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ABSTRACT 

Cancer remains a life-threatening disease and accounts for the major mortality rates 

worldwide. The practice of using biomarkers for early detection, staging, and customized 

therapy may increase cancer patients’ survival. Deubiquitinating enzymes (DUBs) are a 

family of proteases that remove ubiquitin tags from proteins of interest undergoing 

proteasomal degradation. DUBs play several functional roles other than deubiquitination. 

One of the important roles of DUBs is regulation of tumor progression. Several reports 

have suggested that the DUB family members were highly-elevated in various cancer cells 

and tissues in different stages of cancer. These findings suggest that the DUBs could be 

used as drug targets in cancer therapeutics. In this review, we recapitulate the role of the 

DUB family members, including ubiquitin-specific protease, otubain protease, and 

important candidates from other family members. Our aim was to better understand the 

connection between DUB expression profiles and cancers to allow researchers to design 

inhibitors or gene therapies to improve diagnosis and prognosis of cancers.  
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INTRODUCTION 

Cancer is one of the major diseases causing death globally, accounting for 8.2 

million deaths in 2012 (1). Recent advances in molecular and cellular biology have played 

important roles in understanding cancer and breakthroughs that have been being translated 

into therapy. Because of these recent developments, genes that are involved in cancer are 

being unraveled (2, 3). Most of the known cancer genes were originally identified by 

genetic evidence. A protein that is encoded by a cancer gene typically regulates cell 

proliferation and differentiation and eventually leads to cell death or apoptosis. Mutations 

that lead to oncogenesis typically occur in genes that mediate DNA repair mechanisms (4).  

 

Ubiquitin proteasome pathway 

The post-translational attachment of ubiquitin is a modification that can determine a 

protein’s fate. While ubiquitin itself is a small conserved protein, its covalent conjugation 

to protein substrates and to other ubiquitin molecules is a tightly-controlled process 

involving complex cellular machinery. Perhaps the most prominent and well-known 

function of ubiquitin is to target a protein for degradation by the 26S proteasome. 

Degradation can be accomplished via an isopeptide bond formation between the carboxy-

terminal glycine (Gly) site on the ubiquitin and an ε-amino group of the lysine (Lys) side 

chains of a protein substrate. The ubiquitin-substrate system is further diversified via the 

process of polyubiquitination, during which a ubiquitin molecule’s C-terminal Gly is FO
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conjugated with one of the seven Lys residues on another ubiquitin (Lys6, Lys11, Lys27, 

Lys29, Lys33, Lys48, or Lys63) or with the N-terminus to form linear chains.  

The ubiquitin-proteasome protein degradation pathway is comprised of ubiquitin, a 

three-enzyme ubiquitination complex, the intracellular protein ubiquitination targets, and 

the proteasome that is the organelle of protein degradation, as well as ubiquitin-activating 

enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). 

 

Deubiquitinating enzymes 

Deubiquitinating enzymes (DUBs) are proteases that reverse protein ubiquitination, a 

process which is significant for normal homeostasis. DUBs have four distinct mechanisms 

of action: 1) processing of ubiquitin precursors, 2) recycling of ubiquitin molecules during 

ubiquitination, 3) cleavage of polyubiquitin chains, and 4) reversal of ubiquitin conjugation 

(Figure 1). DUBs regulate several cellular functions, including proteasome-dependent and 

lysosome-dependent proteolysis, gene expression, cell cycle progression, chromosome 

segregation, kinase activation, apoptosis, localization, DNA repair, maintenance of 

stemness, spermatogenesis, and degradation of signaling intermediates (5–10).  

Approximately 100 DUBs are encoded in the human genome [10]. Based on the 

organization of the catalytic domain, DUBs are classified into distinct families, the vast 

majority of which are cysteine proteases. These include ubiquitin-specific proteases (USPs), 

ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado-

Joseph disease proteases (MJDs), Jab1/Mov34/Mpr1 (JAMM) metalloproteases, and the 

recently-discovered MIU-containing novel DUB family, (MINDY) proteases (11). FO
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UBIQUITIN-SPECIFIC PROTEASE FAMILY 

USP2 

USP2a, an isoform of USP2, is an androgen-regulated DUB that deubiquitinates the 

antiapoptotic proteins such as fatty acid synthase, Mdm2, and MdmX (12). USP2a 

expression is increased in glioma cells compared to normal brain tissues, which suggests 

that USP2a may correlate with malignant glioma progression, and therefore may be an 

effective marker for glioma prognosis (13). Furthermore, USP2 plays a role in tumor 

metastasis by modulating the activity or expression of MMP2, suggesting its use as a 

potential breast cancer marker (13). 

 

USP4 

USP4 has been strongly implicated in the regulation of tumor metastasis in breast 

cancer (14), liver cancer (15), and colorectal cancer (16). USP4 is significantly increased in 

melanoma and plays an oncogenic role by simultaneously inhibiting stress-induced cell 

apoptosis and promoting tumor metastasis (17). USP4 is an important protein that 

facilitates hepatocellular carcinoma (HCC) progression by stabilizing CYPA through 

deubiquitination and activating MAPK/CrkII signaling pathways, indicating that USP4 may 

act as a novel marker to predict prognosis and present a therapeutic opportunity for HCC 

(18). In breast cancer, USP4 promotes the migration and invasion of breast cancer cells via 

RLX-mediated TGF-β/Smad2/MMP-9 pathways, providing an attractive target for breast 

cancer therapy (19). The above results suggested that overexpression of USP4 in various FO
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cancers is due to the stabilization of other oncogenes in the respective cancer types. Thus, 

targeting USP4 as a biomarker could be useful for the early diagnosis of cancer.  

 

USP5 

USP5 acts as a exopeptidase that hydrolyzes isopeptide bonds in poly-ubiquitin 

from their free carboxy-terminal ends to produce monoubiquitin (20). USP5 knockdown 

suppressed cell proliferation, migration, and drug resistance and induced apoptosis, while 

USP5 overexpression promoted colony formation, migration, drug resistance, and 

tumorigenesis (21). USP5 plays a critical role in hepatocarcinogenesis through inactivation 

of the p14-p53 signaling pathway contributing to tumorigenesis and drug resistance, which 

provides a clue that USP5 could be a potential therapeutic target for HCC (22). In 

pancreatic cancer, USP5 plays a critical role in tumorigenesis and progression by 

stabilizing the FoxM1 protein, showing therapeutic potential against pancreatic cancer (23).  

 

USP7 

USP7, also known as herpes-associated ubiquitin-specific protease (HAUSP), was 

originally identified as an ubiquitin-specific protease that binds to a viral-encoded protein, 

called Vmw110 (24). HAUSP protein can bind to the herpes simplex virus type 1 (HSV-1) 

regulatory protein, which is known as infected cell polypeptide (ICPO). In epithelial 

ovarian cancer (EOC), USP7 and MARCH7 proteins are differentially expressed and the 

combination of USP7 and MARCH7 expression may function as promising biomarkers for 

EOC prognosis (25). HCC is one of the most dominant cancer types in the world. High FO
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expression of  USP7 mRNA and protein levels in HCC tissues compared to normal liver 

samples has been reported (26). Cell-based assays have suggested that USP7 expression 

confers cell proliferation, migration, and invasion capabilities. These data suggest that 

USP7 could be a novel independent prognostic marker for HCC. Recently, a study 

suggested that USP7 deubiquitinates Ki-67, and thereby promotes cell proliferation in non-

small-cell lung cancer (NSCLC) (27). Here, both Ki-67 and USP7 were expressed in 

NSCLC cells. Statistical data revealed a strong correlation between USP7 and Ki-67 levels. 

In contrast, siRNA targeting USP7 increased the ubiquitination of Ki-67 and led to delayed 

tumor growth. The above evidence suggests that USP7 could be an important therapeutic 

target in various cancer types.  

 

USP8 

USP8 belongs to the USP superfamily of DUBs targeting several substrates (28), 

including smoothened (29), frizzled (30), neuregulin receptor degradation protein-1, and 

receptor tyrosine kinase. Recently, the expression profile of USP8 in cervical squamous cell 

carcinoma (CSCC) has been studied (31). USP8 was upregulated in CSCC tissue samples 

compared to non-cancerous cervical tissues. Also, high expression of USP8 was associated 

with tumor stage and was recognized as an independent prognostic marker for CSCC. 

Elevated levels of USP8 led to cell proliferation, migration, and invasion of CSCC cell 

lines. Thus, USP8 could be a therapeutic and diagnostic target in CSCC patients.  
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USP10 

USP10, also known as UBPO, is a protein consisting of 798 amino acids and was 

originally discovered as a DUB that interacts with the Ras-GAP SH3 domain-binding 

protein (32). Increased USP10 expression has been detected in some breast cancer and 

glioblastoma samples. Overexpression of USP10 has been associated with poor prognosis 

for glioblastoma multiforme patients, while decreased USP10 has been observed in 

gastric cancer tissues, and its downregulation has been associated with invasion, 

metastasis, and poor prognosis of gastric cancer. Current studies have also shown that 

USP10 suppressed proliferation and growth of pancreatic cancer cells. Therefore, USP10, 

as a novel DUB, has a crucial role in various pathological processes of tumors. In gastric 

cancer (GC), clinical samples and cell lines showed low-level expression of USP10, and 

negative USP10 expression was associated with a marked propensity toward gastric wall 

invasion, lymph node metastasis, highly malignant biological behavior, and poor survival. 

USP10 identification in GC can potentially serve as a new prognostic indicator predicting 

the treatment outcome for GC patients. 

 

USP22 

USP22 is a novel DUB that has been related to cell cycle progression, therapy 

resistance, and metastasis. The expression frequency of USP22 was extremely high in HCC 

compared to normal liver tissues (31). Elevated levels of USP22 represented poor HCC 

patient survival and have also been associated with greater mortality in patients with 

advanced tumor stages, shown by Kaplan-Meier analysis. As revealed by multivariate FO
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analyses, USP22 is a self-regulating prognostic marker in HCC. Several other researchers 

have reported that USP22 was overexpressed in salivary duct carcinoma (33) and 

esophageal squamous cell carcinoma (34). The above findings indicate that high USP22 

expression might be an important factor in tumor progression and may serve as an 

independent molecular marker. 

 

USP32 

USP32 is a highly-conserved and uncharacterized gene, located on the 17q23.1-

17q23.2 chromosomal band (35). USP32 was present in 22% of primary breast cancer 

tumors compared to non-cancerous mammary tissues, and 50% of breast cancer cell lines. 

Endogenously, USP32 was highly-elevated in the MCF7 cell line, and no mutation was 

detected in this cell line, indicating that the wild-type gene was overexpressed. Additionally, 

USP32 has a role in human small cell lung cancer (SCLC) (36). USP32 is highly-expressed 

in SCLC tissue samples compared to normal tissues. During the disease aggravation stage, 

USP32 has been positively correlated with SCLC expression. On the other hand, 

downregulation of USP32 in vitro caused reduced migration and proliferation rates of 

SCLC cells. Also, this downregulation arrested the cells at the G0/G1 phase by elevating 

p21 and decreasing CDK4-cyclin D1 complex levels. Cleaved caspase-3 and cleaved-

PARP were activated when the USP32 gene was silenced, eventually leading to apoptosis 

by altering the epithelial-mesenchymal transition. Overall, USP32 could be a potential 

target for breast and lung cancers. 
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OTUBAIN PROTEASE FAMILY 

OTUB1 

The OTU domain‐containing ubiquitin aldehyde‐binding protein 1 (OTUB1) 

belongs to the OTU DUB family and is reported to be involved in various malignancies 

(37-40). Recently, the role of OTUB1 in human gliomas has been elucidated (41). 

Immunoblot and immunohistochemical experiments validated that glioma tissues 

overexpress OTUB1 genes and statistical studies showed that the expression pattern of 

OTUB1 was highly-linked to the WHO grades of the gliomas. On the other hand, 

downregulation of OTUB1 was linked to poor migration and also elevated EMT‐related 

protein E‐cadherin expression. Thus, OTUB1 might be involved in the regulation of ECM 

stability. The above results suggested that OTUB1 could be an important cancer marker in 

gliomas and other malignancies and could be a potential target for successful cancer 

therapy.  

 

A20 

A20 is a DUB that was originally found to be involved in autoimmunity and 

inflammation (42). However, a recent study proposed that A20 is highly involved in cancer 

metastasis (43). Here, A20 overexpression leads to metastasis of basal-like breast cancer by 

monoubiquitinating Snail1. In human basal-like breast cancers, A20 was significantly 

overexpressed and accounted for cancer metastasis. Additionally, A20 mediates TGF-β1-

induced EMT of breast cancers by monoubiquitylating Snail1. Reports also suggested that FO
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the transient knockdown of A20 displayed decreased lung cancer metastasis in orthotopic 

breast cancer models and mouse xenografts.  

 

 

 

DUB INHIBITORS 

A number of reports have described the identification and utility of small molecule 

DUB inhibitors as anticancer agents (44). Inhibition of DUBs leads to cellular changes, 

such as (i) aggregation of polyubiquitinated protein molecules, (ii) reduction in the group of 

monomeric ubiquitin moieties, (iii) increased rates of polyubiquitin assembly, (iv) overall 

reduction in DUB events, and (v) altered cellular activities, such as DUB regulation of 

oncoproteins (45). Generally, DUB inhibition leads to impaired proteasome function and 

aggregation of misfolded functional proteins, resulting in cellular toxicity and death. DUBs 

that control oncogenic proteins can be targeted by small molecules that inhibit 

deubiquitinating activity via UPS degradation, while DUBs that control tumor suppressors 

can be targeted by increasing the deubiquitinating activity, thus inhibiting oncogenic 

progression. Several studies have been carried out to design small molecule DUB inhibitors 

because they are simpler to design than enzyme activators, using substrate modeling and 

competitive inhibition (46, 47). A schematic representation of DUB inhibition on relevant 

pathways is depicted in Figure 2.  

An extensive study was carried out to discover drugs that inhibit DUBs and resulted 

in the discovery of ubiquitin aldehyde (Ubal) and ubiquitin vinyl sulfone (UbVS) (48). Due FO
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to their high molecular weights, peptidic nature, and lack of specificity, these compounds 

were not pharmacologically sustainable (48). The UCH family of proteins is involved in 

deubiquitination by removing ubiquitin from C-terminal adducts [48]. Hence, researchers 

have made an effort to design their inhibitors and ended up with an isatin O-acyl oximes 

series (48). They are competitive and capable of directly targeting the active site with 

minimal IC50 values. Basically, UCH-L1 decreases cell proliferation in neuroblastoma cells; 

when this inhibitor is applied, cell proliferation is elevated. Thus, the data support the anti-

proliferative nature of UCH-L1 proteins. A novel proteasome-inhibitory compound has 

been synthesized, called b-AP15 (49). The b-AP15 small molecule specifically inhibits 

USP14 and UCHL5 which are associated with 19S RP. Additionally, the compound b-

AP15 showed effective anti-cancer responses against other refractory cancer types. 

Inhibitors targeting other important DUBs are described in Table 1.  

 

CONCLUSION 

This review delivers a comprehensive report of the DUBs for cancer diagnosis and 

prognosis. Recent developments of cancer therapies and the promptness of their application 

to clinical use for various tumors validate the prospects of exploiting DUBs as targets for 

drug development. The expression profiles of several DUBs in different cancer types are 

discussed in Table 2. Moreover, these DUBs exert their function through binding to their 

proteins, which can be targeted. In other cases,  the DUB itself seems to be an excellent 

drug target. More detailed information on the roles, localization, regulation, and substrates 

of DUBs will help researchers understand their roles in oncogenesis and clinical FO
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applications of their inhibitors. Enhanced improvement in small molecule pharmacological 

development against DUBs will permit greater success in the treatment of cancer and other 

deadly diseases.   
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Table 1. DUBs and their inhibitors in cancer therapeutics 

DUB Inhibitor(s) Disease Indication Stage of 
development 

References 

USP1 ML323, Pimozide Oncology Preclinical (50) 

USP2 ML364 Inflammation Preclinical (50) 

USP4 Vialinin A Inflammation and 
oncology 

Preclinical (51, 52) 

USP5 WP1130    

 

 

 

USP7 

ADC-01, ADC-03 Oncology, Immuno-
oncology 

Preclinical (53) 

HBX41108 Oncology, Immuno-
oncology 

Preclinical (54, 55) 

P5091 Oncology, Immuno-
oncology 

Preclinical (56) 

P22077 Oncology, Immuno-
oncology 

Preclinical (56) 

USP8 9-(Ethoxyimino)-9H-
indeno (1,2-b) pyra-zine-
2,3-dicarbonitrile 

Oncology Preclinical (56) 

USP9X WP1130 Oncology Preclinical (57) 

USP10 
and 
USP13 

Spautin 1 Inflammation Preclinical (57) 

USP11 Mitoxantrone Oncology Preclinical (58) 

USP14 1U1, b-AP15, VLX1570, 
wp1130 

Neurodegeneration Preclinical (59) 

USP20 GSK2643943A Oncology Preclinical (60) 

USP30 15-oxospiramilactone Neurodegeneration Preclinical (61) 

USP47 P5091 Cancer Preclinical (56) 

UCH37 WP1130 Cancer Preclinical (57) FO
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UCHL5 b-AP15 Neurology Preclinical (62) 

UCHL1 LDN-57444 Cancer Preclinical (63) 

UCHL3 LDN-57444 Cancer Preclinical (64) 

UCHL5 TCID, b-AP15 Cancer Preclinical (62, 65) 

UCH37 WP1130 Cancer Preclinical (57) 
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Table 2. DUBs expressed in various types of cancer  

Disease DUB References 

Gliomas USP2a, USP22, USP44, BAP1, OTUB1 (41, 66, 67) 

Breast cancer USP2, USP22, USP37 (68, 69) 

Hepatocellular carcinoma USP4, USP5, USP11, USP22, UCHL1, 
A20, OTUB1 

(70, 71) 

Esophageal cancer USP4 (72) 

Melanoma USP4 (72) 

Pancreatic cancer USP5 (72)  

Epithelial ovarian cancer USP7 (72) 

Lung adenocarcinoma USP8 (73, 74) 

Gastric carcinoma USP10 (75) 

Endometrial cancer USP14 (75) 

Non-small cell lung carcinoma USP17, USP22, OTUD7B, OTUD6B (76, 77) 

Renal clear cell carcinoma USP21 (78) 

Muscle invasive bladder cancer USP18 (79) 

Cervical cancer USP22 

 

(80) 

Oral squamous cell carcinoma USP22 

 

(81) 

Papillary thyroid carcinoma USP22, USP33 

 

(82, 83) 

Salivary duct carcinoma USP22 

 

(33) 

Esophageal squamous cell 
carcinoma 

USP22 

 

(34) FO
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Salivary adenoid cystic 
carcinoma 

USP22 

 

(34) 

Bladder cancer USP28 (84) 

Colorectal cancer USP33, OTUB1, MYSM1 (85, 86) 

Prostate cancer USP39 (87) 

Malignant peritoneal 
mesothelioma 

BAP1 (88) 

Triple-negative breast cancer OTUD7B (89) 

Pancreatic ductal 
adenocarcinoma 

UCHL5 (90) 

Gastric cardiac adenocarcinoma UCHL1 (91) 

Cholangiocarcinoma UCHL1 (91) 

Aggressive multiple myeloma UCHL1 (92) 

Neuronal apoptosis USP4, UCHL1 (93, 94) 

Cardiac hypertrophy USP4 (95) 

Aneurysmal bone cyst USP6 (96) 

Pancreatic beta cells UCHL1 (97) 

Aneurysmal subarachnoid 
hemorrhage 

UCHL1 (98) 

Neuronal biomarker UCHL1 (98) 

Traumatic brain injury UCHL1 (99) 

Pancreatic neuroendocrine 
tumors 

UCHL1 (100) 
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FIGURE LEGENDS 

Figure 1. Various catalytic mechanisms exhibited by DUBs. DUBs can unknot ubiquitin 

conjugation by cleaving the bond between ubiquitin molecules and ubiquitin-target 

complexes, editing ubiquitin chains to remove one or more ubiquitin molecules, and finally, 

recycling of ubiquitin molecules in the ubiquitin-proteasome pathway. 

 

Figure 2. DUBs involved in the regulation of oncogenic pathways. Inhibition of specific 

DUBs leads to decreased cancer proliferation, drug resistance, and delayed metastasis.    
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