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ABSTRACT 

The airway epithelium is the first place, where a defense mechanism is initiated against 

environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of 

the airway and the role of airway epithelium as mechanical barriers are essential in innate 

immunity. To maintain normal physiologic function, normal oxygenation is critical for the 

production of energy for optimal cellular functions. Several pathologic conditions are 

associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one 

of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory 

stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an 

essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis 

patients. In a series of previous reports, we have found hypoxia-induced mucus 

hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier 

function by the production of VEGF, and down-regulation of junctional proteins such as ZO-

1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into 

the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper 

airway epithelium. In this mini-review, we briefly introduce and summarize current progress 

in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related 

pathophysiology in airway epithelium will suggest new insights on airway inflammatory 

diseases, such as rhinosinusitis for clinical application and drug development. 
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INTRODUCTION 

The airway epithelium constitutes the first line of defense against environmental stimuli, in 

innate immunity by serving as mechanical barriers along with the mucociliary 

transport (MCT), which is the defense mechanism of the airway(1). Preserving this 

physiologic role requires sustaining energy production, which is supplied by appropriate 

oxygenation(2). Several pathologic conditions may lead to decrease in oxygen level in the 

airway epithelium. In chronic airway diseases such as sinusitis, allergic rhinitis, asthma, and 

chronic obstructive pulmonary disease, decrease in oxygen tension can occur due to 

pathologic changes in the microvascular structures or increase in metabolic demands(3). Such 

diseases commonly represent pathologic characteristics such as infiltration of inflammatory 

cells, tissue remodeling or mucus hypersecretion (4).  

In the upper airway, chronic sinusitis is one of the hypoxia-related diseases. The sinus 

mucosa is composed of ciliated columnar epithelium intermixed with goblet cells. The cilia 

of epithelial cells have an essential role in transporting mucus outside of sinus through sinus 

ostium and maintaining a normal physiologic condition in the paranasal sinuses. Normal 

mucociliary transport is essentialfor the maintenance of the airway innate defense, and a 

decrease of mucociliary transport has been proved  in rhinosinusitis. The defect  in normal 

mucociliary transport can develop due to changes in mucus viscosity or any toxicity (5). 

Hypoxia is another potential factor for sinusitis and we have reviewed the pathogenesis of 

hypoxia-related sinusitis. 

 

HIF-1α-mediated mucus hypersecretion by hypoxia 

The mechanical obstruction of the sinus natural opening reduces oxygen tension within the 

sinus resulting in sinusitis(6). Goblet cell hyperplasia is one of the major histopathologic 
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changes in chronic rhinosinusitis(7). In hypoxic conditions, the hypoxia-inducible factor 1 

(HIF-1) is essential for oxygen-related pathophysiology for  transcriptional expression  of 

erythropoietin(8), vascular endothelial growth factor (VEGF)(9), heme oxygenase-1(10), and 

transferrin(11). HIF-1 is composed of a heterodimer,  α and β subunits(12), and HIF-1α 

activation conducts  the extracellular signal-regulated kinase signaling pathway(13). 

Although hypoxia is  an effective inflammatory stimulant(4) , the influence of hypoxia on 

mucus overproduction and its related-mechanism has not been clearly suggested. The 

hypoxia-response element (HRE) is commonly  present at the proximal promoter and 

includes  one or more HIF-1-binding sites(14). The mutation in the HRE location inactivates 

the transcriptional response to hypoxia(15, 16). The promoter region of the MUC5AC gene 

includes a similar sequence  to the HRE(17, 18).  Therefore, we investigated the promoter 

region of the MUC5AC gene to understand  the mechanism of hypoxia-induced MUC5AC 

gene  in airway epithelium. We have mainly utilized primary human nasal epithelial (HNE) 

cells, which were cultured and differentiated in the condition of the air-liquid interface 

system, for in vitro experiments(19). Under hypoxic condition, HNE cells induced the 

expression of MUC5AC mRNA and protein(20). The elevation of HIF-1α expression in HNE 

cell by hypoxia was also identified and its loss- or gain-of-function experiment confirmed the 

role of HIF-1α in MUC5AC expression under hypoxic environment. To identify the DNA 

binding activity of HIF-1αto the MUC5AC promoter under hypoxia, we performed 

chromatin immunoprecipitation (ChIP) assays and the regulatory HRE region  of the 

MUC5AC promoter was identified to be important in increasing the transcriptional activity of 

MUC5AC caused by hypoxia(20). Immunohistochemical staining proved strong expression 

of MUC5AC and HIF-1α in the epithelium in sinusitis mucosa. These data suggest that 

hypoxic condition in the sinus is associated with sinusitis in terms of MUC5AC 
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overproduction via the HIF-1α-mediated mechanism. 

 

Epithelial barrier by hypoxia: VEGF mediated-mechanism 

The pathophysiology of epithelial disruption  have been studied based on several aspects. It 

was demonstrated that hypoxia contributed to the breakdown  of epithelial barrier via 

VEGFR-1 in retinal epithelium(21). The IL-13 led to disruption of tight junction in bronchial 

epithelium(22). Rhinovirus infection is a fundamental predisposing factor for subsequent 

bacterial invasion by dissociating zona occludens-1(23). To the best of our knowledge, this is 

the first report to elucidate the role of the hypoxia–HIF–VEGF axis in the regulation of 

epithelial paracellular permeability in airway epithelium. 

VEGF is a protein associated with vascular permeability as well as angiogenesis in 

endothelial cells and induces fenestrations or caveolae in the endothelial cytoplasm, which 

result in a vascular leak of plasma protein and tissue edema(24). There exist several reports 

on hypoxia-induced VEGF secretion(25-27). Furthermore, VEGF overexpression has been 

reported in several chronic airway inflammatory diseases, such as bronchial asthma, sinusitis, 

and allergic rhinitis (28-31). Therefore, it would be interesting to understand the role of 

VEGF in the pathogenesis of sinusitis under hypoxia. We hypothesized that HIF-1α and 

VEGF might be associated with the pathogenesis of sinusitis by augmenting paracellular 

permeability in the sinus epithelium. In human airway epithelial cells, the elevation in VEGF 

mRNA and protein was identified by hypoxic stimulation; overexpression of HIF-1α under 

normoxic condition also induced VEGF expression(32). Knockdown of HIF-1α resulted in 

downregulation of VEGF mRNA and protein level under hypoxic condition. These results 

imply that VEGF expression under the hypoxic condition is mediated through HIF-1α 

signaling pathway. The functional assay of the epithelial barrier can be measured by 
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transepithelial electrical resistance (TEER). TEER decreases under the hypoxic condition and 

can be rescued by the knockdown of HIF-1α or bevacizumab, a monoclonal antibody against 

VEGF. However, we have not yet confirmed the expression of VEGFR-1 or -2 in primary 

nasal epithelial cells and further investigations are required to elucidate the signaling pathway 

including identification of VEGFR.  

Disruption of epithelial barrier function is an important  histological change  resulting in  

clinical significance. This fact provides a possibility of the development of novel therapeutic 

agents to improve epithelial barrier function for various airway diseases. Vulnerability to 

adherence or invasion of pathogens can be increased through the leaky epithelial barrier. We 

also confirmed higher bacterial passage of nasal epithelium under hypoxic condition 

compared to normoxia.  

 

Epithelial barrier by hypoxia: Junctional proteins mediated-mechanism 

The epithelial barrier function is maintained by tight and adherence junctions. The tight 

junctions are the most apical complex and disconnect the apical lumen from the basolateral 

side. ZO-1 is a tight junction component that is present in the upper part of epithelium(33). 

Adherence junctions are also important for the intercellular adhesion as they provide a 

docking site for signaling molecules(34, 35). The main component of adherence junction is 

E-cadherin, a transmembrane protein that forms calcium-dependent hemophilic intercellular 

adhesions between epithelial cells(36). In the human nasal mucosa, viral infection leads to 

loss of junctional complexes, especially ZO-1 with resultant augmentation of intranasal 

bacterial inoculation in mice(23). In allergic nasal mucosa, the reduction of ZO-1 mRNA has 

been reported(37). The reduction of ZO-1 but the elevation of E-cadherin was observed in the 

epithelium of nasal polyp(38). Therefore, the alterations in the levels of ZO-1 or E-cadherin 
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can cause the disruption of the epithelial barrier under various pathological conditions(39). 

To prove the effect of hypoxia on barrier function, we investigated the effects of hypoxia on 

ZO-1 and E-cadherin expression level(40). Hypoxia decreased the expression of ZO-1 and E-

cadherin significantly after 8 hours of exposure. The disruption of the epithelial barrier was 

also proven functionally based on the measurement of TEER. The decreased expression 

pattern of ZO-1 and E-cadherin was also confirmed in the sinus epithelium of chronic 

sinusitis which is a hypoxia-conditioned nasal mucosa. Overall, the exposure to hypoxic 

conditions cause down-regulation of junction complex molecules and increasing TEER 

implying the disruption of normal barrier function of nasal epithelia. 

 

HMGB1-mediated inflammation by hypoxia 

High-mobility group box 1 (HMGB1) is a small sized protein, which acts as a DNA 

chaperone. HMGB1 is secreted into the extracellular space either actively or passively. 

Release following pro-inflammatory stimulation is an active process and release following 

apoptosis and necrosis is a passive process. The HMGB1, which is released into the 

extracellular space, binds to Toll-like receptor (TLR) 2 or TLR 4, and the receptor for 

advanced glycation end products (RAGE) resulting in activation of proinflammatory 

signaling pathways(41-43). The HMGB1, which is translocated from the nucleus into the 

cytoplasm, can be dependent on the posttranslational modifications such as phosphorylation, 

acetylation, and oxidation; reactive oxygen species (ROS) play important role in this process 

(41, 42, 44, 45). Recently, we reported the detection of elevated levels of HMGB1 in the 

nasal lavage fluid collected from chronic rhinosinusitis patients(46). Under hypoxic condition, 

there exists the possibility that HMGB1 can be translocated from the nucleus into the 

cytoplasm and released into the extracellular space, thus serving as a characteristic  
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molecule for hypoxia-associated tissue damage(47, 48). Therefore, we investigated the role of 

HMGB1 in the progression of upper airway inflammatory diseases under hypoxic condition. 

Hypoxia induces translocation of HMGB1 from the nucleus into the extracellular area in 

RPMI 2650 cells and HNE cells. Immunofluorescence assay (ELISA and western blotting) 

revealed augmentation of cytoplasmic HMGB1 under the hypoxic condition and increased 

the level of HMGB1 protein in supernatants from HNE cells (49).  Hypoxia increases the 

redox potential of local environment due to alterations in the production of ROS(50). ROS 

production can be dependent on the oxygen tension because the mild degree of hypoxia 

induces ROS production, but severe hypoxia decreases ROS production(50). The variations 

in oxygen concentration differentially affect the redox potential of the HMGB1 structure thus 

altering the functions of HMGB1.  In our experimental setting, hypoxia increased the ROS 

levels significantly, which was confirmed by the pretreatment of the ROS scavenger, N-acetyl 

cysteine (NAC) with resultant suppression of hypoxia-induced ROS levels. 

Immunofluorescence assay revealed a reduction in cytoplasmic translocation of HMGB1, 

implying the association of HMGB1 with the increase in ROS. 

Extracellular secretion of HMGB1 was also determined and pretreatment with NAC 

decreased the HMGB1 protein level from collected apical supernatants by ELISA and 

western blotting(49). NADPH oxidase enzymes can generate ROS and dual oxidase (DUOX) 

1 and 2. The subtypes of NADPH oxidase enzymes play an important role in the production 

of ROS in airway inflammation(51). Knockdown of DUOX 2 gene using short hairpin RNA 

showed (shDUOX2) decreased ROS production in HNE cells but no changes were reported 

in knockdown of DUOX 1 gene. The shDUOX2-transfected HNE cells also showed a 

reduction in HMGB1 secretion under hypoxic condition(49). Taken together, it is apparent 

that DUOX2 but not DUOX1 is essential in hypoxia-induced HMGB1 secretion and DUOX2 
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can lead to ROS-mediated activation of TLR2 and TLR4 in the upper airway epithelium(51).  

The nasal secretions of chronic rhinosinusitis patients may contain mast cell tryptase, 

neutrophil elastase, eosinophil cationic protein, nitric oxide metabolites, IL-1, IL-5, or IL-8 

suggesting that these molecules are involved in the development of chronic inflammation in 

the upper airway(52-55). HMGB1 binds to several specific cell surface receptors, such as the 

RAGE, TLR, and act as a cytokine-like protein inducing chemotaxis and cytokine release. We 

determined HMGB1, TNF-α, IL-1β, and IL-8 in the nasal secretions of chronic rhinosinusitis 

patients and performed correlation analysis with the Lund-Mackay score, which is a scoring 

system indicating the severity of sinonasal symptoms. TNF-α was detected in only 21% and 

IL-1β was detected in 44% of patients with no correlation with symptom severity(46). 

However, both HMGB1 and IL-8 were detected in all nasal lavage samples from patients and 

significant correlation was observed with the severity of Lund-Mackay score. Interestingly, 

the level of HMGB1 was significantly correlated with the level of IL-8(46). Therefore, we 

investigated IL-8 in HNE cells under hypoxia and found that IL-8 secretion was increased by 

hypoxia and suppressed by NAC pretreatment. This finding implies that IL-8 secretion can be 

dependent on ROS signaling pathway. Furthermore, the treatment of HMGB1 using 

mammalian recombinant HMGB1 (rHMGB1) induced IL-8 secretion in apical culture 

supernatants. During the course of employment of anti-HMGB1 blocking antibody to inhibit 

the function of the secreted HMGB1 protein, IL-8 production was abrogated(49). This 

observation is very interesting because HMGB1 may be associated with specific cytokines 

such as IL-6, IL-8, and IL-33 in the nasal epithelium(56, 57). HMGB1 also induces the 

release of IL-1α, IL-1β, IL-6, IL-8, and TNF-α in macrophages and TNF-α, IL-1β, and IL-8 

in neutrophils(58). In endothelial cells, HMGB1 can increase the production of tissue factor, 

an initial protein involved in the coagulation cascade and regulation of fibrinolysis(59, 60).  
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Conclusion 

Analysis of the results of previously reported studies indicated that hypoxia plays an 

important role in the pathogenesis of upper airway inflammation, especially in the chronic 

rhinosinusitis. HIF-1α is an essential factor for oxygen homeostasis in the epithelium and 

mediates MUC5AC overproduction. HIF-1α mediated VEGF overexpression and alteration 

of junctional proteins such as ZO-1 and E-cadherin are also important aspects leading to the 

disruption of the epithelial barrier under hypoxic condition. Furthermore, hypoxia induces 

HMGB1 translocation into the cytoplasm and release of IL-8 through a ROS-dependent 

mechanism in the airway epithelium. It is hypothesized that the investigation of hypoxia-

related pathophysiology in airway epithelium will suggest a novel therapeutic target for upper 

airway inflammatory diseases. 
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Figure 1. Hypoxia-induced pathophysiology of upper airway inflammation.  Under 

hypoxic condition, HIF-1α serves as an essential factor mediating MUC5AC overproduction. 

Hypoxia stimulates HIF-1α-dependent overexpression of VEGF leading to disruption of 

epithelial barrier function and alteration in adherence (E-cadherin) or junctional (ZO-1) 

protein. Furthermore, hypoxia induces HMGB1 translocation into the cytoplasm and release 

of IL-8 through a ROS-dependent mechanism in the airway epithelium. 
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