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ABSTRACT 18 

Telomeres are nucleoprotein complexes at the physical ends of linear eukaryotic 19 

chromosomes. They protect the chromosome ends from various external attacks to avoid 20 FO
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the loss of genetic information. Telomeres are maintained by cellular activities associated 1 

with telomerase and telomere-binding proteins. In addition, epigenetic regulators have 2 

pivotal roles in controlling the chromatin state at the telomeres and the subtelomeric 3 

regions, contributing to the maintenance of chromosomal homeostasis in yeast, animals, 4 

and plants. Here, we review the recent findings on chromatin modifications possibly 5 

associated with the dynamic states of telomeres in Arabidopsis thaliana. 6 

 7 

INTRODUCTION 8 

In eukaryotic cells, the chromosome ends are protected by telomeres from inappropriate 9 

fusion and degradation, and incomplete DNA synthesis during DNA replication (1). 10 

Maintenance of the proper structure and function of telomeres is essential for the 11 

conservation of genetic information, chromosomal stability, and thus, cell survival (2). 12 

Eukaryotic chromosome ends are mainly divided into telomeres and adjacent 13 

subtelomeric regions (3). Telomeres consist of double-stranded repetitive G-rich DNA 14 

with single-stranded overhangs. When deletion of DNA sequences at the end of 15 

chromosomes is caused by various cellular events, telomerase accesses and adds 16 

telomeric repeats to critically short telomeres preferentially with its reverse transcriptase 17 

activity using its own internal RNA template, thereby effectively stabilizing telomere 18 

length (4). Telomere-binding proteins in mammals, known as shelterin, participate in the 19 

formation and maintenance of the specialized telomeric structure (T-loop) and the precise 20 

regulation of telomere length (5). Moreover, they interact with several non-telomere-21 

binding proteins involved in DNA repair and recombination, contributing to the integrity 22 

and dynamics of the telomeres (6). Subtelomeric regions in humans are composed of 23 FO
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degenerated telomeric repeat sequences with a high density of methylated CpG DNA 1 

sequences (7). The heterochromatic nature of the subtelomeric regions influences the 2 

epigenetic silencing of telomere-adjacent genes by the telomere position effect (TPE) and 3 

abnormal chromosome recombination in yeast and humans (8). Non-coding RNAs 4 

containing telomeric repeats (TERRA) are generated in these regions (9). TERRA 5 

expression is regulated by the chromatin state, and in turn, telomere length is regulated 6 

by the expression level of TERRA (9, 10). Unique structures of telomeres and 7 

characteristics of telomere-related proteins have been observed in yeast, animals, and 8 

plants, demonstrating that these are evolutionarily-conserved and essential features of 9 

telomeres (5,11,12). 10 

Telomeres, like centromeres, are generally defined as heterochromatic regions of the 11 

genome, characterized by increased chromatin condensation and decreased access to 12 

regulatory proteins (13). Many researchers have tried to understand what kinds of 13 

epigenetic marks are enriched in telomeric chromatin, how telomeres are regulated by 14 

these epigenetic modifications at the level of chromatin state, and thus, how these 15 

telomeric modifications affect their biological function. A repressive chromatin 16 

environment, formed by histone modifications and DNA methylation at the telomeres and 17 

subtelomeric regions, has been shown to control the telomeric structure and function in 18 

yeast and mammals (14,15). 19 

In yeast, NAD+-dependent histone deacetylase Sir2 is a component of the silent 20 

information regulator (SIR) complex, which are implicated in the silencing of 21 

subtelomeric chromatin (16). Sir2 is recruited to telomeres by Rap1, and its HDAC 22 

(histone deacetylase) activity is necessary for its proper localization on telomeres and 23 FO
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regulation of the heterochromatin structure in telomeres. Mammalian SIRT6 specifically 1 

is associated with telomeric chromatin and the loss of its HDAC activity results in the 2 

hyperacetylation of telomeric histone H3K9, telomere dysfunction, premature cellular 3 

senescence, and impaired silencing of telomere-proximal genes, indicating that SIRT6 4 

modulates the telomeric chromatin structure (17,18). Mammalian TPE is HDAC- and 5 

telomere length-dependent (19,20). 6 

In addition, histone methyltransferases involved in the trimethylation of H3K9 and 7 

H4K20, which are the main histone marks of telomeric and subtelomeric heterochromatin, 8 

contribute to the regulation of telomere length in mammals (21,22). Moreover, heavily 9 

methylated DNA at mammalian subtelomeric regions are associated with the regulation 10 

of telomere elongation, TERRA expression, and stability (23,24). 11 

These studies present strong evidence that epigenetic modifications are involved in the 12 

composition of telomeric chromatin and have important roles in its regulation. Despite 13 

these outstanding achievements, the precise composition of epigenetic marks at telomeric 14 

chromatin and the relationship between telomeres, telomere-binding proteins, and these 15 

epigenetic regulators are not fully understood yet. Especially, many chromatin modifying 16 

proteins associated with epigenetic modifications in various target loci do not contain 17 

DNA-binding domains, thus prompting questions regarding how these proteins find their 18 

target loci. 19 

Recent data in Arabidopsis provide convincing evidence to support the role of telomere-20 

binding proteins in epigenetic events which regulate telomeres. In this review, we provide 21 

a brief overview, with a special emphasis on the epigenetic regulation of telomeric 22 

chromatin in Arabidopsis. 23 FO
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 1 

FUNCTION OF EPIGENETIC REGULATORS AND REGULATORY FACTORS 2 

OF TELOMERIC CHROMATIN IN ARABIDOPSIS 3 

 4 

Histone modifications 5 

In eukaryotes, the combination of different post-translational modifications (methylation, 6 

acetylation, phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation) on the 7 

N-terminal tails of histone dictates the rapid change of the chromatin state into a 8 

transcriptionally-active euchromatin or silent heterochromatin state (25). Histone 9 

acetylation and deacetylation of lysine residues is a reversible process, mediated by 10 

histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively (26). 11 

Based on the sequence homology to yeast HDACs, plant HDACs are classified into three 12 

major families: RPD3/HDA1, SIR2, and HD2 (27). Studies have reported that several 13 

histone modifiers, as partners of telomere-binding proteins, are required for regulation of 14 

the chromatin state of telomeres in Arabidopsis. SNL1, one of the SIN3 orthologues 15 

identified in Arabidopsis, was shown to interact with telomere-binding proteins, AtTBP1 16 

and AtTRP2, by yeast two-hybrid screening, suggesting potential functions for SNL1 in 17 

telomere maintenance (28). In addition, two different types of HDACs, HDT4, and HDA6, 18 

directly interacted with AtTRB2, a telobox-containing telomere-binding protein, and 19 

played a role in the maintenance of telomere length in Arabidopsis (29). HDT4, a plant-20 

specific HD2-type HDAC, is a putative H3 lysine 27 deacetylase. HDA6, an 21 

RPD3/HDA1-type HDAC, deacetylates the acetylated lysine residues at H3 and H4. 22 

HDA6 is known to function in rDNA silencing and in the responses to various abiotic 23 FO
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stresses (30,31). Recently, our study showed that Sir2-type AtSRT1 was also associated 1 

with telomeric chromatin through the direct interaction with AtTRB2 and that AtSRT1 2 

was characterized as a putative NAD+-dependent H3K9 deacetylase in Arabidopsis 3 

(unpublished data). 4 

Through Southern blot analysis using mutants, it was shown that Arabidopsis HDACs 5 

negatively regulated the telomere elongation, similar to AtTRB2 (29). It is assumed that 6 

the epigenetic regulators will be precisely located in telomeres through the interaction 7 

with telomere-binding proteins, and a change in the chromatin state from heterochromatin 8 

to euchromatin at the telomeres by mutation of the HDACs will permit the appropriate 9 

conditions for further access of molecules, such as telomerase, to affect telomere 10 

elongation. 11 

In addition, telomeric-ChIP (T-ChIP) data in these studies showed that telomere-binding 12 

proteins carried out several essential tasks, such as recruitment of epigenetic regulators to 13 

the telomeric region, as well as the binding to telomeric repeats in Arabidopsis (29). 14 

These reports also suggest the possible regulation of histone modification via 15 

combinatorial composition and competition between the different kinds of HDACs. This 16 

implies that coordination between the various HDACs at the telomeres is a universal 17 

regulatory mechanism in yeast and plants (32). In budding yeast, reports have shown that 18 

different types of HDAC proteins competed with each other for appropriate adjustment 19 

of the boundary element on telomeric chromatin. Rpd3 HDAC protein is necessary to 20 

restrict the SIR complex to telomeres and thus, modulates a barrier to prevent the spread 21 

of the SIR-dependent telomere position effect (32-34). Additionally, the competition of 22 

Sir2 HDAC and SAS-I HAT creates flexible boundaries at the telomeres in yeast (35,36). 23 FO
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Moreover, it has been noted that histone modifications at lysine 9 and lysine 27 on 1 

histone H3 were significant components of the chromatin in Arabidopsis telomeres. 2 

Several observations support the involvement of histone methyltransferases associated 3 

with these residues in the regulation of Arabidopsis telomeres. T-ChIP data showed that 4 

the H3K9-specific histone methyltransferase KYP was associated with telomeric 5 

H3K9me2 (37,38). In addition, recent findings revealed that telobox-related motifs 6 

recruited PRC2 through the interaction between AtTRBs and CLF/SWN, proposing a 7 

mechanism essential for H3K27me3 deposition at a subset of target genes (39). These 8 

results strongly confirm the significance of the modifications at H3K9 and H3K27 in 9 

telomeres and the functions of telomere-binding proteins with their sequence-specific 10 

DNA-binding activity in the targeting of telomere-associated proteins to telomeres. 11 

 12 

DNA methylation 13 

DNA methylation is conserved in many eukaryotic organisms. Once established, DNA 14 

methylation is inherited through mitosis, and often through meiosis, and this provides an 15 

effective epigenetic mark (40). In Arabidopsis, MET1, homologous to mammalian Dnmt1, 16 

is mainly involved in CpG DNA methylation. Chromomethyltransferase CMT3 is unique 17 

to plants and important for CpNpG and asymmetric methylation (41). 18 

The chromatin state is regulated by interplay between the epigenetic modifications in 19 

eukaryotes (42). In some cases, the modifications on histone tails provide the binding site 20 

for effector proteins. It has been proposed that the interconnections between the 21 

epigenetic modifications act as signals to each other for establishing and maintaining 22 

stable epigenetic states. In Arabidopsis, the methylation of H3K9 controls DNA 23 FO
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methylation by CMT3 because CMT3 recognizes the methylated lysines 9 and 27 of 1 

histone H3 selectively, and further catalyzes the methylation at CpNpG sequences (43). 2 

Additionally, the direct interaction between epigenetic regulators results in effective 3 

regulation of the chromatin state. HDA6 mediates the silencing of the heterochromatic 4 

regions by physical interaction with MET1 (44,45). 5 

In Arabidopsis, the results from Southern blot analysis and Chop-PCR using McrBC 6 

endonuclease indicated that the acting loci of CMT3 were separated from those of MET1; 7 

CMT3 and MET1 mainly regulate DNA methylation in the 4R subtelomeric region and 8 

in 300-bp interstitial telomeric sequences (ITSs), respectively, and that they negatively 9 

regulate telomere length (29). Consistent with previous studies (38,46), this result 10 

confirmed that non-CpG DNA methylation comprised the majority of DNA methylation 11 

in the telomeric repeat sequences in Arabidopsis, demonstrating an essential role for 12 

CMT3 in the maintenance of non-CpG DNA methylation in the telomeres/subtelomeres. 13 

Southern blot analysis using restriction enzymes also showed a similar pattern of DNA 14 

methylation in telomeric repeat sequences between hda6 and cmt3, but not the met1 15 

mutant, suggesting that HDA6 contributed to non-CpG DNA methylation by 16 

collaboration with CMT3 in the telomeres/subtelomeres. 17 

In contrast to the effect of deacetylated H3K9 on telomeric DNA methylation, an hdt4-18 

1 mutant showed no alteration in DNA methylation of telomeric chromatin (29). It is 19 

presumed that H3K27 modifications regulate chromatin by separate pathways (47). In 20 

fact, it has been reported that defects in the H3K27 monomethyltransferases in 21 

Arabidopsis resulted in chromatin decondensation by causing the over-replication of 22 

heterochromatin without any effects on DNA methylation (48-50). Thus, the lack of 23 FO
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alteration in DNA methylation on telomeric chromatin in the hdt4-1 mutant was possibly 1 

due to the different effects of these two histone modifications on DNA methylation. 2 

In addition to DNA methyltransferases and histone modifiers, chromatin structural 3 

proteins also control the composition and level of epigenetic marks. Chromatin 4 

remodeling factor DDM1, a SWI2/SNF2 orthologue, has been previously reported to 5 

facilitate heterochromatin formation by promoting the access of DNA methyltransferase 6 

to the heterochromatin (51,52). Southern blot analysis using a ddm1 mutant indicated that 7 

DDM1 controlled subtelomeric CpG methylation, but not H3K9me2 or non-CpG 8 

methylation at the subtelomeric regions, contributing to the formation of subtelomeric 9 

heterochromatin in Arabidopsis (38). In contrast, DDM1 affected the level of H3K9me2 10 

and 5-mC at the Ta3 retrotransposon (38). These results indicate that heterochromatin 11 

formation at subtelomeric regions is distinguished from that at other heterochromatic loci. 12 

Most recent study on DDM1 reported that telomere shortening in a late generation ddm1-13 

2 mutants was not related to telomerase activity or TERRA expression (53). Instead, 14 

telomere shortening in a ddm1-2 mutant was seemed to be a by-product of the increased 15 

recombination caused by the hypomethylation of DNA, based on the notion that there is 16 

correlation between telomere length, telomere recombination, and transposon activation. 17 

However, it is still unclear whether DDM1 directly influences regulation of the telomeric 18 

chromatin state. Further comprehensive studies should be conducted to determine the 19 

regulatory pathway of telomeric-/subtelomeric chromatin involving chromatin 20 

remodeling factors, such as DDM1. 21 

 22 

Epigenetic state of telomere chromatin 23 FO
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Heterochromatin is stably-inherited and thus, must contain one or more epigenetic marks 1 

to direct its maintenance during cell division (54). Heterochromatin is generally 2 

characterized by H3K9me1,2, H3K27me1,2, H4K20me1, and methyl cytosine, whereas 3 

euchromatin is characterized by H3K4me1,2,3, H3K36me1,2,3, H4K20me2,3, and histone 4 

acetylation in Arabidopsis thaliana (55). The chromatin state of certain loci is determined 5 

by the quantitative and qualitative composition of different epigenetic modifications. 6 

In mammals, telomeric nucleosomes have a more compact structure with 7 

heterochromatic features (15). There is a higher density of H3K9me3, H4K20me3, and 8 

HP1 (heterochromatin protein 1) in mammalian telomeres and subtelomeric regions, as 9 

well as higher levels of methyl cytosine by DNMT1 and DNMT3a/b in sub-telomeres. 10 

Heterochromatic marks at the telomeres have been proposed to act as negative regulators 11 

of telomere elongation. Interestingly, loss of heterochromatic marks at the telomeres did 12 

not seem to affect TRF1 and TRF2 binding, indicating that shelterin recruitment was 13 

uncoupled from telomeric chromatin regulation (21,22,56,57). Most recently, a study on 14 

the epigenetic characteristics of human telomeres revealed that telomeres had lower levels 15 

of H3K9me3 and enriched levels of H4K20me1 and H3K27Ac marks compared to certain 16 

heterochromatic loci in different human cell lines (58). In addition, several cancer cell 17 

lines that maintain their telomeres through ALT exhibited heterochromatic levels of 18 

H3K9me3. This suggests that telomeres in ALT cells become ‘subtelomeric’ according to 19 

their heterogeneous length and sequence composition containing degenerated telomeric 20 

repeats via recombination with subtelomeric regions (59,60). It also implies that the 21 

mechanism of telomere maintenance by recombination in ALT is considerably different 22 

from that in canonical conditions whereby telomeres are elongated by telomerase. These 23 FO
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results highlight the differences in several previous reports. It appears that the effect of 1 

the epigenetic features of telomeres and subtelomeres on their functions in humans is still 2 

an open question. 3 

Analysis of epigenetic marks on the chromatin structure of Arabidopsis telomeres 4 

revealed that telomeres were not heterochromatic, whereas subtelomeric regions and ITSs 5 

exhibited heterochromatic features in Arabidopsis (38,46,61-63). Methyl cytosine, 6 

H3K9me2, and H3K27me1 are observed in adjacent subtelomeres and ITSs, while 7 

H3K27me3, known as a repressive mark in euchromatin genes, is found in telomeres. The 8 

heterochromatic state of subtelomeric regions is formed by HDACs, histone 9 

methyltransferases, DNA methyltransferases, chromatin remodeling protein, and 10 

molecules involved in the RdDM pathway (29,38,46). Separate studies showed a 11 

consistent pattern of distribution on methyl cytosine, H3K9me2, and TERRA/ARRET up 12 

to 2kb from the chromosome end in Arabidopsis, although their distribution patterns 13 

differed in each chromosome arm (http://epigenomics.mcdb.ucla.edu/DNAmeth/). The 14 

correlations between epigenetic events mentioned above again suggest that the RdDM 15 

pathway, histone modification, and DNA methylation processes may be involved in 16 

common events in telomeric heterochromatin formation. It has been noted that 17 

Arabidopsis RdDM mutants had no alterations in telomere length compared to the wild-18 

type, in contrast to the mutants of epigenetic regulators, including HDAC proteins and 19 

DNA methyltransferases (29,46). Based on these findings, it is inferred that the 20 

mechanism of telomere length regulation mediated by histone modifiers and DNA 21 

methyltransferases is distinct from that of the RdDM pathway. It is also assumed that the 22 

heterochromatin state at subtelomeric regions in Arabidopsis is important to the formation 23 FO
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and maintenance of the boundary element between telomeres and its distal euchromatin 1 

genes by buffering the propagation of TPE, similar to that in yeast and mammals. 2 

Although the epigenetic characteristics of Arabidopsis telomeres is impressive, it is 3 

arguable whether Arabidopsis telomeres are euchromatic because of the technical 4 

limitation of hybridization-based sequencing technology. It is not possible to directly 5 

compare the quality and quantity of epigenetic marks side-by-side among telomeres, sub-6 

telomeres, and ITSs using this method. In the most recent report by the same research 7 

group, an improved procedure based on statistical analysis of multiple ChIP-seq 8 

experiments was performed to exclude the interferences of subtelomeres and ITSs (58). 9 

Nevertheless, to define the chromatin state of telomeres composed of only TTTAGGG 10 

repeats, it is necessary to make up the advanced experimental techniques to finely 11 

separate the telomeric repeat sequences-harboring regions, such as ITSs, degenerated 12 

repeat sequences in subtelomeres, and telomeric repeats in telomeres. Moreover, the 13 

epigenetic characteristics of mammals and Arabidopsis are still controversial. Results 14 

from the hybridization-based sequencing method suggested that Arabidopsis telomeres 15 

were less heterochromatic than subtelomeres or ITS. However, ‘less heterochromatic’ 16 

does not mean ‘euchromatic’. Therefore, it is safe to say that these results showed a mix 17 

of both euchromatic and heterochromatic marks at plant telomeres, as described by Galati 18 

et al. (15). 19 

 20 

PERSPECTIVES 21 

The principal functions of the heterochromatic state of telomeres are the protection of 22 

chromosome ends, the regulation of telomere length, and the suppression of 23 FO
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recombination events at the telomeres. Recent findings noted that DNA methylation and 1 

histone modifications were involved in the regulation of chromatin status and the 2 

elongation of telomeres in many species, and suggested the possibility that cooperation 3 

and/or competition of these epigenetic modifications are required for the subtle and 4 

elaborate regulation of the telomeric and subtelomeric chromatin state, thus maintaining 5 

the homeostasis of chromosomes. 6 

However, the biological meaning of the formation of chromosome ends and the 7 

regulation of the chromatin state at the chromosome ends is considerably unrevealed and 8 

disputable. Especially, there are many unidentified pieces in the puzzle of the epigenetic 9 

regulation of telomeres in Arabidopsis. Therefore, it is necessary to find the role of 10 

various molecules which affect the telomeric chromatin state, for instance, chromatin-11 

remodeling factors, histone chaperones, and small-RNA related molecules. 12 

Moreover, the unrevealed functions of telomere-binding proteins are still remained. In 13 

mammals, hTRF1, and hTRF2 are associated with ITSs, as well as telomeres, contributing 14 

to the stability of chromosomes. Arabidopsis ITSs are located in subtelomeric regions and 15 

pericentromeres. ITSs are known to be hot-spots for chromosomal recombination. 16 

Genetic and epigenetic regulation of ITSs is essential to stabilize the ITSs. In addition, 17 

hTRF2 is involved in the nucleosomal organization of heterochromatic marks in the 18 

telomeric region and facilitates the heterochromatin formation through associations with 19 

TERRA RNAs and other heterochromatin factors, such as HP1 (56,64,65). Similarly, 20 

AtTRB2 displays binding activity to telomeric repeat sequences, several epigenetic 21 

regulators, and histone H3. Moreover, considering the unique binding activity of AtTRB2 22 

both to the telomeric- and degenerated repeat sequences (66), it has been suggested that 23 FO
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epigenetic regulators recruited by DNA-bound AtTRB2 target and function at the 1 

telomeres, as well as at the subtelomeric regions and ITS. Therefore, the relevance of 2 

telomere-binding proteins, epigenetic regulation, and chromosomal stability should be 3 

confirmed and experimental approaches should be designed to discover the as yet 4 

unknown functions of telomere-binding proteins. 5 
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