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ABSTRACT 

A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is 

still a growing issue. The concept that the surrounding tumor environment is critical for the 

progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain 

transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been 

intensively studied for their roles in normal development and pathological conditions. During 

tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are 

common phenomena. In this review, we briefly introduce the consequences of hypoxia and 

immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a 

critical regulator. Furthermore, based on our current knowledge of the functional role of 

RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is 

suggested for the effective management of tumor growth and malignancy.  
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INTRODUCTION  

A large number of oncogenes and tumor suppressor genes were identified and therapeutically 

targeted for effective care of cancer patients in past two decades, which have also extended 

survival of cancer patients. But the relapse of cancer due to increased resistance to 

therapeutic intervention has raised another critical question. With this scenario, the new 

concept is emerging that appreciates the fact that cancer maintenance and expansion is 

critically regulated by signals from the microenvironment [1, 2]. Tumors are complex tissues 

i.e, structures comprising not only malignant cells, but also contain genetically stable stromal 

cells. Cells making up the structural framework of tumors include specialized cells of the 

connective-tissue family called fibroblasts, endothelial cells and immune cells. Together with 

products such as the extracellular matrix (ECM), these cellular interactions drive the 

initiation, growth, and metastasis of tumors [1]. Tumor hypoxia is another critical 

microenvironmental state that results because of an inadequate oxygen supply in growing 

solid tumors. Hypoxia compromises biological functions and is associated with malignancy 

and cancers that are refractory or resistant to treatment [3].  

The Runt-related transcription factor (RUNX) family is evolutionarily conserved from 

simple to complex organisms, suggesting its significant role in developmental and biological 

processes. It is well described as developmental regulators and its involvement in human 

neoplasia is also been documented. The Runt domain transcription factors are composed of a 

larger DNA-binding subunit, α, and a smaller non-DNA-binding subunit, β (known as core 

binding factor β, CBFβ [4]. RUNX1, RUNX2, and RUNX3, the three members of the Runx 

family genes, encode α subunits. RUNX1 is important for the generation of hematopoietic 

stem cells, and it is also illustrated to be involved in leukemia [5, 6]. RUNX2 is essential for 

bone development and has oncogenic potential [7, 8]. RUNX3 is associated with multiple 
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developmental functions and differentiation of immune cells such as CD8-lineage T cells [5, 

9], TrkC-dependent dorsal root ganglion neurons [10], and it also functions as a major tumor 

suppressor [11-16]. In addition to its role as a tumor suppressor, recent researchers have 

depicted it as a tumor promoter in various cancers [17-19].  

In this review, we discuss our overall knowledge on the emerging role of RUNX3 in the 

regulation of the tumor microenvironment. The instructions harnessed in the regulatory 

mechanism and modulation can be instrumental for the development of more effective 

anticancer therapies.  

RUNX3 IN TUMORIGENESIS 

RUNX3 is expressed in a wider range of tissues with multiple roles. RUNX3 is a well-

recognized tumor suppressor of gastric, colon and many other forms of solid tumors. The 

RUNX3-deficient phenotype is described as a cause for hyperplasia of the gastric mucosa 

[16], while severe limb ataxia is also illustrated with a Runx3 deletion [20]. The tumor 

suppressive role for RUNX3 is further strengthened by an inactivated RUNX3 on 

hemizygous deletion, promoter hypermethylation, histone modification and frequent protein 

mislocalization [14, 21-24]. Recently, RUNX3 is suggested to inhibit migration and invasion 

of melanoma cells through enhancing the formation of stress fibers and mature focal adhesion 

and ECM protein production regulating the cell shapes [25]. 

Recently, in addition to established tumor suppressive role of RUNX3, its oncogenic role 

is also being revealed in certain cancer subsets. All three RUNX genes were first shown to be 

associated with MYC proto-oncogene (MYC) thus promoting leukemogenesis [26]. Later its 

oncogenic behavior was verified in basal cell carcinoma with overexpressed RUNX3 in 

cancers compared to the normal epidermis [27]. Likewise, RUNX3 overexpression is 
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observed to increase proliferation and tumorigenesis in ovarian cancer, head, and neck 

squamous cell carcinoma and Ewing sarcoma [18, 28, 29]. All these observations suggest the 

cell type and contextual- dependent behavior of RUNX3 as a tumor suppressor or a promoter.  

TUMOR MICROENVIRONMENT 

Conventional cancer therapies are more focused on eliminating proliferating cancer cells, 

while recent advances in cancer biology have emphasized the critical importance of the 

surrounding environment in initiation, progression, and metastasis of cancer [30, 31]. 

Development of a tumor involves encompassing the proliferating tumor cells, the tumor 

stroma, blood vessels, infiltrating immune cells and various types of macromolecules 

comprising the extracellular matrix (ECM) and a large number of secreted cytokines and 

molecules. The tumor microenvironment (TME) develops during the progression of the 

tumor as a unique environment, through interaction of tumor cells with the surrounding host 

cells and their secretions. It plays not only pivotal role in tumor initiation, but also facilitates 

progress of cancer i.e., metastasis [32, 33]. The microenvironment of the tumor is often 

hypoxic. As the mass of the tumor increases, the inner side of the tumor grows far beyond the 

existing blood supply. Angiogenesis may reduce this effect, but at more than 50% of locally 

advanced solid tumors, the oxygen partial pressure is less than 5 mmHg (oxygen partial 

pressure of the venous blood (40 mmHg) [34, 35]. The hypoxic microenvironment has been 

shown to strongly influence the dialogue between tumor cells and nonmalignant stromal cells, 

thus inducing changes in the proteome of these cells and facilitating tumor propagation by 

enabling the cells to adapt in a nutrient-deficient hostile microenvironment [36] (Figure 1). 

Tumor-associated macrophages (TAMs), abundant in most of the human and mouse 

tumor microenvironments, have primarily pro-tumorigenic abilities [37]. They are reported as FO
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potent partners for cancer cell migration, invasion, and metastasis [38]. Accumulation of 

TAMs in hypoxic and necrotic zones of the tumor is facilitated by secreted cytokines, 

including vascular endothelial growth factor (VEGF) in hypoxic regions [39]. In addition to 

that fact, infiltrating immune cells, like T cells, myeloid-derived suppressor cells (MDSCs), 

and dendritic cells (DCs) within a tumor also pose critical roles in the progression of cancer 

[2] (Figure 1). 

RUNX3 MEDIATED REGULATION OF INFLAMMATORY CELLS IN TUMOR 

MICROENVIRONMENT 

Effective immune responses and immunosurveillance of emerging cancer cells are two of the 

important factors to impede growing tumors. Inflammatory cells have roles at the beginning 

to prevent tumors through activated innate immune responses, and later a chronic 

inflammatory state is maintained by infiltrating immune cells, thereby ensuring the survival 

of tumor cells through intensive crosstalk with tumor cells, leading to its progression [40]. 

Long-time immunocytes are recognized for antitumor abilities; however, recent research 

shows the involvement of an imbalanced CD4+ T subset in the tumor immune 

microenvironment. Runx deregulation is associated with both inflammation and 

carcinogenesis, including inflammation-induced colorectal cancer [41-43]. In a chemical-

induced colorectal cancer model, the expression levels of Runx3, but not Runx1 and Runx2, 

showed a much higher increase in dextran sodium sulfate (DSS)-treated/urokinase-

type plasminogen activator (uPA)-deficient mice compared to the wild-type/DSS group. DSS 

treatment produced significant upregulation of immune cells expressing three Runx proteins 

identified by the -situ investigation. It suggests that immune cells are the main source of FO
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Runx proteins and uPA deficiency may be associated with upregulation of the Runx factor in 

the natural history of inflammatory colon carcinogenesis [44].  

RUNX3 facilitates myeloid differentiation through the retinoic acid receptor signaling 

pathway [45]. Furthermore, hematopoietic development in zebrafish is also validated to be 

regulated by RUNX3 [46]. These observations suggest its potential involvement in the 

regulation of inflammatory cells in immune-tumor microenvironment [2], as well as 

hematological malignancies. In a large number of tumor types, T regulatory cells (Tregs) are 

often found in infiltrating tumors. The rapidly elevated Tregs in the tumor microenvironment 

is associated with a poor clinical outcome due to their effective immunosuppressive nature 

i.e., limitation of antitumor immunity, thus promoting cancer progression and angiogenesis 

[47]. Besides, cancer progression, Treg cells are also reported to play a pivotal role in the 

development and maintenance of terminal immunodeficiency, resulting in serious 

autoimmune disorders and compartmental defects [48, 49]. The immune suppressive role of 

RUNX3 has been reported in Tregs in breast tumors [49]. A recent report found that RUNX3, 

a CD8+ lineage-specific transcription factor, binds to induce transcription of the Forkhead 

box p3 (FOXP3)-promoter and the CD8+CD25+ FOXP3+ Treg population is increased in the 

tumor microenvironment with the progression of breast tumors. Infiltration of CD8+ Treg 

cells in tumor microenvironment produce high-level of immunosuppressive cytokines that 

ensure repressed effector T cell proliferation and enhanced tumor immune evasion [49, 50]. 

RUNX3 has crucial role in the cytotoxic T cell maturation. Thymocyte progenitors undergo 

differentiation through a series of stages and RUNX3 contribute to transcription of CD8 in 

CD8+CD4− T cells by binding to the CD8 enhancer, thus ensuring maturation into CD8 T 

cell lineages [51]. Natural killer cells (NKC) and cytotoxic lymphocytes infiltrating into solid FO
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tumors have highly expressed levels of RUNX3 and play crucial roles in their proliferation 

and activation. They regulate markers of the effector cytotoxic T lymphocyte program, 

including IFN-γ, perforin, and granzyme B suggesting its critical role in the differentiation of 

NKC and cytotoxic T-lymphocytes [52]. In the report by Li et al. [53], decreased expression 

of the Th1-associated factor was shown with repressed RUNX3 in gastric carcinoma, as a 

cause for the cancer progression. IFN-γ, the specific factor secreted by Th1 cells, regulating 

the function of target T cells and facilitating the killing of the tumor by NKC, was found 

repressed with a decreased level of RUNX3 expression (Figure 1).  

Among the growth factors (including cytokines) secreted by a tumor and surrounding 

interstitial cells, transforming growth factor-beta (TGF-β) might be the most secreted 

cytokine [54]. Secreted TGF-β may induce a paradoxical cancer effect by activating an 

antiproliferative signal or by giving a prooncogenic character to cells, including epithelial-

mesenchymal transition (EMT) [54]. A recent report suggests that TGF-β promotes genomic 

instability in the form of DNA double-strand breaks (DSB) in cancer cells without RUNX3. 

The down-regulation of the redox modulator, heme oxygenase-1 (HO-1), due to a low 

concentration of RUNX3, increased oxidative DNA damage and ultimately destroyed 

genome integrity and triggered cellular senescence accompanied by tumor-promoting 

inflammatory cytokine expression and acquisition of senescence-related secretory behavior. 

Tumor-bearing TGF-β gene expression signatures and RUNX3 loss showed higher levels of 

genomic instabilities [55], suggesting a novel connection between microenvironment-derived 

extrinsic TGF-β signaling and intrinsic RUNX3 inactivation in genomic instability. In 

addition, TGF-β− induced EMT is highly noticed in Runx3 null gastric epithelial lines, 

emphasizing the role of RUNX3 in repression of TGF-β induced EMT [56].  FO
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ECM provides a scaffold for all cells in TME and has a further diverse role in evolution 

and spreading of cancer. Proteases like matrix metalloproteinases (MMPs) not only degrade 

ECM but also help in the remodeling of ECM leading to the secretion of chemokines and 

other angiogenic and growth factors. RUNX3 has substantiated repressive role over MMPs in 

various cancers [12, 13, 57, 58], and the loss of RUNX3 was found to be correlated with 

increased secretion of multifunctional glyco-phosphoprotein osteopontin (OPN), promoting 

gastric cancer metastasis [59], suggesting its critical role over regulation of TME (Figure 1). 

Nonmalignant cells of TME, like stromal cells and fibroblasts, can secrete growth factors, 

such as hepatocyte growth factor (HGF), fibroblast growth factor (FGF) and C-X-C motif 

chemokine ligand 12 (CXCL12) chemokine. These secreted molecules, not only involve in 

growth and survival of malignant cells, but also involve in recruitment of other cells into the 

TME, due to their chemoattractant efficacy [33]. In a report, CXCL12 is shown to regulate 

the differentiation of the macrophage by an autocrine/paracrine mechanism which is 

characterized by expression of the angiogenic factors, VEGF and chemokine (C-C motif) 

ligand 1(CCL1). Interestingly, it is further shown to downregulate RUNX3 expression, which 

maintains CD4 and CD14 expression in mononuclear phagocytes as a part of the 

transcriptional program induced by CXCL12 [60]. Besides, immunosuppressive and 

proangiogenic functions of VEGF, MDSCs induced by VEGF signaling can play important 

roles in tumor immune evasion in ovarian cancer [61]. In a line VEGF inhibits DC 

differentiation into mature DC cells [62] and promotes the accumulation of MDSCs, Tregs, 

and TAMs [61] and RUNX3 can directly inhibit VEGF secretion through transcriptional 

repression [63] (Figure 1). These reports suggest RUNX3 as a potential candidate in the 

regulation of the tumor microenvironment, with the ability to suppress activities of tumor FO
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promoting cytokines. 

HYPOXIA, EPIGENETICS, AND ANGIOGENESIS 

The hypoxic environment is created due to an increase in the tumor size followed by the 

subsequent inadequate supply of oxygen in a growing tumor and further encompasses 

metabolic and biological processes, making them more aggressive and irresponsive to 

therapeutic interventions [64]. Growing body of evidences have shown the role of hypoxia in 

maintenance of cancer stem cells (CSCs), through repressed tumor cell differentiation and 

increased therapeutic resistance thus assuring tumor progression [65]. In other report, 

hypoxia mediated repression of mesenchymal stem and progenitor cell differentiation is 

substantiated as a critical factor in the evolution of a tumor stromal microenvironment, the 

putative cancer stem cell niches [66]. In keeping with this fact, hypoxia upregulates hypoxia-

inducible factor 1 alpha (HIF-1α) that induces angiogenesis, and it is associated with 

activation of genes involved in metastasis [13], such as increased cell migration and ECM 

remodeling [3]. 

In various cancer tissues, RUNX3 is silenced due to promoter DNA hyper methylation. 

However, the effect of the hypoxic tumor microenvironment in the regulation of RUNX3 is 

obscure. Our group has described a mechanism for the first time to silencing of RUNX3 due 

to histone modification under hypoxic microenvironment. Histone methylation and 

deacetylation occur under the influence of histone methyltransferase (HMT) G9a and histone 

deacetylase (HDAC) 1 respectively [67]. HMT G9a is upregulated by hypoxia [68] and is 

responsible for poor prognosis and metastasis of several human cancers [69-72]. Hypoxia can 

also activate HDAC1 [73]. Acetylation of RUNX3 by p300 [74] and bromodomain (BRD) 

[75] is a key to the protein stability and cell-cycle arrest. Thus, RUNX3 inactivation could 

also be due to the histone deacetylation. In support of this, HDAC inhibitors restored RUNX3 
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expression and subsequent tumor-suppressive character in cancer cells [67, 76, 77]. Therefore, 

it can be of critical importance to rescue epigenetic loss of RUNX3 expression to help to 

prevent cancer cell from facilitated by hypoxic tumor microenvironment. 

Small noncoding RNAs, microRNAs (miRNAs), are the important molecule that plays 

critical roles in post-transcriptional regulation of genes affecting diverse biological processes 

in a large number of cell types [78], along with their critical roles as tumor suppressors or 

promoters. Specific groups of miRNA are regulated by hypoxia [79]. Emerging evidences 

have shown that miRNAs regulated tumor microenvironment influencing tumor immune 

invasion, tumor angiogenesis and tumor-stromal interaction [80, 81]. However, upregulated 

RUNX3 expression is identified in epithelial ovarian cancer due to repressed miR130b 

expression and subsequent promotion of carcinogenic feature [82], in GC, our group has 

shown silencing of RUNX3 by miR-130a/miR-495 for the early tumorigenic progression due 

to increased VEGF secretion in hypoxic status [83]. These reports suggest probable 

manipulation of the tumor microenvironment by targeting RUNX3. 

Dynamic shuttling of RUNX3 between nuclear and cytoplasmic compartments is tightly 

linked with nuclear components, signifying probable importance of targeting RUNX3 to the 

nuclear matrix for active regulation and biological consequences [84]. In support of this, 

threonine 209 phosphorylation on RUNX3 by p21 activated kinase 1 (Pak1) translocate it 

from nucleus to the cytoplasm and subsequently converses its biological functions [85]. In 

another report, provirus integration site for Moloney murine leukemia virus 1 (pim-1) was 

shown to phosphorylate RUNX3 and alter its expression by mislocalization in salivary gland 

adenoid cystic carcinoma (ACC) [86]. Besides mislocalization and inactivation of RUNX3, 

ubiquitination and subsequent proteasomal degradation are also substantiated for its mode of 
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inactivation in GC infected by virulent cytotoxin-associated gene A (CagA)-positive 

Helicobacter pylori. CagA can bind to RUNX3, inducing ubiquitination and subsequent 

degradation of RUNX3 by proteasomal machinery [87]. In response to these reports, we can 

suggest that blocking mislocalization and ubiquitination of RUNX3 could be of importance in 

tumors to prevent from advancing to malignancy. 

In recent years, a number of reports have shown evidence of hypoxic stress in the tumor 

microenvironment, playing a prominent role in tumor immune responses. Upregulated HIF-

1α in hypoxic environment facilitates the immune-suppressive ability of MDSC and TAM 

and augment differentiation of MDSC to TAM [88]. Under hypoxic conditions, RUNX3 

decreases the half-life of HIF-1α, its stability, transactivation activity and VEGF secretion 

due to repressed nuclear localization. Furthermore, overexpression of RUNX3 significantly 

inhibits hypoxia-induced angiogenesis [89]. The critical role played by RUNX3 in 

inflammatory cells have also been emphasized by some authors, rather than its tumor 

suppressive role [43]. On this note, we can speculate that forcefully targeting RUNX3 to over 

express in a hypoxic tumor could be a promising intervention to regulate and activate 

immune responses, and modulate ECM and CAF in TME to inhibit tumor growth, migration, 

invasion and angiogenesis (Figure 1). 

However, RUNX3 is established as a potent tumor suppressor in GC and some other 

forms of the tumor; the oncogenic behavior of RUNX3 has also been specified. Patients with 

oral squamous cell carcinoma (OSCC) are identified for high occurrence and low survival 

rates. Furthermore, mice subcutaneously inoculated with RUNX3 knockdown OSCC verified 

for the reduced bone invasion and production of osteolytic factors [19]. In another report 

RUNX3 restoration in OSCC cells illustrated to suppress cell migration and invasion by FO
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downregulating MMP-9 expression and secretion, thus potentiating antiangiogenic behavior 

by inhibiting VEGF activity [90]. In a model of skin tumorigenesis, leukocytic loss of 

RUNX3 suppressed protumorigenic cytokines, interleukin-17a (IL-17a) and OPN 

substantially decreasing carcinogen-induced skin tumorigenesis [91]. In head and neck 

squamous cell carcinoma (HNSCC), overexpressed RUNX3 is detected as a critical reason 

for a malignant phenotype which is caused, in part, due to demethylation during cancer 

progression [17]. These reports reflect on the organ-specific and contextual based behavior of 

RUNX3. 

IMPLICATIONS FOR CANCER THERAPY 

RUNX3 expressed in T cells have an important role in the functioning of the immune system. 

It has been reported that mice deficient in RUNX3 spontaneously develop immunological 

abnormalities like airway hypersensitivities, colitis and also gastric hyperplasia [92, 93]. 

Likewise, T-cell-targeted knockdown in mice spontaneously develop asthma-like symptoms 

with infiltration of lymphocytes in the lungs [94]. Reduced RUNX3 in gastric carcinoma is 

positively correlated with repressed Th1-associated factor and decreased Th1 cell-mediated 

immunity is associated with immune escape of cancer cells [52, 53]. In addition, miRNA-145 

could regulate the balance of Th1/Th2 through targeting RUNX3 in asthma patients, and 

miRNA-145 and RUNX3 can be used as biomarkers or targets in the diagnosis or therapy of 

asthma [95]. On this note, it can be of great significance to target RUNX3 for the prevention 

of immunological disease, including the immune escape of cancer cells.  

Leukocyte infiltration into tumors of a certain size is interconnected with tumor 

angiogenesis. Pro-angiogenic factor VEGF and related molecules are effective monocyte 

attractants leading to the monocytes recruitment into tumors advancing to metastasis FO
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(reviewed in [96]). Thus, the inhibition of leukocyte recruitment could be of therapeutic 

importance to suppress the tumor angiogenesis. As increased expression of RUNX3 is 

determined to be needed for VEGF suppression in OSCC [90], it can be speculated that 

targeting RUNX3 could be a potent molecular tool to prevent tumor growth and angiogenesis 

through repressing leukocyte infiltration into tumors.  

CONCLUSION 

Specifically, in GC and many other forms of cancer, RUNX3 suppression through different 

microenvironmental states, including hypoxia, is highlighted for cancer initiation, invasion 

and metastasis. While in some cancers, RUNX3 is illustrated oncogene-enhancing cancer cell 

proliferation and invasion. The involvement of RUNX3 in immune cell maintenance and 

regulation has forced researchers to address RUNX3 as a tumor immune microenvironmental 

regulator, rather than focus only on an appreciation of its role as a tumor suppressor. As TME 

has inevitable importance in the progression of cancer, the role of RUNX3 must be further 

explored in order to bolster early findings of its potential as a target for the effective 

treatment of cancer. 
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Figure Legend 

Figure 1. Role of RUNX3 in the tumor microenvironment and its impact on EMT, 

tumor growth, invasion and metastasis. A growing tumor lacks oxygen (O2) and becomes 

hypoxic. The hypoxic tumor modulates the tumor microenvironment for its further 

progression to malignancy. Extracellular matrix (ECM)-secreted cytokines facilitate 

epithelial-mesenchymal transition (EMT) and invasion, increased tumor-infiltrating immune 

cells suppress immunosurveillance and increase angiogenesis, tumor-modified cancer 

associated fibroblast (CAF) produce chemokines that attract other tumor-growth-favoring 

cells into tumor. RUNX3 can repress these phenomena by targeting tumor infiltrating cells, 

ECM and their secretions.  
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