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ABSTRACT 

Herbal medicine, a multi-component treatment, has been extensively practiced for 

treating various symptoms and diseases. However, its molecular mechanism of action on the 

human body is unknown, which impedes the development and application of herbal medicine. 

To address this, recent studies are increasingly adopting systems pharmacology, which 

interprets pharmacological effects of drugs from consequences of the interaction networks that 

drugs might have. Most conventional network-based approaches collect associations of herb-

compound, compound-target, and target-disease from individual databases, respectively, and 

construct an integrated network of herb-compound-target-disease to study the complex 

mechanisms underlying herbal treatment. More recently, rapid advances in high-throughput 

omics technology have led numerous studies to exploring gene expression profiles induced by 

herbal treatments to elicit information on direct associations between herbs and genes at the 

genome-wide scale. In this review, we summarize key databases and computational methods 

utilized in systems pharmacology for studying herbal medicine. We also highlight recent 

studies that identify modes of action or novel indications of herbal medicine by harnessing 

drug-induced transcriptome data.  
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Current trends in systems pharmacology for herbal medicine research  

Medicinal herbs have been used extensively for the treatment of various ailments in 

ancient medical traditions of China (traditional Chinese medicine, TCM), Korea (traditional 

Korean medicine), Japan (Kampo medicine), India (Ayurveda), Indonesia (Jamu), North 

America (phytotherapy), and Europe (herbalism) (1). Standardized herbal extracts (hereafter 

referred to as herbs) or herbal formulae that blend several herbs into a single formula are 

composed of a variety of bioactive chemical compounds. They provide a fertile ground for 

modern drug development with therapeutic leads. Antimalarial quinine and artemisinin, 

antipyretic analgesic aspirin, and arsenic trioxide for leukemia are examples of modern drugs 

originally used in traditional medicine (2). In general, pharmacological effects of herbal 

medicine are achieved by their active ingredients that simultaneously modulate multiple 

biomolecules in the human body via an additive or synergistic manner. This multi-component 

nature of herbal medicine has been considered advantageous over single-target drugs for 

treating complex multifactorial disorders such as cancer and nervous system disease (3, 4).  

Although therapeutic effects of herbal medicine have been clinically verified in traditional 

settings for thousands of years, its unknown mode of action on the human body hinders its 

application and development.  

Along with great progress in systems biology, systems pharmacology or network 

pharmacology approaches have been introduced to decipher complex mechanisms of action 

(MOAs) of drugs in networks of biomolecules that interact with the drugs (5-7). These 

approaches have been extensively applied to explore pharmacological effects of multi-

component herbal medicine acting on multiple targets of disease from a holistic perspective 

(8). A typical network pharmacology approach starts from constructing a network in which a 

node represents either an herb, herbal ingredient, or target protein/gene and an edge indicates 

link between herb and its constituent compound or interaction between compound and its target FO
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(Figure 1). By associating targets with biological functions or diseases, an herb-compound-

target-function/disease network is constructed and leveraged to study the MOA of an herbal 

treatment. Protein-protein interaction (PPI) network could be further employed to interpret the 

synergistic effect of herbal medicine by analyzing interactions among target proteins (9, 10). 

As this network-based approach is solely based on the network constructed, a significant factor 

influencing subsequent analysis is the reliability of connections (herb-compound, compound-

target, and target-disease) in the network. However, establishing reliable connections requires 

laborious tasks such as identifying herbal ingredients and their molecular targets (11). Thus, 

most network pharmacology studies only cover a fraction of herbal compounds quantified and 

rely on target annotations based on in silico prediction. Moreover, although effects of 

compounds on targets depend on biological systems perturbed (e.g., tissue or cell), most of the 

available information on compound-target interactions have been obtained by high-content 

screenings in cell-free systems. In addition, even if reliable associations between compounds 

and targets are available, it is difficult to identify downstream genes affected by the targets to 

exert a therapeutic effect. 

One emerging alternative to address these issues is leveraging drug-induced 

transcriptome data. The gene expression profile induced by herbal treatment reflects genome-

wide effects of multi-component herbs in a certain biological system, thereby providing 

comprehensive and reliable associations between herbs and genes (12) (Figure 1). A typical 

application of drug-induced transcriptome data was first introduced systematically by the 

connectivity map (CMap) (13). CMap currently provides large-scale gene expression profiles 

before and after treatment with ~33,000 small molecule compounds in 230 human cell lines 

and periodically releases additional data (14). It has been widely utilized in research to retrieve 

drug repositioning candidates and to elucidate drug’s MOA in modern and herbal medicine (15, 

16). With a similar concept, drug-induced transcriptome data from MCF-7 breast cancer cell FO
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line treated with each of 102 TCM components (TCM102) have been published (17), enabling 

researchers to explore the activity of TCM ingredients at the molecular and cellular levels (18, 

19). As more and more herbal medicine studies conducting high-throughput transcriptome 

profiling have been published, numbers of gene expression data sets of herbs/ingredients 

generated in various experimental settings have been accumulated. To integrate these data, 

Fang S and colleagues have collected transcriptome data sets of 20 herbs and 152 ingredients 

and built an organized database, HERB, a high-throughput experiment- and reference-guided 

database of TCM (20). As demonstrated by the increasing demand for these key resources, 

analyzing transcriptome data of herbal treatment can efficiently uncover novel associations 

between herbal medicine and modern drugs, genes, and diseases, which in turn can encourage 

the application and development of herbal medicine. 

Systems pharmacology approaches using network-based methods or drug-induced 

transcriptome data are increasingly adopted pivotally in herbal medicine research. In this 

review, we summarize key databases and computational methods used in systems 

pharmacology for studying herbal medicine. We also highlight the recent application of 

pharmaco-transcriptomics in herbal medicine research. 
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Figure 1. Resources for network pharmacology in herbal medicine research 

Left shows typical forms of an herb-compound-target network (blue edges) and herb-gene or 

compound-gene network (pink edges) used in network pharmacology research. Right shows 

public databases frequently utilized to construct networks for herbal medicine research. 

 

Public databases used in systems pharmacology for herbal medicine research 

Systems pharmacology approaches for herbal medicine usually start with integrating 

current knowledge on different types of data (including herbs, compounds, targets, pathways, 

and diseases) and organizing them into a network. Typically, in the network, a node represents 

an herb, compound, target, pathway, or disease and an edge represents an interaction between 

nodes. Numerous databases provide information on the nodes or edges, each database 

containing data of different scopes and evidence levels. These databases can be divided into 

four types: herb-related (HRDB), compound-related (CRDB), target-related (TRDB), and 

disease-related (DRDB) databases (Table 1). Information on herbal properties and herbal 

ingredients can be obtained from HRDBs, such as TCMID (21), TCMSP (22), BATMAN-TCM 

(23), and SYMMAP (24). Most HRDBs provide not only information on herbal ingredients, FO
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but also ingredient-related targets, pathways, and diseases. For this reason, HRDBs have been 

mainly utilized for network pharmacology analysis of herbal medicine. The CRDB includes 

databases for compounds, compound-target interaction (CTI), and compound-induced 

transcriptome data. PubChem (25) and SwissADME (26) contain information on 

physicochemical descriptors, pharmacokinetic properties, and ADME (absorption, distribution, 

metabolism, and excretion) parameters of compounds, which can be used to calculate drug-

likeness values of herbal compounds. SwissTargetPrediction (27), STITCH (28), and 

Therapeutic Target Database (TTD) (29) provide known or predicted CTI information. 

Although high-throughput targeted assays have been developed to screen for drug targets, it is 

a fairly arduous task to identify binding targets on a genome-wide scale, in some cases for 

hundreds of herbal ingredients. Therefore, some CRDBs additionally provide information on 

CTIs predicted by using machine learning (30) or similarity (31) based on structures of 

compounds and targets. Among TRDBs, Uniprot (32) and GeneCards (33) provide information 

on the sequences and functional roles of proteins/genes. KEGG (34), Reactome (35), and gene 

ontology (36) provide sets of genes classified by their biological functions. These databases 

are utilized to perform functional enrichment analysis, such as GSEA (gene set enrichment 

analysis) (37). In addition, STRING (38) and Human Protein Reference Database (39) provide 

known PPI information. PPI information can be integrated with CTI to construct a target 

network in which potential drug targets are identified as interacted protein modules in the 

network (40). DRDB provides collections of genes and variants associated with diseases. 

DRDB is also widely used because one of the ultimate goals of systems pharmacology is to 

predict and evaluate therapeutic effects of drugs by exploring the relationship between drugs 

and diseases.  

 

Table 1. Public databases widely used in herbal medicine research FO
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Type Database Numbers of available data Website or Reference 

Herb-

related 

database 

TCMID 

(Version 2.0) 

46,929 TAM prescriptions 

8,159 herbs / 43,413 compounds 

http://www.megabio

net.org/tcmid/ 

TCMSP 

(Version 2.3) 

501 herbs / 13,144 compounds 

3,311 targets / 837 diseases 

29,384 HC pairs / 84,260 CT pairs 

2,387 TD pairs 

https://old.tcmsp-

e.com/tcmsp.php 

SYMMAP 

(Version 2.0) 

698 herbs / 26,035 compounds 

20,965 targets /14,086 diseases 

2,518 TAM symptoms 

1,148 MM symptoms 

http://www.symmap.

org/ 

Compoun

d-related 

database 

PubChem 

(2021) 

111 million compounds 

278 million substances 

295 million bioactivities 

https://pubchem.ncbi

.nlm.nih.gov/ 

STITCH 

(v5.0) 

430,000 compounds 

9,600,000 proteins 
http://stitch.embl.de/ 

CMap 33,000 compounds / 230 cell lines https://clue.io/ 

TCM102 
102 compounds 

1 cell line (MCF-7) 
(17)  

HERB 

7,263 herbs / 28,212 compounds 

12933 targets / 49,258 phenotypes 

6,164 gene expression profiles 

http://herb.ac.cn/ 

Target-

related 

database 

UniProt 

(2020.04) 

292,000 proteins 

(190 million sequences) 

https://www.uniprot.

org/ 

KEGG 

(2022.03.24) 
551 biological pathways 

https://www.genome.

jp/kegg/ 

Gene 

Ontology 

(2022.03.22.) 

7,838,790 gene sets involved in 

biological process, molecular 

function, and cellular components  

http://geneontology.o

rg/ 

STRING 

(v11.5) 

24,584,628 proteins 

5,090 organisms 
https://string-db.org/ 

Disease- DisGeNet  21,671 genes / 30,170 diseases https://www.disgenetFO
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related 

database 

(v7.0) 1,134,942 gene-disease associations .org/ 

(41) 

OMIM 

(2022.05.02) 
16,730 genes / 6,378 phenotypes 

https://www.omim.or

g/ 

(42) 

Human 

Phenotype 

Ontology 

(2022.04) 

4,791 genes / 10,274 phenotypes 
https://hpo.jax.org 

(43) 

TAM, traditional Asian medicine; MM, modern medicine. 

 

Computational approaches for studying herbal medicine  

With the introduction of polypharmacology, the paradigm of drug research has shifted 

from single-target to multi-target strategies, revealing the potential of multicomponent herbal 

medicines to treat a variety of multifactorial disorders (44-46). In line with this, various 

computational approaches have been introduced to identify targets, indications, and/or 

synergistic combinations of herbal medicines (Table 2).  

 

Prediction of pharmacological targets 

Network-based methods have been most widely applied to predict potential targets of 

herbs or herbal formulae. For example, Wang et al. (47) have predicted synergistic targets of 

four herbs, Radix Astragali Mongolici (RAM), Radix Puerariae Lobatae (RPL), Radix 

Ophiopogonis Japonici (ROJ), and Radix Salviae Miltiorrhiza (RSM) in cardiovascular 

diseases (CVD). They selected bioactive compounds of the four herbs by considering 

compounds’ drug-likeness and oral bioavailability. Targets of the compounds were then 

predicted based on their structural and physicochemical properties via a machine learning 

method (30). Finally, synergistic effects of RSM and other herbs were interpreted from target FO
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proteins shared by herbs in the herb-compound-target network. For another example, Li et al. 

(48) have investigated pharmacological targets of an herbal formula Qishenkeli (QSKL) by 

analyzing QSKL-induced transcriptome data of myocardial ischemia pig model. QSKL is a 

traditional herbal mixture used for routine treatment of CVD in China. It consists of six herbs: 

Astragalus propinquus Schischkin root and rhizome, Salvia miltiorrhiza Bunge root and 

rhizome, Lonicera japonica Thunb flower, Aconitum carmichaelii Debeaux lateral root, 

Glycyrrhiza glabra L. root and rhizome, and Scrophularia ningpoensis Hemsl root. Based on 

the hypothesis that drugs with similar drug-induced expression patterns share the same MOA, 

they virtually screened drugs with expression patterns similar to QSKL from CMap database. 

Known targets of these drugs were collected from DrugBank and considered as potential 

pharmacological targets of QSKL. As a result, MOA of QSKL was interpreted from a QSKL-

drug-target network that included 18 drugs within the ATC (anatomical therapeutic chemical) 

cardiovascular system category and their known target genes such as CPT-1 and CPT-2 

involved in cardiac energy metabolism. 

Several machine learning methods have also been employed to predict herb-target 

interactions (49-51). Wang et al. (49) have presented a network integration pipeline HTINet 

(Herb-Target Interaction Network) for herb-target prediction. HTINet firstly constructs a 

heterogeneous network by integrating five types of nodes (herb, target, drug, disease, symptom) 

and edges as their corresponding interactions from diverse data sets. From the network, feature 

representations of herb and protein nodes are extracted using a network embedding algorithm 

called node2vec (52). Finally, a classification model to predict herb-target interactions is built 

by applying a supervised learning method K-Nearest Neighbor (KNN), which learns rules from 

the known relationships between herbs and targets based on their features. In a similar way, 

Zhao et al. (50) have proposed a herb-target prediction method called HGNA-HTI 

(Heterogeneous Graph Neural Network with Attention Mechanism for Prediction of Herb-FO
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Target Interactions), which has three parts: i) constructing a heterogeneous herb-target network 

from diverse data sets, ii) learning feature representations of herbs and targets using an attention 

mechanism with respect to the topological structure of the network, and iii) predicting 

interactions between herbs and targets by link prediction based on features. As another example, 

Keum et al. (51) have employed classification models that predict the interactions between 

targets and herbal compounds by utilizing information on approved drugs, target proteins, and 

known interactions thereof. They used chemical structural similarities of drugs and sequence 

similarities of proteins as feature representations of drugs and targets, respectively. Similarities 

of drugs and proteins were calculated using the Open Babel fingerprint and the Smith-

Waterman algorithm, respectively. Using these features, a bipartite local model (53) was trained 

for predicting drug-target associations. Prediction models were generated separately depending 

on functional classes of target proteins, including G-protein-coupled receptors (GPCRs), 

enzymes, transporters, receptors, and other proteins. A list of herbal compounds was obtained 

from TCMID, TCM-ID, KTKP, and KAMPO. Chemical structure information was taken from 

ChemSpider. Lastly, target proteins of herbal compounds were predicted by applying the 

constructed classification models. 

 

Prediction of pharmacological indications 

Active compounds stemming from medicinal herbs are appealing in modern drug 

development due to their high efficacies and low toxicities (2, 54). However, new therapeutic 

opportunities for numerous herbal compounds are yet to be identified. In this section, we will 

review a few studies applying state-of-the-art machine learning methods to prioritize 

therapeutically effective herbal compounds for several diseases (55-58). 

Yoo et al. (55) have introduced a network-based method for identifying 

pharmacological effects of herbal compounds based on phenotype-related associations. They FO
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applied a random walk with restart (RWR) algorithm to generate phenotype vectors of herbs 

based on associations between known efficacies of herbs and thousands of phenotypes in a 

phenotypic network. The phenotypic network represents the hierarchical relationship of the 

Unified Medical Language System (UMLS) which provides integrated information for various 

phenotypic terms. Hierarchical clustering of phenotype vectors was conducted to extract herb 

clusters with similar efficacies. In an herb cluster, significantly enriched herbal compounds 

were selected using Fisher’s exact test. These compounds were considered to have 

pharmacological effects that the herb cluster had. The same group further applied a deep neural 

network approach to predict medicinal uses of herbal compounds based on molecular and 

chemical features of approved drugs (56). They extracted feature representations of approved 

drugs and herbal compounds using three types of data: i) latent knowledge of drugs obtained 

by text mining of scientific literature, ii) molecular interactions of drugs in the PPI network, 

and iii) chemical properties, including physicochemical properties, lipophilicity, 

pharmacokinetics, and drug-likeness. A deep learning model was then trained based on 

extracted features and verified indication information of drugs. Using the trained model, 

potential medicinal uses of herbal compounds were predicted based on extracted features of 

compounds. As another example, Kim et al. (58) have applied several classification algorithms 

to predict new indications for herbal compounds. They hypothesized that similar drugs could 

treat similar diseases. They used similarities for both drug and disease aspects as predictive 

features to predict novel drug-disease associations. Drug-drug similarity was calculated using 

four types of data (chemical structure, side-effects, gene ontology, and targets) and disease-

disease similarity was calculated using three types of data (phenotypes, human phenotype 

ontology, and gene ontology). As a training data set, information on drugs, diseases, and drug-

disease associations were obtained from DrugBank, Online Mendelian Inheritance in Man 

(OMIM), and a previous study (59), respectively. Prediction models were constructed using FO
R 
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three machine learning algorithms: logistic regression, random forest, and support vector 

machine algorithms. They showed that the random forest approach achieved the best 

performance upon cross-validation and external validation using independent dataset (58). 

 

Prediction of synergistic combinations 

Synergy is one of the major advantages of multi-component herbal medicine. 

Network-based strategies enable us to efficiently explore herb combinations and to better infer 

the mechanisms of synergistic action of herbs or herbal compounds. For example, Li et al. (60) 

have proposed an effective herbal combination for CVD from CVD-associated compound-

target networks. They collected information on known targets related to CVD from DrugBank, 

TTD, and a previous study (61) and predicted their potential ligands via a machine learning 

method (30). Based on this prediction, a bipartite network of compound-target was built. To 

find effective herbs for CVD, ligand compounds in the network were mapped to herbs that 

contained corresponding compounds using TCMSP database. Considering that herbal formulae 

consist of multiple herbs with different roles (62), Radix Salviae Miltiorrhizae (RSM) was first 

selected with expectation of its dominant role in CVD treatment as it was associated with many 

CVD-related targets and pathways. Li et al. (60) have hypothesized that if two herbs affect the 

same functional pathways, they would have pharmacological synergy against a disease. 

Therefore, additional herbs acting on the same pathways as those of RSM were recruited as 

follows: Carthamus tinctorius (CT) and Fructus Cartaegi (FC). Finally, a mixture of RSM, CT, 

and FC was proposed as a novel herb combination for the treatment of CVD. Therapeutic 

effects of the mixture were further validated in a mouse model of myocardial infarction.  

As an another example, Wang et al. (63) have proposed a network-based method to 

infer the molecular mechanisms of synergistic interactions of herbs. Considering that 

traditional herbal formulae were completed based on the principle of herb compatibility, they FO
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assumed that herb pairs in the existing herbal formulae would be more synergistic than not in 

the herbal formulae. To examine this assumption, they developed a network proximity model 

quantifying the degree of synergistic herb interactions. Firstly, information on herbal 

ingredients and their targets related to all herb pairs within herbal formulae were collected from 

TCMID and STITCH, respectively. This information was integrated into the human PPI 

network, resulting in a network consisting of three levels of interactions, including herb-

ingredient, ingredient-target, and target-target for each herb pair. Wang et al. then measured the 

network proximity of each set of targets of a given herb pair in the PPI network and showed 

that commonly used herb pairs tended to affect proteins at shorter distances in the PPI network 

compared to random herb pairs. In addition, they found that ingredients located at the center of 

the herb PPI network played an important role in their synergy with other herbs. It implies that 

this network proximity model is feasible to prioritize active ingredients producing 

combinational effects of herb pairs. 

 

Table 2. Computational approaches for studying herbal medicine 

Reference Prediction Type in silico Tools Utilized Data Sources Utilized 
Wang et 
al., 2012 
(47) 

herb-target 
interactions 

ligand-target interaction 
prediction (30) 

TCMSP (22), DrugBank (64), 
PharmGKB (65), TTD (29) 

Li et al., 
2017 (48) 

herb-target 
interactions 

ligand-target interaction 
prediction (30) 

TCMSP, DrugBank, CMap 

Wang et 
al., 2019 
(49) 

herb-target 
interactions 

node2vec, KNN, SVM, 
RF, LR, DT, GBDT 

HIT (66), Chinese 
pharmacopoeia, SIDER (67), 
MalaCards (68), DrugBank, 
SemMedDB (69), Zhou et al. 
(70), STRING (38) 

Zhao et al., 
2021 (50) 

herb-target 
interactions 

GNN (71), meta 
relation-based attention 
mechanism  

HeNetRW (72), YaTCM (73), 
TCMIP (74) 

Keum et 
al., 2016 
(51) 

herb-target 
interactions 

BLM(53), SVM DrugBank, TCMID (21), 
TCM-ID (75), KTKP 
(http://www.koreantk.com), 
KAMPO (http://kampo.ca/), FO
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ChemSpider 
(http://www.chemspider.com/) 

Yoo et al., 
2018 (55) 

indications of 
herbal compounds 

RWR, hierarchical 
clustering 

OMIM (42), KTKP, MeSH,  
TCMID, TCMSP, 
TCM@Taiwan (76), TCM-ID, 
KAMPO 

Yoo et al., 
2020 (56) 

indications of 
herbal compounds 

RWR, DNN MeSH, OMIM, KTKP, 
TCMID, COCONUT (77), 
FooDB (http://foodb.ca/), 
DrugBank, CTD (78), 
MATADOR (79), STITCH 
(28), TTD, BioGrid (80) 

Kim et al., 
2019 (58) 

indications of 
herbal compounds 

LR, RF, SVM DrugBank, OMIM, SIDER, 
OFFSIDES (81), STITCH, 
UniProt (82), DGIdb (83), 
HPO (84), DisGeNet (85), 
KTKP, TCMID, TCM-ID, 
KAMPO, BindingDB (86), 
MATADOR  

Li et al., 
2014 (60) 

effective 
combination of 
herbs 

ligand-target interaction 
prediction (30) 

DrugBank, TTD, TCMSP 

Wang et 
al., 2021 
(63) 

synergistic MOA 
of herbs 

network proximity 
measure (87) 
 

TCMID, STITCH, Cheng et al. 
(87) 

KNN, K-Nearest Neighbor; SVM, support vector machine; RF, Random forest; LR, Logistic 

Regression; DT, Decision Tree; GBDT, Gradient Boosting Decision Tree; GNN, Graph Neural 

Network; BLM, Bipartite Local Model; RWR, Random walk with restart; DNN, Deep Neural 

Network; GTB, Gradient Tree Boosting; OMIM, Online Mendelian Inheritance in Man; MOA, 

mechanism of action
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Transcriptome-based elucidation of molecular target and/or MOA of herbal medicine 

Herbal prescriptions are combinations of herbal formulas for treatment, meaning that 

various ingredients in these formulas have the potential to affect multiple genes and biological 

pathways. In recent decades, systems pharmacology studies applying transcriptome analysis 

after treatment with herbal medicines in vitro or in vivo have elucidated the mechanisms of 

herbal effect in various diseases (88). In this section, we will look at several studies 

investigating the molecular targets and MOA of herbal medicines using transcriptome data. 

Si-Wu-Tang (SWT) (Samul-tang in Korean, Shimotsu-to in Japanese) is one of the 

most popular herbal prescriptions consisting of four herbs including Paeonia Radix, Ligusticum 

Rhizoma, Rehmannia Radix, and Angelica Radix at a 1:1:1:1 ratio. It has been clinically applied 

for centuries in Asia to treat symptoms of hematological disorders such as anemia, menstrual 

irregularities, dysmenorrhea, and menopausal syndrome (89-97). In recent years, an increasing 

number of studies have elucidated the MOA of SWT by analyzing SWT-induced changes in 

gene expression. Wen et al. (91) have reported the MOA and therapeutic evidence of SWT 

using SWT-induced transcriptome data of MCF-7 cells and CMap data for the first time. Gene 

expression profiles of SWT-treated MCF-7 cells were significantly matched with those of 

estradiol-treated MCF-7 cells in the CMap database, suggesting that SWT might have potential 

phytoestrogenic effects. Pathway enrichment analysis using differentially expressed genes 

(DEGs) of SWT-treated datasets revealed that Nrf2-regulated genes, antioxidant genes, and 

chemopreventive inducible genes were affected by SWT treatment, but not by estradiol or 

ferulic acid in MCF-7 cells. The potential role for phytoestrogen of SWT was further confirmed 

by whole genome microarray profiling and by estrogen-responsive element luciferase reporter 

assay in MCF-7 cells (92), suggesting the potential of SWT as an estrogen receptor modulator. 

Another in silico analysis (93) predicted SWT’s new targets, FOS, JUN, and CAPS3 based on 

SWT-induced transcriptome data and herb-target information obtained from TCMID database. FO
R 

RE
VI

EW



These studies provide insights into the understanding of complex actions of SWT for 

gynecological diseases. Antioxidative and estradiol-regulating effects of SWT may help 

ameliorate ovarian follicular maldevelopment associated with ovulatory and menstrual 

disorders known to cause infertility (94). Recently, protective effects of SWT on ovarian 

function and oocyte maturation against cyclophosphamide (CP, a chemotherapy drug)-induced 

chronic ovarian dysfunction and maternal aging have been demonstrated using transcriptome 

analysis in an in vivo mouse model (95, 96). DEGs by SWT treatment in CP-treated mice 

ovaries were involved in ovarian follicle development, binding of sperm to zona pellucida (Zp), 

and microtubule nucleation (95). Among downregulated DEGs, oocyte-specific genes such as 

fertilization-related genes (Zp2, Zp3, Nlrp5), ovarian follicle development-related genes 

(Bmp15, Oas1d), and oocyte maturation-related genes (Obox1) were restored to normal levels 

after SWT administration. Additionally, further enrichment analysis using TargetScan, a tool 

for sequence-based microRNA-target predictions, identified microRNA binding sites of DEGs. 

Three microRNAs (miR-200b-3p, miR-665-3p, and miR-667-3p) had binding sites on either 

Bmp15 or Oas1 mRNA and their expression levels were restored in SWT plus CP-treated mice. 

Kim and You have also investigated the influence of SWT on ovarian reserve and fertilization 

in aged mice (> 40-week-old) (96, 97). They performed functional enrichment analysis of 

transcriptome data obtained from ovulated ovaries and revealed that RAS signaling pathway-

related genes were restored to normal levels as those in young mice after SWT administration 

to aged mice (96). SWT administration also restored miR-223-3p, which could interact with 

embryo implantation-related genes (Hal, Acp5) in the uterus of aged mice (97). This 

transcriptome analysis result was consistent with the phenotypic findings of the protective 

effect of SWT on the increase of ovarian reserve, ovulated mature oocytes, and pregnancy rate 

in aged mice (96, 97). 

Tao-Hong-Si-Wu Decoction (THSWD), a traditional herbal medicine, is composed of FO
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six herbs (Prunus persica, Carthamus tinctorius, Rehmannia glutinosa, Angelica sinensis, 

Paeonia lactiflora, and Ligustium chuanxiong). It has been used for clinical treatment of 

gynecological and cerebrovascular diseases (98, 99). Duan et al. (99) have performed 

transcriptome profiling of a rat stroke model treated with THSWD and functional enrichment 

analysis of DEGs induced by THSWD. From enriched functional terms, cell cycle, complement 

and coagulation cascades, and neuroactive ligand–receptor interactions were suggested as 

potential therapeutic targets of THSWD for intracerebral hemorrhage-induced neurological 

deficits.  

Compound Kushen Injection (CKI) is an approved Chinese patented drug in adjuvant 

treatment for chemotherapy. It consists of extracts of two herbs, Kushen (Sophora flavescens) 

and Baituling (Heterosmilax chinensis). Qu et al. (100) have leveraged CKI-induced 

transcriptome data of MCF-7 cells and revealed that CKI primarily downregulates most genes 

functioning in the cell cycle in a similar degree to a chemotherapeutical agent, 5-fluorouracil 

(5-FU). Interestingly, although CKI exerted anticancer effects on MCF-7 cells, the expression 

of TP53, a pro-apoptotic gene, was decreased by CKI treatment but increased by 5-FU. From 

this observation, they proposed that CKI might induce MCF-7 cell apoptosis via a p53 

independent pathway. The anticancer effect of CKI was also confirmed via transcriptome 

analysis using single herb extracts in another breast cancer cell model, MDA-MB-231 (101). 

CKI has complementary effects on cancer cells as Kushen perturbs cell cycle regulation 

whereas Baituling activates the immune system. Further transcriptome analysis and cell 

migration assay revealed that CKI could control cancer metastasis in multiple cancer cell lines 

of colon (HT-29, SW-480, DLD-1), brain (U87-MG, U251-MG), and breast (MDA-MB-231) 

(102). To identify core CKI response genes in cancer cells, further investigation was conducted 

to compare MCF-7 CKI-DEGs to Hep G2 (liver cancer) CKI-DEGs and MDA-MB-231 CKI-

DEGs by Cui et al. (103). They found that eight components of CKI obtained from BATMAN FO
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tools potentially interacted with 52 core genes in integrated DEGs in multiple cancer cell lines.  

Feifukang (FFK) is a pulmonary rehabilitation mixture comprising eight herbs for 

protecting lung function: Astragalus membranaceus, Codonopsis pilosula, Ophiopogon 

japonicus, Schisandra chinensis, Panax notoginseng, Bulbus fritillariae thunbergii, Rhizoma 

anemarrhenae, and Glycyrrhiza uralensis (104, 105). Li et al. (105) have evaluated anti-

pulmonary fibrosis effect of FFK in a bleomycin (BLM)-induced pulmonary fibrosis mouse 

model and explored targets of FFK by analyzing transcriptome data of FFK-treated mice. FFK 

has potential antifibrotic effects by significantly reducing collagen fiber formation in BLM-

induced lung fibrosis. Functional enrichment analysis of DEGs in FFK-treated mice showed 

that the JAK-STAT signaling pathway was significantly downregulated by FFK. qRT-PCR and 

western blot analysis of JAK1, STAT3, and ADAM17 as representative genes confirmed the 

effect of FFK in regulating lung fibrosis through JAK-STAT signaling pathway.  

Paeoniae Radix (PR), a root of the plant Paeonia lactiflora, is a key material in many 

herbal treatments. It is known to supply blood, prevent sweating, regulate menstruation, and 

relieve pain (106). Baek et al. (107) have identified a novel anticancer mechanism and activity 

of PR by analyzing transcriptome data derived from lung cancer cells treated with PR extracts 

or its ingredients. They performed a series of GSEA based on dose-dependent PR-induced 

transcriptome profiles of lung cancer cells and showed that PR and its two ingredients, 

hederagenin and oleanolic acid, exerted anticancer effects on lung cancer by downregulating 

the Aurora B pathway. The synergistic MOA of PR was further interpreted via an integrated 

PR extracts-compounds-target genes network in the Aurora B pathway. 

These individual studies on specific herbal formulae or an herb have laid the basis for 

developing efficient strategies to systematically infer MOA of herbal medicines at the 

molecular level, which may rationalize and modernize herbal medicines ultimately.FO
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Transcriptome-based identification of novel indications for herbal compounds 

Another great advantage of obtaining drug-induced transcriptome data of 

herbs/ingredients is that novel indications of herbal medicine can be rapidly screened 

computationally by a systems-based approach. A systems-based approach involves modulating 

a list of abnormally expressed genes in disease, in contrast to a traditional target-based 

approach which involves modulating the molecular state of one single protein (108). This 

approach was first designed and introduced to the public by CMap to link drugs and diseases 

(13). It defines a set of abnormally expressed genes in a disease, termed a disease signature, 

and queries it in the CMap reference database. It then searches for drugs that inversely regulate 

the expression of the disease signature, that is, those that decrease the expression of upregulated 

disease genes and increase the expression of downregulated disease genes. These drugs are 

considered candidates for reversing the diseased state back to the normal state. 

Several studies using this approach have demonstrated its applicability to drug 

repositioning of herbal compounds (109, 110). Luo et al. (109) have identified flavonoid 

luteolin as a therapeutic agent for ischemic stroke (IS) via inhibiting MMP9 and activating 

PI3K/Akt signaling pathways. Flavonoids are common constituents of plants used in traditional 

herbal medicine to treat a wide range of diseases (111). Luteolin was predicted by CMap 

analysis finding compounds that could regulate the expression of IS signature obtained from 

transcriptome data of IS patients. Further in vivo experiments demonstrated that luteolin 

reduced the infarct volume in a rat model of IS. Similarly, Liu et al. (110) have utilized the 

CMap database to seek compounds that could mimic transcriptional changes induced by a 

variety of interventions to reduce endoplasmic reticulum (ER) stress based on the observation 

that increased ER stress could develop leptin resistance and lead to obesity. As a result, they 

identified celastrol, a pentacyclic triterpene extracted from roots of Thunder of God Vine plant FO
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as a promising agent for treating obesity by increasing leptin sensitivity. They showed that 

celastrol could reduce ER stress and increase leptin sensitivity to reduce body weights of obese 

mice.  

TCM102 database is also widely utilized in research to discover new indications of 

herbal compounds based on the systems-based approach (18, 19). For example, Li et al. (18) 

have identified several vasodilators from TCM102 database. They first generated two gene 

signatures that involved in positive and negative regulation of blood vessel diameter by using 

databases GO and SEEK (search-based exploration of expression compendia) (112). 

Compounds that inversely regulated the expression of these two gene signatures were then 

screened by performing GSEA on drug-induced transcriptome data in TCM102. Top 10 

candidate compounds were tested for their vasorelaxant effects on vascular tension of 

constricted thoracic aortic rings in a rat model. Among these 10 compounds, ferulic acid 

exhibited the strongest vasorelaxant effect, and others also induced relaxation significantly. 

Finally, mechanisms of six compounds (ferulic acid, borneol, daidzin, magnolol, 

chenodeoxycholic acid, and artemisinin) were inferred from one integrated network 

representing pathways involving signature genes specifically regulated by these six compounds. 

As another example, Wang et al. (19) have utilized TCM102 database for the evaluation of 

phillyrin as an anti-cardiac fibrosis agent. Phillyrin was of interest because it was one of the 

major active ingredients of Forsythia suspensa, an herbal medicine used as an anti-

inflammatory and antipyretic drug (113). They first analyzed transcriptome data sets of human 

heart diseases and constructed a cardiac fibrosis (CF)-related gene functional module (CFGM), 

which had a set of genes containing three known CF markers, Postn, Ddr2, and Pdgfra, and 

their co-expressed genes. They found that treatment with phillyrin reduced expression levels 

of most CFGM members from phillyrin-induced transcriptome data in TCM102. They 

hypothesized that drugs decreasing the expression of CFGM had the potential to treat CF by FO
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inhibiting the core pathological process of CF. Cardio-protective and anti-CF effects of 

phillyrin were further validated in a myocardial infarction rat model.  

 These systems-based approaches have been mainly conducted by screening desired 

compounds using well-organized databases, such as CMap and TCM102. However, since these 

databases only contain data on small molecule compounds, herbs or herbal formulae are 

inevitably excluded from the screening. The expanded database including a variety of 

medicinal herbs would offer clues to identify evidence-based connections between herbs and 

diseases, hence spurring the application and development of herbal medicines. 

 

CLOSING REMARKS 

Systems pharmacology approach is increasingly adopted and developed in a wide 

range of modern drug development processes to better understand molecular MOA of drugs in 

the human body. Although this approach would also lend itself to herbal medicine research, its 

practical application and development are relatively slow. The main reason is that the data on 

herbs and herbal medicines themselves are insufficient for systems pharmacology approach to 

directly utilize. Whereas for modern drugs, CMap alone provides drug-induced transcriptome 

data for ~40,000 small molecules, and furthermore, the Library of Integrated Network-Based 

Cellular Signatures (LINCS) project is continuously generating drug-related multi-omics data 

sets including proteome, epigenome, and metabolome data for a comprehensive understanding 

of drug MOA. The advantage of such large-scale data is that we can rapidly utilize them to 

repurpose existing drugs in urgent situations. For example, several approved drugs have been 

proposed as candidates for clinical intervention to combat rapidly emerging diseases such as 

COVID-19 through in silico screening using CMap data (114, 115). Accordingly, the 

establishment of a well-organized drug-related database (e.g., drug-induced transcriptome data) 

for standardized herbs or herbal medicines should pave the way for advancement of herbal FO
R 

RE
VI

EW



medicine research. 
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