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ABSTRACT 

Cellular senescence is a state of permanent cell-cycle arrest triggered by different internal 

and external stimuli. This phenomenon is considered to be both beneficial and detrimental 

depending on the cell types and biological contexts. During normal embryonic development 

and after tissue injury, cellular senescence is critical for tissue remodeling. In addition, this 

process is useful for arresting growth of tumor cells, particularly during early onset of 

tumorigenesis. However, accumulation of senescent cells decreases tissue regenerative 

capabilities and induces inflammation, which is responsible for cancer and organismal aging. 

Therefore cellular senescence has to be tightly regulated, and dysregulation might lead to the 

aging and human diseases. Among many regulators of cellular senescence, in this review, I 

will focus on microRNAs, small non-coding RNAs playing critical roles in diverse biological 

events including cellular senescence. 
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INTRODUCTION 

Over half a century ago, cellular senescence was first characterized as the finite replicative 

potential in cultured human fibroblasts by Leonard Hayflick (1, 2), which is known as 

replicative senescence. Since then, extensive studies have broadened the concept of cellular 

senescence, an irreversible cell-cycle arrest in response to a variety of internal and external 

stress signals (3-5). Along with the replicative senescence, senescence caused by diverse 

stressors is collectively known as premature senescence (5). However, depending on different 

stimuli the cells encounter, the premature and/or induced senescence can be classified into 

different types (6). Telomere shortening generated by repeated DNA replication is mainly 

responsible for replicative senescence (7, 8). DNA damage induced by ionizing radiation, 

ultraviolet (UV), and other oxidative agents resulting in a double-stranded DNA break are 

potent inducers of DNA damage-induced senescence (9, 10). Activation of oncogenes or 

inactivation of tumor suppressors is a major cause of oncogene-induced senescence (OIS) (7, 

10, 11). In addition, oxidative stress and reactive oxygen species (ROS) can triggers oxidative 

stress-induced senescence (12). Recently, it has been reported that mitochondrial dysfunction-

associated senescence with distinct secretory phenotypes is caused by dysfunctional 

mitochondria (13). However, in some cases, the classification of cellular senescence is 

ambiguous because of the complex causes of the events and overlapping effector pathways. 

Phenotypically, senescent cells exhibit enlarged and flattened shapes that are in part 

determined by activation of the mTOR pathway (14). The cellular senescence is also 

characterized by increased lysosomal components, where the activity of the lysosomal 

enzyme, such as senescence-associated β galactosidase (SA-β gal), is commonly used as a 

marker for senescence (15). Alteration in chromatic structures, such as senescence-associated 

heterochromatin foci (SAHF), which are specialized domains of heterochromatin, is often FO
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associated with senescent cells. At the molecular level, tumor-suppressor networks, namely, 

p53-p21 and p16INK4A-retinoblastoma (p16-pRB) pathways, are commonly activated in the 

senescence program (16). However, no single characteristic is a specific hallmark of cellular 

senescence, and not all senescent cells show the aforementioned features of senescence. 

Accumulation of evidence suggests that cellular senescence has both helpful and 

deleterious functions (10, 17). During normal embryogenesis, senescence participates in 

morphogenesis and tissue remodeling (10). In response to a fetal HLA-G signal, nearby 

natural killer (NK) cells enter senescent state which continuously secretes factors for 

maternal vascular remodeling (18). Developmentally programmed senescence responsible for 

morphogenesis is also found throughout embryonic development at multiple sites, such as  

mesonephros, endolymphatic sac (19), and the apical ectodermal ridge (20). In addition to 

developmental functions, senescent cells help restrict tumor progression (21) and fibrosis in 

the liver, heart, and kidneys (10) and promote wound healing (22, 23). However, 

accumulation of senescent cells has detrimental effects as well. They can trigger aging and 

age-related pathological processes, such as tumorigenesis (24) and metabolic diseases (10). 

For example, some senescence-associated secretory phenotype (SASP) factors promote 

invasion and metastasis of tumor cells by altering tissue structures (25), and others induce 

inflammatory phenotypes and cancer (26). In addition, it is reported that senescent cells 

contribute to increased vascularization of tumors (27). These findings all support that 

prolonged senescence can promote tumorigenesis. Senescence is also found in human 

mesenchymal stem cells (hMSCs), a major source of cell therapy, during extensive in vitro 

culture (28). Senescence in hMSCs leads to functional alterations, including differentiation 

defects (29-31), dysregulation of immunoregulatory activity (32), and decreased migratory 

capabilities (32, 33), which all reduce therapeutic potential. Therefore it is crucial to FO
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elaborately regulate cellular senescence to achieve normal development and physiology. 

MicroRNAs (miRNAs) are endogenous, small noncoding RNAs that downregulate the 

expression of their mRNA targets (34). A single miRNA can simultaneously suppress 

hundreds of different target mRNAs, thereby effectively regulating a myriad of cellular 

processes (35, 36). Because they can control numerous target genes within key pathways, 

miRNAs can be used as tools to explore the multiple pathways and core networks that govern 

the specific cellular states (37). In this review, I will first describe the current understanding 

of miRNAs that are differentially expressed during cellular senescence. I will then review the 

miRNAs that regulate key nodes of the signaling pathways that are critical for driving and 

maintaining cellular senescence. 

 

DIFFERENTIAL miRNA EXPRESSION DURING CELLULAR SENESCENCE 

Several studies reported the miRNA expression profiles during cellular senescence by 

various profiling technologies (Table 1). Maes et al. reported the expression profiles of 462 

miRNAs using a human miRNA microarray (MMchip) in replicative and premature 

senescent human fibroblasts along with quiescence cells (38). Depending on the growth-

arrest conditions, a subset of miRNAs is specific or common in two or three states (38). 

Among those, miR-10b, miR-34a, miR-373, miR-377, miR-624, miR-633, miR-638, and 

miR-663 are commonly upregulated in three growth-arrested cells (38). Using miRNome 

arrays, which are based on qPCR analysis, the Abdelmohsen group validated that there are a 

subset of miRNAs notably up- or down-regulated in senescent human fibroblasts (39). 

Among those, miR-519, a tumor-suppressor miRNAs, is highly expressed in senescent cells, 

and when overexpressed in either young fibroblasts or HeLa cells, it indeed triggered 

senescence (39). The Wang group performed miRNA microarray analysis with replicative, FO
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ionizing radiation (IR), or busulfan (BU)-induced senescent human fibroblasts (40). They 

showed that eight miRNAs are differentially expressed in both replicative and induced 

senescent cells: miR-152, miR-410, miR-431, and miR-493 are up-regulated, and miR-15a, 

miR-20a, miR-25, and miR-155 are down-regulated (40). Knockdown or overexpression of 

these miRNAs revealed their functions during senescence. Using deep sequencing analysis, 

Dhahbi et al. covered miRNAs differentially expressed in young and senescent human 

fibroblasts (41). They reported that 141 miRNAs were upregulated and 131 miRNAs were 

downregulated upon senescence. In addition to miRNAs already known to be associated with 

cellular senescence, there are novel miRNAs (e.g., miR-432 and miR-145) differentially 

expressed during senescence. The lists of miRNAs during senescence may disagree because 

of the different cell types or senescence models or technologies adopted. 

 

miRNAs IMPLICATED IN KEY SENESCENCE PATHWAYS 

In addition to the global profiling experiments, the role of individual miRNAs during 

senescence has been investigated by numerous functional studies. I will focus on two major 

senescence signaling pathways, namely, p53-p21 and/or p16-pRB to review the functions of 

senescence-associated miRNAs (Figure 1). 

 

miRNAs associated with the p53-p21 axis 

miRNAs directly regulate p53 

The p53 protein, a key regulator of the G1/S and G2/M checkpoints, activates 

transcription of numerous genes participating in the control of the cell cycle, such as p21. 

There are miRNAs that directly and/or indirectly regulate p53, which indicates elaborate 

controls of a crucial tumor suppressor. miR-504 (42), miR-125b (43), miR-25, and miR-30d FO
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(44) directly bind to and suppress p53. Different groups independently showed that ectopic 

expression of these miRNAs decreases p53 expression and several cellular functions, 

including p53-mediated cell-cycle arrest, suggesting their role in senescence suppression. 

 

miRNAs indirectly regulate p53 through p53 suppressors 

Several miRNAs negatively regulate the suppressors of p53, thereby inducing senescence. 

For instance, miR-192, miR-194, miR-215 (45), and miR-605 (46) indirectly upregulate p53 

through downregulation of the murine double-minute clone 2 (MDM2), an oncogene 

suppressing p53 expression. Notably, this subset of miRNAs is regulated by p53, thereby 

constituting a positive feedback loop (45, 46). Another regulatory loop between miRNAs, a 

target gene, and p53 can be found in an example of miR-34a, one of the most-studied 

miRNAs in this network. Specifically, miR-34a promotes cellular senescence by suppressing 

the silent-mating type information regulation 2 homologue 1 (SIRT1), a deacetylase that 

negatively regulates p53 and stress-response pathways (47-52). Along with miR-34a, miR-22 

(53, 54), miR-138 (55), miR-181a/b (55), miR-217 (56), and miR-449 (57) reduce SIRT1 

expression, thereby increasing p53 expression and senescence in various cancers and normal 

cells. 

 The Ashraf group reported that miR-195 is overexpressed in senescent stem cells and 

that silencing miR-195 in old MSCs increases the expression of telomerase reverse 

transcriptase (TERT) and SIRT1 and increases p53 levels (58). The mediator of DNA damage 

checkpoint 1 (MDC1), a crucial component of the DNA damage response (DDR) machinery 

(59) is another regulatory point by miRNAs during senescence. It is reported that miR-22 

directly suppresses MDC1 and hence promotes premature senescence (60). 
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miRNAs regulate p21 

Multiple miRNAs directly downregulate p21 and therefore suppress senescence. 

Borgdorff et al. performed miRNA screening experiments and reported that 28 miRNAs 

prevented RASG12V-induced senescence by inhibiting p21 expression in human mammary 

epithelial cells: miR-106b family members, miR-130b, miR-302a/b/c/d, miR-512-3p, and 

miR-515-3p (61). This is consistent with the earlier finding that downregulation of miR-106a 

contributed to the upregulation of p21 in senescent human fibroblasts and trabecular 

meshwork cells (62). In a colon-carcinoma cell line, miR-20a downmodulates p21 expression 

and abrogates TGF-β-induced G1/S arrest (63). miR-663, which is more abundantly 

expressed in senescent cells (38, 39), directly targets p21 and inhibits the G1/S transition in 

nasopharyngeal carcinoma cells (64). As mentioned earlier, miR-519 is highly abundant in 

senescent cells (39). At the molecular level, miR-519 promotes growth inhibition partially by 

increasing DNA damage response and decreasing cytosolic calcium status, which all in turn 

elevate the p21 expression (65). Taken together, some miRNAs exert their effect on 

senescence by targeting multiple p21-inducing pathways. 

 

miRNAs associated with the p16-pRB pathway 

miRNAs directly regulate p16 

The other core converged pathways during cellular senescence is p16-pRB (66, 67). The 

p16, the prototypical member of cyclin-dependent inhibitor, is encoded by the CDKN2A gene 

in humans (68, 69). Because of its crucial role in the cell cycle, regulation of p16 is complex 

and involves interactions with numerous factors. Lal et al. reported that decreased miR-24 

expression is associated with increased p16 levels with replicative senescence (70). Several 

groups demonstrated that miR-24 directly binds to and suppresses p16 translation in human FO
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cells, different tumor lines, and a disease model, such as osteoarthritis (70-72).  

 

miRNAs indirectly regulate p16 

Some miRNAs indirectly regulate p16 and hence affect cellular senescence. Interestingly, 

several miRNAs control polycomb repressive complexes (PRC1 and PRC2). Amongst other 

diverse cellular processes, these epigenetic regulators influence senescence in part by 

silencing the INK4/ARF locus, where p16 is located. For instance, the miR-9, miR-125, and 

miR-181 families modulate CBX7 (chromobox homologue 7), one of the components of 

PRC1, which in turn induces senescence in a p16-dependent manner (73). Other polycomb 

group (PcG) proteins, such as BMI1 (B cell-specific Moloney murine leukemia virus 

integration site 1, polycomb ring finger oncogene) and EZH2 (enhancer of zeste homologue 

2) are also targeted by miRNAs, thereby affecting the senescence state. BMI1 is repressed by 

miR-141, which in turn promotes senescence in human fibroblasts (74). The same protein is 

also regulated by miR-128a with increased intracellular ROS level and senescence in 

medulloblastoma cancer cells (75). miR-138 induces senescence through EZH2 repression in 

renal-cell carcinoma (76). This type of regulation between miRNAs with PcG and senescence 

are all dependent on p16 overexpression. More recently, a systematic approach combining 

miRNA screening and miRNA profiling revealed a more complex association of miRNAs, 

epigenetic regulators, and a p16 pathway (77). miR-26b, miR-181a, miR-210, and miR-424 

directly suppress diverse PcG proteins, such as CBX7, EED (embryonic ectoderm 

development), EZH2, and Suz12 (suppressor of zeste 12 homologue), following increased 

levels of p16 and senescence (77). 

Additionally, forced expression of miR-335 is associated with senescence phenotypes, 

including augmented p16 levels in hMSCs, with reduction of therapeutic potential (78). FO
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Interestingly, a loss-of-function screening assay identified miR-335 as a tumor suppressor 

involved in senescence by targeting p16, pRB, p21, and CARF (collaborate of ARF) (79). 

Not surprisingly, in some cases, a battery of miRNAs (e.g., miR-15b, miR-24, miR-25, and 

miR-141) all together represses MKK4 (mitogen-activated protein kinase (MAPK) kinase 4) 

and decreases p16 protein levels and senescence in human fibroblasts (80). 

 

miRNAs regulate pRB 

It has been reported that expression of two miRNA families, miR-29 and miR-30, is induced 

during senescence in a pRB-dependent mode (81). Martinez et al. demonstrated that these 

miRNAs exert their effect by directly targeting the B-Myb oncogene, which indicates their 

role in Rb-driven cellular senescence (81). Interestingly, downregulation of B-Myb is also 

associated with senescence through the ROS-mediated p53/p21 axis, both in vivo and in vitro 

(82), which suggests the integration of senescence regulation. 

 In prostate cancer cells, miR-449a directly represses the cyclin D1 (CCND1) gene, a 

regulator of Rb activity, which sequentially modulates growth and senescence in an Rb-

dependent mechanism (83). Similar regulation of miR-449a within the Rb regulatory network 

and senescence has been shown in human lung-cancer cells through targeting E2F3, a key 

regulator of G1/S transition (84, 85). In addition, the E2F3 is a downstream target of miR-203 

in human melanoma cells (86). Interestingly, miR-203 represses ZBP-89 as well but silencing 

of E2F3, not ZBP-89, contributes to the induction of senescence phenotypes. Consistent with 

this result, E2F3 overexpression rescued melanoma cells from senescence induced by miR-

203 (86). 

 

CONCLUSIONS AND PERSPECTIVES FO
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Senescence is a highly heterogeneous cellular process. It is becoming increasingly 

evident that regulation of a single factor by an individual regulator can hardly define how 

senescence is initiated and maintained. Therefore, it is crucial to understand specific and 

more general regulatory mechanisms at many levels. miRNAs are one of the suitable 

regulators in this process, because they can simultaneously alter levels of multiple genes and 

pathways. Analyzing global miRNA expression profiles of different senescence states or 

comparing other growth-arrest conditions, such as quiescence, would be a primary approach 

to understanding the molecular constitutions of cellular senescence. Alternatively, miRNA 

functions can be studied more globally by removing all miRNAs in the system, by deleting 

genes involved in miRNA biogenesis, namely, Dicer or DGCR8. Loss of miRNA biogenesis 

by ablating the Dicer gene in mouse fibroblasts induces p19Arf-p53 levels and senescence 

(87). Similarly, DGCR8 loss triggers cellular senescence in both murine and human 

fibroblasts in a p21-dependent manner (88). Finally, as described above, numerous studies 

performed on individual miRNAs also greatly expand our knowledge of senescence controls. 

In many cases, the feedback loop between miRNAs and key nodes of regulatory pathways are 

reported, which further indicate the complex regulation of this process. Additional studies are 

now needed to develop strategies to manipulate and deliver therapeutic miRNA to reinforce 

or prevent the senescent state, depending on the physiological outcome one might expect. 
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FIGURE LEGENDS 

Figure 1. miRNAs regulate key signaling pathways critical for cellular senescence.  
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Table 1. miRNAs differentially expressed in senescent cells. 

Profiling 

technology 

Differentially expressed miRNAs 

in senescent cells 
Reference 

miRNA 

microarray 

(MMchip) 

Up let-7c/f/g, miR-10b, miR-26a, miR-34a, miR-106b, 

miR-136, miR-137, miR-144, miR-195, miR-200b, 

miR-363, miR-373, miR-377, miR-432, miR-485-5p, 

miR-517, miR-609, miR-624, miR-633, miR-638, 

miR-663 

38 

Down miR-32, miR-147, miR-196b, miR-197, miR-218, 

miR-365, miR-425, miR-512-5p, miR-517a, miR-619 

miRNome 

array 

Up miR-34c-3p, miR-122, miR-124, miR-129-3p, miR-

146b-3p, miR-203, miR-216b, miR-219-1-3p, miR-

372, miR-431, miR-432, miR-451, miR-492, miR-499-

3p, miR-513a-5p, miR-513b, miR-519a, miR-519b-3p, 

miR-519c-3p, miR-548b-3p, miR-548k, miR-548p, 

miR-561, miR-584, miR-600, miR-641, miR-658, 

miR-663, miR-874, miR-890, miR-944, miR-1180, 

miR-1185, miR-1204, miR-1225-5p, miR-1244, miR-

1248, miR-1250, miR-1255b, miR-1259, miR-1270, 

miR-1271, miR-1273, miR-1279, miR-1282, miR-

1284, miR-1288, miR-1289, miR-1291, miR-1303, 

miR-1305, miR-1323, miR-1537 
39 

Down let-7a/b/c/d/e/f/g/i, miR-7, miR-10a/b, miR-15a, miR-

18a/b, miR-20a, miR-30b, miR-96, miR-100, miR-101, 

miR-103, miR-106a, miR-107, miR-125a-5p, miR-

125b, miR-127-3p, miR-140-3p, miR-140-5p, miR-

141, miR-155, miR-194, miR-221, miR-411, miR-

450a, miR-503, miR-506, miR-520e, miR-543, miR-

545, miR-548c-5p, miR-548d-5p, miR-548e, miR-569, 

miR-572, miR-576-3p, miR-625, miR-628-5p, miR-

649, miR-1181, miR-1182, miR-1200, miR-1201, miR-

1203, miR-1228, miR-1234, miR-1238, miR-1246, FO
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miR-1247, miR-1254, miR-1257, miR-1258, miR-

1260, miR-1265, miR-1274a, miR-1280, miR-1283, 

miR-1287 

miRNA array 

Up 

 

miR-22, miR-27, miR-29b, miR-30a/c, miR-34a, miR-

101b, miR-103, miR-106a, miR-123, miR-127, miR-

128a, miR-129, miR-134, miR-152, miR-190, miR-

219, miR-296, miR-323, miR-337, miR-340, miR-

376a, miR-376b, miR-379, miR-380-3p, miR-382, 

miR-410, miR-431, miR-432, miR-433 miR-486, miR-

493, miR-494, miR-496, miR-516-35p 
40 

Down 

 

miR-19b, miR-20a/b, miR-25, miR-29b, miR-30c-1, 

miR-32, miR-92-1a/b, miR-93a, miR-106a/b, miR-

123b, miR-135b, miR-143, miR-145, miR-155, miR-

195, miR-217b, miR-218a, miR-224, miR-321, miR-

424-2, miR-450-2b, miR-483 

Deep 

sequencing(a) 

Up miR-122, miR-126, miR-129-3p, miR-129-5p, miR-

184, miR-217, miR-323b-3p, miR-375, miR-432, miR-

449a, miR-449b/c, miR-491-5p, miR-496, miR-539, 

miR-584, miR-668, miR-765, miR-1197, miR-1246, 

miR-1274a/b, miR-1275, miR-1290, miR-3656, miR-

3911 

41 
Down miR-15a/b, miR-16, miR-17, miR-18a/b, miR-19a/b, 

miR-20a, miR-33b, miR-106a, miR-145, miR-146a, 

miR-146b-3p, miR-148a, miR-155, miR-195, miR-

196a, miR-199b-5p, miR-218, miR-296-3p, miR-296-

5p, miR-345, miR-490-5p, miR-497, miR-548u, miR-

549, miR-551b, miR-576-5p, miR-766, miR-887, miR-

1245, miR-1261, miR-1270, miR-1271, miR-3154, 

miR-3187, miR-3622a-5p, miR-3912 

 

a miRNAs which show more than five-fold changes in senescent cells are listed. A complete 

list of differentially expressed miRNAs is found in Ref 41. FO
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