suggest that CSCs undergo metabolic changes 

including mitochondrial respiration and glycolysis, and this transition is critical for the function FO
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of CSCs (6). Therefore, targeting of the CSC metabolism may provide new therapies to reduce 

the risk of recurrence and metastasis (Fig. 1). However, results regarding the metabolic 

phonotype of CSCs, which mainly utilize glycolytic or mitochondrial respiration, are 

contradictory, and the exact role of the precise metabolic reprogramming in cancer and 

underlying detailed mechanisms regulating this metabolic plasticity need to be elucidated. This 

review highlights the role of the metabolic reprogramming of CSCs and the differences in the 

metabolic pathway between CSCs and normal tissues. This review also explores the potential 

for the regulation of the metabolic pathway via new anti-cancer drugs. 

 

Tumor cell metabolism 

In non-transformed or quiescent somatic cells, mitochondria are the subcellular organelle that 

produce the principal source of energy through the tricarboxylic acid (TCA) cycle linked with 

oxidative phosphorylation (OXPHOS). Cells uptake carbon fuels such as glucose, fatty acids, 

and glutamine that enter into the TCA cycle to produce 36 ATPs with maximum efficiency in 

the mitochondria. Normal cells have a metabolic pathway designed to minimize the use of 

energy. However, highly proliferating cancer cells use glycolysis rather than OXPHOS for ATP 

generation, despite the presence of  sufficient oxygen concentrations in the tumor 

microenvironment (1, 7). Aerobic glycolysis in many cancers is caused by various factors, such 

as the hypoxic tumor microenvironment, activation of oncogenes and loss of tumor suppressors, 

and mitochondrial DNA mutation. While cancer cell metabolism does not efficiently produce 

ATP, it allows cancer cells to rapidly divide and grow. Consequently, cancer cells produce a 

substantial portion of their energy from aerobic glycolysis which is more rapid than OXPHOS, 

although the aerobic glycolysis is considerably less efficient in terms of the amounts of ATP 

produced per unit of glucose consumed. This inefficient metabolic process is useful for 

producing the nucleic acids, amino acids, and lipids necessary for rapid cell growth via 

glycolysis and OXPHOS intermediates (8, 9). To compensate for this inefficient metabolic 

process for energy production per unit of glucose consumed, cancer cells uptake glucose and 

glutamate at a rate of more than about 200 times that of normal cells. In addition to glucose 

and glutamate as the core metabolic sources, increasing body of evidence suggests that various 

nutrients and metabolic pathways support the altered energy metabolism of cancer cells. 

Various metabolic fuel sources have been identified in cancer cells. These include acetate, 

lactate, fatty acids, serine, glycine, and branched chain amino acids.  

The metabolic alteration of cancer cells also has a beneficial effect on cancer survival 
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and resisting cell death. The environmental conditions of cancer cells compared to those of 

normal cells is spatially and temporally heterogeneous and frequently sparse in levels of 

glucose, glutamine, and oxygen (10). The altered metabolic pathway of cancer cells enables 

cancer cells to survive in these metabolically stressful conditions found in the tumor 

microenvironment (such as low oxygen or nutrient levels) (11). It is known that the 

mitochondrial membrane permeabilization process, which is a mitochondrial apoptosis control 

mechanism, is inactivated in most cancer cells. These cytopathic mechanisms are known to be 

regulated by mitochondrial metabolism, especially hexokinase related with the glycolysis 

pathway; changes in cancer metabolism are therefore closely related to the anti-apoptotic 

property of cancer cells (12). In addition, changes in the metabolic pathway have been shown 

to be involved in gene expression by regulating the activity of epigenetic modification enzymes 

or by controlling the amount of substrate for epigenetic modification. Somatic mutations in 

IDH1 and IDH2 occur in up to 70% of glioma as well as in 20% of leukemia, and these IDH 

mutants acquire a neomorphic activity to convert -ketoglutarate to (D)-2-hydroxyglutarate. 

The subsequent accumulation of 2-hydroxyglutarate results in epigenetic dysregulation via 

inhibition of -ketoglutarate-dependent histones and DNA demethylases, and suppress 

expression of many tumor suppressor gene (13-15). Lactate, a final product of glycolysis, 

acidifies the surrounding environment of cancer cells, inhibits the activation of NK and CTL 

cells, and plays an important role in the growth of cancer (16). Therefore, the reprogramed 

metabolic pathway of cancer plays an important role not only in tumor growth, but also in 

metastasis and chemo resistance through energy supply, survival under unfavorable 

environmental conditions, immune avoidance, and epigenetic modification (Fig. 2).  

 

Cancer stem cell 

The heterogeneous nature of cell populations within a tumor has been recognized for several 

decades (3, 17). CSCs are defined as undifferentiated, slow-cycling cells that are able to form 

tumor tissue even from a single cell. In accordance with CSC model, heterogeneous and 

hierarchical cellular organization have been found in most tumors, with a group of 

undifferentiated cells at the apex of the hierarchy. CSCs typically exist as minority 

subpopulation within the entire tumor mass (0.001–0.1%) and are responsible for the 

generation of highly proliferative cancer cells forming the bulk of the tumor, even in the 

recurrence of cancer after therapy (17-19). After prospective identification of CSCs in leukemia 

for the first time in 1994 (20), CSCs have been continuously identified in various solid tumors FO
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including those of breast cancer (21, 22), brain tumors (23, 24), colorectal cancer (25), prostate 

cancer (26), lung cancer (27), and melanoma (28). This new concept for intraclonal and 

functional heterogeneity of cancer cells can fundamentally change the way we diagnose and 

treat cancer. Accumulating evidence suggests that CSCs are responsible for metastasis, 

chemoresistance, and tumor relapse, and the elimination of CSCs may thus represent one of 

the most important challenges in treatment of cancer (3, 29, 30). 

 CSCs possess various biological features of normal stem cells: the self-renewal ability; 

the expression of surface markers such as CD44, CD133, and aldehyde dehydrogenase; the 

activation of particular signaling pathways such as Wnt, Hedgehog, or Notch (17). Not only 

stem cells but also CSCs require a finely-tuned balance between self-renewal and 

differentiation. While the origin of CSCs is still unclear, CSCs are known to remain in the G0 

phase, a quiescent phase, and express a high drug efflux transport system. CSCs, especially 

since they are in a dormant state, are almost impossible to eliminate by general anti-cancer 

drugs, which usually target proliferating cancer cells, and targeted therapies for CSCs are 

therefore needed (33, 34). An important feature of embryonic stem cells is their special 

metabolic phenotype when compared with differentiated progenies (35). Similar to cancer, it is 

well-known that metabolic alterations regulate stem cell self-renewal, and stem cell function is 

also regulated by bioenergetic signaling, such as the AKT-mTOR pathway, glutamine 

metabolism, and fatty acid metabolism (31). Emerging evidence strongly suggests that CSCs 

also undergo metabolic alterations (including mitochondrial respiration, glycolytic activity, and 

altered lipid metabolism) that are critical for CSC function. Furthermore, low oxygen tension 

(hypoxia) contributes to the maintenance of an undifferentiated state and influences 

proliferation and cell-fate commitment in normal stem cells. It is also well-known that hypoxia 

is a critical factor for malignancy, chemoresistance, and poor survival rate of cancer patients 

(32). Thus, exploiting the metabolism changes required for CSC self-renewal, cell division, 

and quiescence may provide effective therapies and diminish the risk of recurrence and 

metastasis. 

 

Metabolic state of cancer stem cells  

It has been well verified that pluripotent stem cells mainly utilize glycolysis for energy 

production, whereas normal cells rely on OXPHOS (4). In induced pluripotent stem cells (iPS 

cells) as a model of stem cell reprogramming, glycolytic metabolic changes occur from 

OXPHOS prior to their acquisition of the pluripotent state, and this process is essential for stem FO
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cell reprogramming (36). These findings suggest that metabolic reprogramming and stemness 

are closely linked, and the glycolytic switch could play a critical role in CSCs rather than the 

consequence of acquiring pluripotency. Many studies have been supported the hypothesis that 

CSCs are more glycolytic than normal cancer cells. Similar to normal stem cells, glucose is an 

essential nutrient for CSCs, and its presence in the microenvironment significantly increases 

the number of stem-like cancer cells in the cancer cell population. Glucose induces the 

expression of specific genes in CSCs associated with the glucose metabolism pathway (c-Myc, 

Glut-1, HK-1, HK-2, and PDK-1), which contributes to the increase in the CSC population 

(37). Furthermore, glycolysis inhibition or deprivation of glucose leads to a decline in the CSC 

population. Small cell populations with stem-like properties from glioblastoma, ovarian cancer, 

breast cancer, lung cancer, and colon cancer cell lines rely more on glycolysis than on the bulk 

of differentiated progeny (38-41). As a typical glycolytic cell, glucose uptake, lactate 

production, glycolytic enzyme expression, and ATP content are significantly increased in CSCs 

compared to non-CSCs. The stemness marker CD44 is crucial for the regulation of glycolytic 

metabolism (42). Additionally, CSCs of glioblastoma that are highly dependent on glycolysis 

show increased migration in hypoxic conditions. Glycolysis was found to be the preferred 

metabolic state in radiotherapy-resistant stem cells in nasopharyngeal carcinoma and 

hepatocellular carcinoma. Therefore, glycolytic metabolic reprogramming is critical for the 

maintenance of CSCs and is associated with the progression of cancer. 

While the above reported studies show that CSCs mainly rely on glycolysis, several 

other studies showed that CSCs possess a preference for mitochondrial oxidative metabolism. 

Growing evidence has demonstrated that quiescent or slow-cycling tumor-initiating CSCs are 

less glycolytic, consume less glucose, and produce less lactate, whereas they contain higher 

ATP levels than their differentiated cancer progeny cells in many other tumor types including 

lung cancer, breast cancer, glioblastoma, and pancreatic cancer (43-46). Moreover, it has been 

reposted that CSCs have an increased mitochondrial mass and membrane potential with 

enhanced oxygen consumption rates. Additionally, invasive cancer cells show high 

mitochondrial metabolism through the expression of transcription factor PGC1, the master 

regulator of mitochondrial biogenesis (47, 48). PGC1 has also been found to be overexpressed 

in circulating tumor cells, and the inhibition of PGC1 reduces the stemness properties of 

breast CSCs (49). In addition, NANOG, a pluripotency gene, induces tumorigenesis through 

metabolic reprogramming to OXPHOS and fatty acid metabolism (50). The increased 

OXPHOS phenotype and expression of PGC1 seems to be related to the capacity for FO
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chemoresistance in CSCs (51-54). Surviving cells from chemotherapy rely on oxidative 

phosphorylation through increased mitochondrial activity. It has been reported that MYC and 

MCL1 cooperatively promote chemotherapy-resistant breast CSC via the regulation of 

mitochondrial OXPHOS (54). A recent study showed that the mitochondrial DNA transfer from 

host cells to tumor cells re-establishes the tumor-initiating and drug resistance capacity of the 

tumor calls (55). In contrast to normal stem cells and iPS cells, which mainly utilize glycolysis, 

CSCs show a distinct metabolic phenotype that can be glycolytic or OXPHOS-dependent. 

However, growing evidence strongly suggests that in either case, mitochondrial function is 

critical and plays a crucial role in CSC functions such as stemness, migration, and drug 

resistance (Fig. 3).  

 

Glutamine and lipid metabolism in CSCs 

It has become increasingly clear that the unique model of cancer metabolic reprogramming can 

neither be universally applied to the entire spectrum of cancer types, nor to the various intrinsic 

subtypes of cancer cells in tumors. Glycolysis and OXPHOS alone cannot accurately account 

for cancer stem cell metabolism because the metabolic pathway is intricately intertwined. In 

addition to glucose metabolism, CSCs also rely on glutamine, which provides the carbon and 

amino-nitrogen needed for biosynthesis of amino-acid, nucleotide, and lipids (56). Therefore, 

glutamine metabolism is intertwined with glucose metabolism and can complement each other. 

In some cancers, glutamine helps to compensate for glucose shortages (57, 58). Moreover, 

emerging evidence suggests that alterations in lipid- and cholesterol-associated pathways are 

also essential for the maintenance of CSCs (59). In cancer cells, various metabolic 

intermediates are generated that can be utilized in anabolic processes for membrane building 

blocks. It is known that the lipid metabolic pathway is flexible and closely linked to the glucose 

and amino acid metabolic pathways in order to meet the increasing bioenergetics requirements 

of CSCs. The altered lipid metabolism may also affect the cytosolic oncogenic signaling 

pathway. Lipid rafts, which are rich in sphingolipids and cholesterol, are unique small lipid 

domains within the cell membrane in cancer cells and contain a set of receptors and signaling 

proteins involved in cell survival, adhesion, metastasis, and tumor progression (60-62). Lipid 

metabolic alteration in cancer can have an effect on cytosolic signaling changes via regulating 

lipid raft dynamics and components in CSCs. High lipid droplets and stored-cholesteryl ester 

content have been observed in circulating tumor cells, colorectal CSCs, and breast CSCs (63, 

64). Actually, lipid droplets content and CD133 expression are directly correlated, and cancer FO
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cells with high lipid droplets have greater clonogenic potential and in vivo tumor-forming 

ability (63). Ovarian CSCs have high levels of unsaturated lipids, and blocking lipid 

desaturation impairs cancer stemness and tumor initiation capacity (65). It has been 

demonstrated that fatty acid oxidation pathways are critical for both hematopoietic stem cells, 

leukemia-initiating cells, and breast cancer stem cell functions (66, 67). The inhibition of fatty 

acid -oxidation preferentially eliminates CSC population. Furthermore, altered lipid 

metabolism has been shown to influence the aggressiveness and progression of cancer. Lipid 

droplet-rich colon cancer cells are more resistant to chemotherapy. It has also been found that 

fatty acid β-oxidation is critical for self-renewal and chemoresistance of breast CSCs (66). In 

addition, lipid metabolism is closely associated with tumor metastasis (68). 

 

Metabolic complexity of cancer stem cells 

CSCs may have highly glycolytic or OXPHOS phenotypes, depending on the cancer type. 

However, contradictory results regarding the metabolic phenotype in the same type of cancer 

have been reported. One possible reason for this type of contradictory result is the high 

flexibility of the metabolic phenotype of the CSCs between OXPHOS and glycolytic 

phenotypes depending on the environment and cellular signaling pathway. In support of this 

metabolically flexible scenario, it has been reported that CSCs are able to switch to a glycolytic 

metabolism when OXPHOS is blocked (69, 70). And most recently, it has been shown that 

MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic CSCs 

(45). It is well-known that the microenvironment around CSCs plays an important role in 

maintaining stemness. Different types of cancer in diverse tissues exist in considerably 

different microenvironments (different oxygen tension and glucose concentrations), so each 

CSC can show a different metabolic phonotype to adapt to the different environment condition. 

In glucose-rich environments, proliferating CSCs primarily utilize aerobic glycolysis for their 

energy production, while in glucose-deprived conditions, CSCs shift to a quiescent and slow 

cycling state while relying on mitochondrial oxidative metabolism for ATP generation. 

Moreover, it has been shown that CSCs can adapt to hypoxia by upregulating the glucose 

metabolic enzymes and switching to a more glycolytic phenotype (70). Another factor that 

causes CSCs to have various metabolic phenotypes is the different signaling contexts and 

oncogenic mutations within cancer cells. The glycolytic metabolism phenotype and stemness 

of normal stem cells and iPS cells is mediated by OCT4, KLF4, SOX2, and MYC; however, 

NOTCH, WNT/-catenin, PI3K/Akt, PTEN, NF-kB, KRAS, HIF, TP53, and many oncogenic FO
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pathways are involved in retaining the stemness of CSCs. This can affect the metabolic 

phenotype of CSCs. Moreover, a subpopulation of CSCs (heterogeneity) exists in tumors, and 

these can exhibit different metabolic patterns with different genetic alterations. In summary, 

CSCs are able to dynamically transition between different metabolic states, and the role of 

diverse genetic backgrounds and microenvironments in the metabolic state of CSCs and 

tumorigenic potential still needs to be elucidated. 

 

Targeting cellular metabolism 

The metabolic targeting of CSCs has become a very important emerging area to address 

effective cancer therapy for the elimination of CSCs, which are responsible for chemo-

resistance and tumor relapse. To inhibit glycolysis metabolism, glucose transporter and 

glycolytic enzymes such as GLUT1-4, Hexokinase1-2, Pyruvate kinase M2, and lactate 

dehydrogenase have been suggested as targets (71). Another potential target is an adaptive 

mechanism of CSCs within the tumor microenvironment. CSCs rapidly transit their 

metabolism under heterogeneous environmental conditions (such as hypoxia, glucose 

deprivation, and low pH); this adaptive metabolic response by CSCs plays a pivotal role in 

cancer metastasis or chemo-resistance. Hypoxic inducible factor HIF1-2 is a key enzyme for 

metabolic adaptation in hypoxia and is involved in angiogenesis, metastasis, and cell survival 

(72). Pyruvate dehydrogenase kinase 1 has been demonstrated to regulate the metabolic 

transition in hypoxia via regulating the amount of acetyl-coA, which is then oxidized in the 

mitochondria to produce energy in the TCA cycle (73). Furthermore, pyruvate dehydrogenase 

kinase 1 is enriched in breast CSCs and is critical for metastasis in hypoxia (74, 75). mTOR 

controls energy homeostasis and involves cell survival during cellular metabolic stress such as 

nutrient and energy depletion. The downregulation of mTOR signaling reduces CSC properties 

in pancreatic, breast, and colorectal cancer (76). CSCs dependent on OXPHOS can be targeted 

by impairing mitochondrial energy metabolism. It has been shown that Metformin and 

Phenformin inhibit the electron transport chain complex I and cause cell death by energy crisis 

in CSCs (45, 77). Inhibition of mitochondrial protein biosynthesis can block mitochondrial 

OXPHOS by the inhibition of mitochondrial ribosomes using Tetracyclines, which has toxicity 

against CSCs (78). Similarly, mitochondrial metabolism can also be targeted by the 

mitochondrial chaperone TRAP1 inhibitor, Gamitrinib, which induces the impairment of 

protein folding in mitochondria (79, 80). Growing evidence strongly suggests that targeting 

mitochondrial OXPHOS could be an effective strategy to target CSCs and to reduce cancer FO
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metastasis and chemo-resistance. However, it is necessary to identify specific targets to inhibit 

OXPHOS only in CSCs and for the metabolic transition of CSCs without affecting normal cells 

that generally use OXPHOS to produce energy. 

 

Conclusion 

In various cancers, CSCs have been shown to have a distinct metabolic phenotype and can 

change their metabolic pathway depending on their microenvironment condition and genetic 

background. This complexity leads to more intricate variability in the metabolic pathways of 

CSCs. However, despite the limited research on the mechanism of metabolic plasticity of CSCs, 

recent studies strongly suggest that metabolic reprogramming in CSCs is crucial for 

tumorigenesis, metastasis, drug resistance, and tumor relapse. The targeting of the CSC 

metabolism is suggested as a novel therapeutic approach to eradicate the progression of various 

cancers. Since traditional anti-cancer drugs are inefficient in eliminating cancer and preventing 

its recurrence, targeting the metabolism of CSCs could provide a direction for the development 

of new anti-cancer drugs. A combination treatment with CSC-targeting drugs and conventional 

anticancer drugs could be a more effective strategy to treat cancer. Finally, to develop drugs 

that target the metabolic pathway of CSCs, the exact role of precise metabolic plasticity in 

cancer and the underlying detailed mechanism of regulating this metabolic plasticity should be 

elucidated. In addition, because of their metabolic similarity, an accurate distinction between 

CSCs and normal stem cells should be addressed. Once a specific metabolic pathway of CSCs 

has been identified, new therapies can be developed to eliminate CSCs without damaging 

normal cells. 
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FIGURE LEGENDS 

 

Figure 1. Impact of CSCs on the effectiveness of anticancer therapy 

CSCs are a small sub population of bulk tumor cells that are highly chemo-resistant and play a 

prominent role in tumor relapse. While conventional therapy results in a transient reduction in 

the tumor by killing non-stem cancer cells (differentiated cancer cells), the remaining CSCs 

can form recurring tumors, and metastasis is induced by the formation of a secondary colony 

in distant organs. The use of CSC-specific inhibitors would reduce therapy resistance and 

relapse, and prevent metastasis, with a loss of stem cell properties. 

 

Figure 2. Functions of metabolic alteration in cancer 

Genetic mutations and growth signals in cancer cells and microenvironments within large 

tumors can dynamically alter metabolic pathways and modulate the regulation of metabolic 

pathways. This results in increased biosynthesis and abnormal bioenergy production, both of 

which promote cell proliferation, avoidance of immune-based destruction, metastasis, and 

survival. Furthermore, metabolic remodeling regulates tumor epigenetic alterations by 

regulating the activity of epigenetic modification enzymes because of the effect on gene 

expression in cancer. 

 

Figure 3. Metabolic features of CSCs 

In non-stem/highly proliferative cancer cells, glycolysis is a predominant metabolic phenotype 

contributing to tumor growth. CSCs rely on OXPHOS metabolism or combined metabolism 

with high glycolysis, depending on the oncogenic background and surrounding 

microenvironment conditions such as hypoxia or nutrient supplementation. CSCs also show 

metabolic plasticity between two metabolic phenotypes. However, in either case, mitochondrial 

function is critical for CSC functions such as stemness, migration, and drug resistance. 
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