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ABSTRACT 

Physical exercise can be effective in preventing or ameliorating various diseases, including 

diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not 

everyone may be able to participate in exercise due to illnesses, age-related frailty, or 

difficulty in long-term behavior change. An alternative option is to utilize pharmacological 

interventions that mimic the positive effects of exercise training. Recent studies have 

identified signaling pathways associated with the benefits of physical activity and discovered 

exercise mimetics that can partially simulate the systemic impact of exercise. This review 

describes the molecular targets for exercise mimetics and their effect on skeletal muscle and 

other tissues. We will also discuss the potential advantages of using natural products as a 

multi-targeting agent for mimicking the health-promoting effects of exercise.  
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INTRODUCTION 

The health benefits of exercise have been well-established. Exercise is closely related to 

health conditions of bone, immune system, brain, and reproductive system as well as skeletal 

and cardiovascular systems (1). Physical exercise has been shown to have a positive impact 

on a wide range of diseases including obesity, metabolic diseases, cardiovascular disease, 

cancer, neurodegenerative disease, and osteoporosis (2, 3). Exercise also has anti-depressant 

effects and improves immune function, and therefore may contribute as a defense strategy 

against infectious diseases such as COVID-19 (4, 5). Nevertheless, exercising on a regular 

basis may not be an option for everyone. Therefore, exercise mimetics, pharmacologic 

therapeutics that mimic the health benefit effects of exercise, have been proposed as an 

alternative option (1). Exercise mimetics may, to some extent, generate health benefits 

without performing actual exercise. Recent studies have identified pathways that are activated 

during physical exercise and found critical signaling molecules that contribute to the health-

promoting effects of exercise. In this review, we will discuss the potential targets of exercise 

mimetics and the need for developing exercise mimetics from natural sources. 

 

Skeletal muscle adaptation and health benefits of exercise 

Exercise promotes skeletal muscle adaptation and these adaptive changes are the basis for the 

health benefits of exercise (6). Endurance exercise and resistance exercise induce different 

adaptive changes to the skeletal muscle (7). The major adaptive changes of endurance 

exercise include increase in mitochondrial density, oxidative function, and capillarization (7). 

It is also well-known that endurance exercise promotes transformation of glycolytic muscle 

fibers to oxidative muscle fibers (2). Oxidative muscle fibers are rich in mitochondria 

compared with glycolytic muscle fibers, have higher myoglobin content, and are more 

densely vascularized (2). They also perform increased fatty acid oxidation due to the FO
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increased levels of lipid-metabolizing enzymes, which provide extra energy for performance 

and reduce the dependence on glucose (8). This results in increased lactate tolerance and 

endurance capacity (8). On the other hand, resistance exercise leads to increased muscle 

strength and power as a result of neuromuscular adaptation (9). Resistance exercise promotes 

development of glycolytic muscle fibers and directly increases the size of muscle fibers  (9). 

The enlargement of muscle fibers is attributed to upregulation of protein synthesis and 

selective hypertrophy of fast twitch fibers (10). Although endurance exercise and resistance 

exercise both provide health benefits, there can be some differences in the particular effect 

each type produces. For instance, endurance exercise is known to be more effective in 

reducing cardiovascular risks, while resistance training can be more effective in maintaining 

muscle mass and physical function. Combination of endurance exercise and resistance 

exercise have been reported to be more potent in reducing insulin resistance and functional 

limitation in abdominally obese adults, compared to either modality alone (7).  

Exercise has a positive effect not only on skeletal muscles, but also on various organs and 

tissues including the heart, brain, adipose tissue, liver, blood vessels, and bones (11). 

Therefore, the effect of exercise goes beyond improving muscle function and strength, 

leading to other health-promoting effects on cardiovascular function, memory, immunity, 

metabolism, and aging (12-14). While the impact of physical training or exercise mimetics on 

multiple organs are well-documented, the underlying molecular mechanism is still unraveling 

(15). In this regard, myokines have been suggested as an important factor to explain the 

multiple benefits of exercise (16). Myokines are peptides synthesized and released by 

myocytes in response to muscular contraction (16). Myokines are implicated in the autocrine 

regulation of muscle function as well as in paracrine and endocrine regulation of other tissues 

and organs including adipose tissue, liver, and brain (16). Secretome profiling of primary 

human skeletal muscle cells revealed 305 myokines (17). While the role of each myokine is FO
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still under investigation, certain myokines appear to have a physiological effect on other parts 

of the body leading to favorable health outcomes, and thus represent a promising target for 

exercise mimetics. In addition, studies have found specific genes expressed in multiple 

tissues that mimic the diverse effects of exercise when activated. Thus, modulating the 

activity or expression of these genes could potentially simulate certain aspects of physical 

training. Next, we will describe some of the potential targets of exercise mimetics.  

 

Molecular targets of exercise mimetics  

Irisin 

Irisin is a hormone-like myokine induced by exercise, and is also expressed in small amounts 

in bone, brain, and other tissues (18, 19). The peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α) is a critical regulator of exercise-induced skeletal muscle adaptation 

(20). And exercise-driven upregulation of PGC-1α in muscle promotes the synthesis of 

fibronectin domain-containing protein 5 (FNDC5), which is subsequently cleaved to generate 

irisin (18, 21). The level of irisin positively correlates with muscle mass and muscle strength 

(19) and injection of irisin rescues denervation-induced loss of skeletal muscle mass by 

enhancing satellite cell activation and reducing protein degradation (22). Also, upregulation 

of the PGC-1α/FNDC5/irisin pathway has been suggested to be responsible for the exercise-

mediated accelerated recovery of myopathy through increasing mitochondrial fission and 

mitophagy (23).  

 Irisin acts as a link between muscle and other tissue and organs, and has positive effects on 

obesity, insulin resistance, type 2 diabetes, brain, and bone health (24). Irisin attenuated LPS-

induced inflammation in mature adipocytes (25). Exercise has been known to have major 

impacts on adipose tissue browning and fat metabolism (26). The conversion of white to 

brown adipose tissue mediated by exercise has been reported to be through inducing irisin FO
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which stimulates the expression UCP-1, the master regulator of brown adipose tissue (27). 

The benefit of physical exercise on bone mineral density is widely-accepted, and irisin has 

been reported to play an active role between skeletal muscles and bones (19). Irisin promotes 

cortical bone mass and strength as well as osteoblast differentiation through 

regulating expression of bone-specific genes and upstream signaling pathways (24). In 

addition, exercise increases the hippocampal expression of FNDC5, the precursor of irisin, in 

mice, in a PGC-1α-dependent manner (28). Irisin stimulates neurogenesis, synaptic plasticity, 

and cognitive function by upregulating the expression of brain-derived neurotrophic factor 

(BDNF), demonstrating that irisin may act as a link between exercise and brain function (29). 

 

Brain-derived neurotrophic factor (BDNF) 

BDNF is a polypeptide belonging to the neurotrophin family. It regulates neuronal 

proliferation, differentiation, maturation, and plasticity in neurogenesis (30). Varying 

intensity of exercise has been reported to increase BDNF mRNA expression in the 

hippocampus of mice (31, 32). BDNF has been known to play a crucial role in exercise-

induced neurogenesis, synaptic plasticity, and improved cognition. Interestingly, plasma 

concentration of BDNF is also increased by exercise (33). Notably, BDNF is increased in 

human skeletal muscle after exercise as well as in electrically stimulated muscle cells (34). 

Induction of BDNF through exercise and its multifaceted effect on the various organs 

suggests BDNF as a myokine. Running induces upregulation of BDNF in skeletal muscle and 

is involved in exercise-induced skeletal muscle regeneration (35). BDNF decreases the 

atrophy of skeletal muscle following exercise and is mediated via AMPK phosphorylation 

(36). BDNF acts in an autocrine or paracrine fashion with strong effects on peripheral 

metabolism, including fat oxidation, and subsequent effects on the size of adipose tissue (37). 

BDNF is also effective against insulin intolerance and has been shown to play an important FO
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role in angiogenesis, cardiovascular development, and cardioprotection (38). Furthermore, 

circulating BDNF levels are decreased in patients with obesity, type 2 diabetes, 

cardiovascular disease, depression, and Alzheimer’s disease (34).  

 

Interleukin-6 (IL-6) 

IL-6 was originally identified as a proinflammatory cytokine, synthesized by the liver and 

expressed in monocytes and macrophages, contributing to immune responses (1). However, 

IL-6 is also produced and released by skeletal muscle after prolonged exercise and may 

function as a myokine, independent from controlling inflammatory responses. (39). It is well 

known that the level of circulating plasma IL-6 as well as expression of IL-6 receptor in 

skeletal muscle are upregulated after exercise (40, 41). By contrast, the plasma TNF-α level 

was not increased by exercise and only slightly increased in extremely strenuous exercise 

conditions such as marathons (40). IL-6 production in muscle is independent of nuclear 

factor-κB activation, and thus differs from the mechanism observed in immune cells (42). IL-

6 has beneficial effects on muscle formation and growth (39). IL-6 knockout mice showed 

impaired hypertrophic muscle growth, which is attributed to blunted accretion of myonuclei 

(39). Moreover, several studies suggest that IL-6 acts as a myokine in other organs. Exercise 

decreases visceral adipose tissues and this effect of exercise is abrogated by IL-6 blockade 

(43). IL-6 contributes to hepatic glucose production during exercise (44). IL-6 also enhances 

fat oxidation in skeletal muscle via AMPK activation and increases lipolysis in skeletal 

muscle with little effect on adipose tissue (39). Additionally, glucose uptake and fatty acid 

oxidation by IL-6 in skeletal myotube were abolished by an AMPK-dominant negative 

construct, further suggesting a connection between exercise, AMPK, IL-6, and metabolism 

(45). Adult IL-6 knockout mice show impaired neurogenesis suggesting that lack of IL-6 

might be detrimental to neurogenesis in the adult brain (46). Collectively, induction of IL-6 FO
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appears to contribute to the metabolic and neurogenic effects generated by physical exercise.  

 

AMP-activated protein kinase (AMPK) 

AMPK is the master regulator of metabolism sensing energy supplies (47). AMPK is 

activated in skeletal muscle during exercise in response to increased binding of AMP and 

decreased binding of ATP (48). Transgenic mice carrying inactive muscle-specific AMPK 

showed reduced exercise capacity and impaired glucose tolerance and insulin response (49). 

AMPK activation is required for exercise-induced mitochondrial biogenesis via PGC-1α (47). 

Many studies showed that the AMPK activator, 5-aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) mimics the effects of exercise. AICAR consumption alone enhanced 

running endurance by 44% and metabolic genes in sedentary mice (50). AICAR increases the 

levels of glucose transporter type 4 (GLUT4) and mitochondrial enzyme in skeletal muscle 

(51). AICAR also increases angiogenesis and vascularization by inducing VEGF-A 

expression, which in turn facilitates stable supply of oxygen and nutrients similar to exercise 

(52). AICAR was used as a “next-generation” performance-enhancing drug in the Olympic 

Spanish Cycling Team, and a sports doctor was arrested for doping (2).  

AICAR also has a positive effect on other organs. AICAR reduces circulating levels of 

triglyceride and blood pressure and promotes hepatic fat consumption (53). Further, AICAR 

inhibits inflammatory response and cytokine levels. AICAR inhibits NF-κB DNA binding 

and cytokine expression in human macrophages (54). Notably, AICAR treatment improved 

spatial memory and neurogenesis in spite of the poor permeability through the blood-brain 

barrier, suggesting that the positive effect of AICAR in the brain is probably due to the 

indirect effect of AMPK activation in other organs (52, 55). AICAR improved cognition and 

motor function in mice, but it was abolished in mice carrying mutant muscle-specific 

AMPKα2 (56). These results suggest the importance of muscle AMPK activation on the FO
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effects of AICAR in brain. Although it was a transient effect, AICAR also enhanced 

hippocampus cell number and BDNF protein levels in mice (57).  

 

Peroxisome proliferator-activated receptor δ (PPARδ)  

PPARs are a family of nuclear hormone receptors that sense metabolic status and are 

involved in lipid metabolism (58). There are three isoforms, PPARα, β/δ, and γ, and PPARδ is 

the predominant form in skeletal muscle (59). Selective PPARδ agonist GW501516 increased 

the number of oxidative myofibers and the level of running endurance in adult mice (50). 

Exercise-induced performance improvement was attenuated in PPARδ-deficient mice (8). 

These effects are attributed to PPARδ-induced suppression of glucose catabolism; glucose 

sparing delays hypoglycemia and extends running time (8). PPARδ overexpression increases 

AMPK activity, and PPARδ activity is also stimulated by AMPK (60). PPARδ appears to 

interact with AMPK and synergistically regulates exercise endurance genes (50). In line with 

this, GW501516 has been listed as an illegal drug by the World Anti-Doping Agency similar 

to AICAR (52).  

PPARδ also plays a critical role in metabolic diseases. Constitutive PPARδ activation in 

mouse adipocytes resulted in reduced fat composition and prevented high-fat diet-induced 

obesity (61). GW501516 also induces fatty acid oxidation and ameliorates obesity and insulin 

resistance in mice (62). In obese monkeys, GW501516 attenuated dyslipidemia, lowering 

triglyceride and LDL-c levels while increasing HDL-c (63). Cardiomyocyte-restricted PPARδ 

knockout decreased the rate of fatty acid oxidation, resulting in lipid accumulation in the 

heart (64).  

GW501516 has a positive effect on the brain, although it hardly crosses the blood-brain 

barrier. Administration of GW501516 improves hippocampal neurogenesis and spatial 

memory (55). These results suggest that the positive effect of GW501516 on the brain is FO
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likely due to the indirect exercise mimetic effects (52).  GW501516 was developed because 

of its possible beneficial effects on metabolic diseases and cardiovascular diseases, but its 

carcinogenic properties were identified in animal studies (52). The discovery of safer small 

molecules that can increase PPAR activity can be a strategy to develop exercise mimetics.  

 

Estrogen-related receptor γ (ERRγ)  

ERRγ is a member belonging to the nuclear receptor super-family and plays a key 

role in regulating skeletal muscle adaptation to exercise through regulating mitochondria 

biogenesis, angiogenesis, and oxidative muscle remodeling (65-67). Transgenic mice 

expressing ERRγ in skeletal muscle exhibit red muscles, larger mitochondria, and improved 

oxidative capacity and vascularization (68, 69). ERRγ is highly expressed in oxidative and 

vascularized muscle and is induced by endurance exercise (65). While ERRγ-induced 

oxidative muscle transformation and vascularization is independent of PGC-1α (68), exercise 

and ERRγ individually and cooperatively attenuate muscle damage in PGC-1α knockout mice 

(67). ERRγ is recognized as a promising target of exercise mimetics because of its role in 

direct regulation of oxidative muscle remodeling (2). Further, overexpression of ERRγ 

attenuates the symptoms of Duchenne muscular dystrophy and muscle damage (70). These 

results suggested that genetic activation of ERRγ led to exercise-like phenotype in skeletal 

muscle with positive effects towards muscular disease (47). However, only a few studies 

reported the effects of ERRγ agonist on skeletal muscle or muscular disease. ERRγ agonist 

GSK4716 increases genes involved in mitochondrial biogenesis, fatty acid oxidation, and 

TCA cycle in mouse myotubes (69). 

However, studies on activating ERRγ in other organs have not always met with 

positive results. ERRγ was reported to block hepatic insulin signaling via transcriptionally 

regulating LIPIN1 expression (71). Inverse agonist of ERRγ also ameliorates chronic alcohol-FO
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induced liver injury in mice (72). Also, treatment with an inverse agonist of ERRγ resulted in 

antimicrobial effect and improved host survival (73). However, the systemic effect of ERRγ 

activation in various organs or diseases requires further examination.  

 

The need for developing exercise mimetics from natural products 

Exercise mimetics should have physiological effects in various tissues or organs in order to 

mimic the pleiotropic effects of physical exercise. Modulating the activity or expression of a 

single gene may not be sufficient to generate the multiple effects observed in exercise. Also, 

as physical exercise induces broad-ranging effects on various types of cells, tissues, and 

organs, it is highly unlikely that a single pharmacological agent can mimic the complex and 

wide-ranging effects. However, the combination of compounds affecting two different 

exercise-mediated targets has been shown to elicit synergistic effects in terms of mimicking 

the response to exercise (50). Hence, multi-targeting pharmacological agents have a greater 

potential to simulate the effect of exercise rather than single-targeting compounds. In this 

regard, exercise mimetics may be more effective if designed as a polypill, for polypills could 

target multiple pathways to closely simulate the complexity of the exercise response. Some 

natural bioactive compounds have been shown to display multi-targeting effects (74, 75). 

While compounds with less selectivity are generally not favored in the conventional drug 

discovery concept, certain compounds with the right combination of multi-targets may be 

useful in the case of exercise mimetics. In this context, natural extracts containing various 

compounds or multi-targeting compounds could have benefits for a potential exercise 

mimetic.  

 Further, the constant activation of metabolic pathways of by exercise mimetics can induce a 

chronic catabolic state, with potentially deleterious outcomes (15). It is likely that exercise 

mimetics would be applied for a long period for the purpose for maintaining health and FO
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preventing diseases, and since natural products are safer, they may more suitable than drugs 

for long-term consumption. Considering the side effects induced by the use of single-

targeting drugs, natural products may be preferred as exercise mimetics. Several natural 

products have been identified to increase skeletal muscle mass, strength, and function. 

However, the effects on various organs and the relationship between skeletal muscle and 

other organs should be investigated to develop exercise mimetics. Table 1 lists natural 

compounds used as exercise mimetics base on in vivo studies. The exercise mimetic effects 

observed in muscle (e.g. increased skeletal muscle mass, strength, and exercise capacity) and 

in other tissues/organs are separately described.  

 

Candidates for natural exercise mimetics  

Resveratrol, a stilbene-structured compound naturally occurring in plants, increased 

oxidative muscle fibers by regulating the AMPK-PGC-1α pathway, and enhanced grip 

strength, and exercise capacity in high-fat diet-induced obese mouse model (52, 76). Notably, 

resveratrol increased serum BDNF concentration, a myokine increased by exercise, and it is 

possible that the positive effects on muscle are mediated by activating AMPK as BDNF 

contributes to anti-atrophic effect of exercise via the AMPK-PGC-1α pathway (36, 77). 

Ursolic acid, a natural triterpene compound found in various fruits and vegetables, induced 

exercise mimetic effects in various animal models (Table 1) (78). It also increased serum 

irisin levels and maximal muscle strength in a clinical study, suggesting that ursolic acid may 

exert other health beneficial effects in humans (79). Apigenin, a natural flavone abundant in 

various plants such as parsley and celery, increases serum irisin and FNDC5 mRNA 

expression in skeletal muscle (80). Apigenin also restored isoflurane-induced BDNF 

suppression in aged rat hippocampus and high-fat diet-induced downregulation of AMPK 

phosphorylation in skeletal muscle (81, 82). These may explain some of the health benefits of FO
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apigenin including improved cognitive function, insulin resistance, and the suppression of 

inflammation. Daidzein, a natural isoflavone found in soybean, suppresses cisplatin-induced 

muscle atrophy by regulating the Glut4/AMPK/FoxO pathway (83). Since it is unknown 

whether daidzein regulates AMPK in other tissues, it is not clear whether the health effects on 

other tissues are mediated via AMPK activation of skeletal muscle although soy isoflavone 

increased AMPK activity in visceral fat and 3T3-L1 cells (84). Quercetin is a natural 

flavonoid occurring in vegetables, fruits, tea, and wine (85). The target of quercetin has not 

been identified in relation with exercise mimetic effects, but quercetin increases BDNF level 

in the rat brain, which partially recapitulates exercise effects (32, 86). Tomatidine is abundant 

in green tomatoes but is typically reduced by 99% following ripening to red tomato (87). The 

exercise target of tomatidine is unknown, but it stimulates protein synthesis by increasing 

mTORC1 activity in mouse skeletal muscle and improves skeletal muscle function (87). 

Tomatidine also attenuates inflammation and nonalcoholic fatty liver disease and extends 

health span (88-90). Seaweeds Codium fragile and Undaria pinnatifida extracts improve 

running endurance and skeletal muscle mass by upregulating PPARδ and ERRγ, AMPK and 

ERRγ, respectively (6, 91). γ-Oryzanol, containing a mixture of triterpene alcohols and sterol 

ferulates found in rice bran oil, is a well-known antioxidant used by body builders and 

athletes to boost strength and increase muscle gain (92). It improves muscle function by 

upregulating PPARδ and ERRγ activity in skeletal muscle (92). Hydrangea serrata tea has an 

approximately 1000-fold higher sweetness than sugar and therefore has been used as a sugar 

substitute by diabetic patients. It also increases exercise endurance and muscle mass by 

enhancing PPARδ expression in the skeletal muscle (93). All of these exercise mimetics have 

been reported to exhibit health benefits beyond improving muscle function, suggesting the 

potential for development as a natural exercise mimetic. A more comprehensive investigation 

is further needed to fully understand the health-promoting effect in connection with exercise. FO
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Table 1. Candidates of exercise mimetics from natural sources.  

 Name Model Feeding period Effect on muscle  Target Other physiological effects Ref 

1 Resveratrol Male KM mice 

21 days 

400mg/kg for 12weeks Oxidative muscle fiber↑ 

 

AMPK ·Spatial memory↑ 

·Neurogenesis↑ 

·Serum BDNF↑ 

·Blood glucose, body weight↓ 

·Immune system↑ 

(52, 

76, 

77, 

94) 

High-fat diet-

induced obesity 

model 

4g/kg of food (400mpk) 

for 16weeks 

·Grip strength↑ 

·Rotarod activity↑  

 

2 Ursolic acid High-fat diet-

induced obesity 

model 

0.14% ursolic acid for 

6weeks 

·Grip strength↑ 

·Skeletal muscle mass↑ 

·Running endurance in 

treadmill↑ 

 ·Tumors↓ 

·Fasting glucose↓  

·Anti-obesity 

·Bone formation↑ 

·Memory impairment↓ 

·Inflammation↓ 

(78, 

79, 

95) 

Fasting(24hr) 

induced muscle 

atrophy model 

25mg/ml ursolic acid 

twice injection for 24hr 

·Skeletal muscle mass↑  

10 months old 

male C57BL/6  

200mg/kg, twice a day 

for 7 days 

·Type2a, slow-twitch 

fiber, myoglobin ↑ 

AMPK 

22 months old 

male C57BL/6 

0.27% ursolic acid for 2 

months  

·Grip strength↑ 

·Skeletal muscle mass↑ 

·Specific force↑ 

 

Korean healthy 

men 

450 mg/day for 8 weeks ·Maximal muscle 

strength 

Irisin(s

erum) 

3 Apigenin High-fat diet-

induced obesity 

model (9weeks)  

0.1% apigenin diet for 8 

weeks 

·Muscle atrophy↓ 

·Running endurance in 

treadmill↑ 

AMPK 

 

·Cognitive function by 

regulating BDNF signaling ↑ 

·Reverse depression by 

upregulating BDNF  

·Blood glucose, serum lipid, 

(80-

82, 

96-

99) 
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6weeks old male 

C57BL/6  

0.2, 0.4% apigenin diet 

for 7weeks 

·Running endurance in 

treadmill↑ 

·Skeletal muscle mass↑ 

Irisin insulin resistance index↓ 

·Tumor growth↓  

·Inflammation↓ 

Sciatic nerve 

denervation-

induced muscle 

loss model 

1% apigenin diet for 2 

weeks  

·Muscle atrophy↓ 

 

 

16months old 

male C57BL/6 

25, 50, 100mg/kg/day 

for 9 months 

·Frailty index↑  

·Grip strength↑ 

·Running endurance in 

treadmill↑  

·Muscle atrophy↓ 

 

4 Daidzein Cisplatin 

induced muscle 

atrophy model 

20, 80mg/kg daidzein 

for 12days  

·Skeletal muscle mass↑ 

·Grip strength↑ 

AMPK ·Inflammation↓ 

·Breast cancer↓ 

·Plasma lipid profile↑ 

·Fasting blood glucose ↓ 

·Insulin resistance↑ 

·Obesity↓ 

·Spatial learning, memory↑ 

·BDNF level↑ 

(83, 

99-

103) 

8week old 

female mice 

0.1% daidzein for 1 

week 

·Skeletal muscle mass↑  

5 Quercetin High-fat diet-

induced obesity 

model 

0.05%, 0.1% quercetin 

for 9 weeks  

·Skeletal muscle mass↑  ·Inflammation↓ 

·Insulin sensitivity↑ 

·Cognitive function↑ 

(85, 

86, 

104-
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Dexamethasone 

induced muscle 

atrophy model 

0.15, 0.45% quercetin 

glycoside in drinking 

water for 7 days 

·Skeletal muscle mass↑  ·BDNF expression ↑ 

·Healthspan↑ 

·Obesity↓ 

112) 

24week old 

male C57BL/6 

mice 

1.5, 3.0g/L quercetin 

glucoside in drinking 

water for 24weeks 

·Grip strength↑ 

·Rotarod time↑ 

·Skeletal muscle mass↑ 

 

8week old male 

ICR mice 

12.5, 24mg/kg for 7 

days 

·Running endurance in 

treadmill↑ 

·Voluntary wheel 

running ↑ 

 

26 male 

badminton 

players 

1000mg per day for 

2months 

·Endurance exercise 

performance↑ 

 

6 Tomatidine 7week old male 

C57BL/6 

0.05% tomatidine for 5 

weeks 

·Skeletal muscle mass↑ 

·Specific force↑ 

·Grip strength↑ 

 ·Inflammation↓ 

·Nonalcoholic fatty liver 

disease↓ 

·Lifespan, healthspan↑ 

(87-

90) 

Fasting-induced 

muscle atrophy 

model 

25mg/kg tomatidine at 

the beginning of the fast 

and 12h later 

·Skeletal muscle mass↑ 

·Specific force↑ 

 

Limb 

immobilization 

induced muscle 

atrophy model 

25mg/kg tomatidine 

every 12h for 8 days 

·Skeletal muscle mass↑ 
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7 Codium fragile 

extract 

19week old 

male C57BL/6 

mice 

0.1% Codium fragile 

extract diet for 10 

weeks 

·Running endurance in 

treadmill↑,  

·Skeletal muscle mass↑ 

PPARδ 

ERRγ 

·Arterial thrombosis↓ 

·Inflammatory cytokine↓ 

·Anti-cancer immunity 

·Immune enhancing 

·Anti-obesity  

(91, 

113-

117) 

8 Undaria 

pinnatifida 

extract 

12week old 

male C57BL/6  

0.25% U pinnatifida 

extracts for 8 weeks 

·Running endurance in 

treadmill↑,  

·Skeletal muscle mass↑ 

AMPK 

ERRγ 

 

·Growth and metastasis of 

cancer 

·Anti-obesity 

·Presynaptic Plasticity↑ 

·Recover immunity 

·Insulin resistance↓ 

·Inflammatory cytokine↓ 

(6, 

118-

122) 

9 γ-Oryzanol 74week old 

male C57BL/6  

0.02% 𝛾-Oryzanol diet 

for 13 weeks 

·Running endurance in 

treadmill↑  

·Grip strength↑  

PPARδ 

ERRγ 

·Improve cognitive function 

·Antidepressant-like effect 

·Insulin resistance↓ 

·Inflammation↓ 

·Anti-obesity 

·Immune response↑ 

(92, 

123-

128) 

32 Health young 

men (18~32yr) 

600mg/day γ-Oryzanol 

and resistance training 

for 9weeks 

·Skeletal muscle 

strength↑ 

 

1

0 

Hydrangea 

serrata tea 

12weeks old 

male C57BL/6 

0.25%, 0.5% H. serrata 

extract for 8 weeks 

·Running endurance in 

treadmill↑,  

·Skeletal muscle mass↑ 

PPARδ 

 

·Anti-obesity 

·Inflammation↓ 

·Total cholesterol and low-

density lipoprotein, insulin↓ 

(93, 

129, 

130) 
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