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Abstract 

Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using 

autophagic machineries. Mitophagy plays an essential role in mitochondria quality control and 

mitochondria homeostasis. Mitochondria dysfunctions and mitophagy defects in neurodegenerative 

diseases, cancer, metabolic diseases indicate a close link between human disease and mitophagy 

activity. Furthermore, recent studies showing the involvement of mitophagy in differentiation and 

development, suggest that mitophagy may play a more active role in controlling cellular functions. 

The better understanding of mitophagy will provide insight about human disease and offering novel 

chance for treatment. This review mainly focuses on the recent implications of mitophagy in human 

diseases and normal physiology.  
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Introduction 

Mitochondria are an essential organelle for providing energy and metabolic intermediates. In 

addition, mitochondria are a main site for ROS generation and central executioner of cell death (1). 

While normal mitochondrial activity is required for cell proliferation and metabolic processes, 

defective mitochondrial function has been associated with a wide variety human diseases, including 

cancer, diabetes mellitus and age-related disorders (2). Accumulation of mitochondrial DNA 

mutations and a decline in mitochondrial activity are believed to contribute to normal aging process 

(3). Therefore, quality control of mitochondria is a critical issue to maintain cellular function. Several 

mechanisms that regulate mitochondrial quality control have been identified. Mitochondria have their 

own resident mitochondrial chaperons and proteolytic system that help re-fold or degrade misfolded 

protein (4). In addition, constant mitochondrial fusion and fission process seems essential to maintain 

mitochondrial homeostasis via segregation of damaged mitochondria and exchange materials (5).  

Mitophagy is another critical mechanism for bulk degradation of mitochondria through a process 

using macroautophagy machinery. In this process, entire mitochondria are enclosed in double 

membrane vesicle, autophagosome, and delivered to lysosomes for hydrolytic degradation (6). Since 

John Lemasters used the term ‘mitophagy’ in 2005, mitophagy has been intensively studied. In 

particular, studies suggesting that the development of hereditary Parkinson’s disease is associated with 

mitophagy depletion have led to an increased interest in mitophagy. In 2006, groups of Jongkyeong 

Chung and Ming Guo simultaneously identified that Parkinson’s disease genes PINK1 and Parkin function in 

the same genetic pathway in Drosophila model , and in 2008, Richard Youle’s group demonstrated that Parkin 

mediates the removal of damaged mitochondria (7, 8), and the PINK-Parkin pathway emerged as a key 

regulatory pathway of mitophagy (9). Decreased mitochondria membrane potential (ΔΨm) induces stabilization 

of PINK1, followed by migration of Parkin to the mitochondria and promotes mitophagy to eliminate damaged 

mitochondria (10). Previous studies have well established that mitophagy is primarily responsible for 

the selective removal of damaged, old, or dysfunctional mitochondria. In most cases, mitophagy 

requires functional macroautophagy machinery, but recent observation suggest that several distinct 

forms of mitophagy also exist depends on types of stimuli and requirement of autophagic machinery 
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(11).  

Through recent active research on the molecular mechanism of mitophagy, mitochondrial receptors have 

been reported such as BNIP3, NIX/BNIP3L, FUNDC, and Atg32 in yeast, and several mitophagy regulatory 

proteins such as AMBRA, MUL1, AMFR, SMURF, and RHEB have been identified. Furthermore, in addition to 

its function on removing damaged mitochondria, mitophagy has been shown to perform a variety of 

physiological functions. As the molecular mechanisms and regulatory proteins on the mitophagy pathway have 

already been well-organized by other outstanding reviews (6) (12, 13) , this review will focus on introducing the 

latest research on the physiological mechanisms of mitophagy and its role in human diseases. 
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Physiological role of mitophagy 

1) Mitophagy in mitochondria quality control 

Mitophagy mechanism holds a central role in mitochondria quality control by recognizing damages to the 

mitochondria and selectively removing the damaged mitochondria. In fact, various models have demonstrated 

that suppression or abnormalities to mitophagy results in the accumulation of damaged mitochondria (10). 

Mitophagy contributes to mitochondria quality control not only by removing damaged mitochondria, but also by 

promoting biosynthesis of new mitochondria. It has been demonstrated that there is crosstalk between the 

mitophagy pathway and mitochondrial biosynthetic pathway. (10). Specifically, Plaikaras et al., established that 

mitophagy and mitochondrial biosynthesis are interfaced with each other to maintain mitochondrial homeostasis 

using a C. elegans model (14). They found that the mitochondrial biosynthetic pathway is also affected through 

retrograde signals upon inhibition of mitophagy. As a regulatory mechanism of mitochondrial biosynthetic 

pathway by mitophagy, Shin JH et al. discovered that Parkin-interacting substrate (PARIS/ZNF746) inhibits 

transcription of PGC-1a, an important regulator of mitochondrial biosynthesis (15). PARIS acts as a 

transcriptional repressor in the nucleus and inhibits the expression of PGC-1a. Upon activation of mitophagy, 

Parkin ubiquitinates PARIS and promotes its degradation, thereby increasing transcription of PGC-1a and 

promoting mitochondrial biosynthesis. Based on these results, there is an emerging possibility that 

mitochondrial quality can be improved through facilitation of mitophagy, which leads to selective removal of 

damaged mitochondria and simultaneously induce the production of new mitochondria.  

 

2) Mitophagy in cell differentiation and development 

During differentiation and development, it is understood that the primary role of mitophagy is to remove 

redundant mitochondria. The most representative example is during the erythrocyte differentiation process 

where Nix acts as a mitochondrial receptor to mediate mitochondria removal through mitophagy (16). In Nix 

knockout mice, mitochondria are not removed from erythrocytes and consequently, anemia is developed due to 

decrease of survival (16).  

 In the embryo, mitophagy has been shown to be involved in the removal of paternal mitochondria. In most 

eukaryotes, mitochondria are inherited maternally in offsprings and after fertilization, sperm mitochondria are 

immediately removed. In 2011, two research groups reported that in the embryo, paternal mitochondria are 

removed through mitophagy in C. elegans model (17, 18). Upon suppression of mitophagy, paternal 
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mitochondria lose their ability to undergo fusion with each other but are not removed. An interesting question of 

how sperm-derived mitochondria are selectively removed remains to be elucidated.  

 

3) Mitophagy in cell programming 

During the process of cell differentiation, cell reprogramming occurs in which the physiological functions 

of various cells such as energy metabolism and gene expression are greatly changed. Recently, it has been 

reported that functional changes as well as quantitative changes in mitochondria occur during cell differentiation. 

Wilson-Fritch et al. previously observed that significant increase in mitochondria quantity during the 

differentiation of 3T3-L1 fibroblasts to adipocytes (19). Interestingly, in addition to quantitative changes to the 

mitochondria, the mitochondrial remodeling is accompanied by changes in the protein composition of the 

mitochondria and in the metabolic characteristics of the mitochondria. Kita T et al. further revealed that 

mitochondrial remodeling in 3T3-L1 differentiation process is accompanied by  mitochondria fragmentation 

and that inhibition of fission resulted in a inhibition of fatty acid accumulation, which a representative 

differentiation marker (20). Because fatty acid metabolic pathway largely relies on nuclear process, these results 

indicate that functional change of mitochondria is closed linked to nuclear function. Interesting results that 

directly demonstrate the importance of mitophagy during the cell differentiation process were reported recently 

by the Gottlieb group (21). In C2C12 myoblast differentiation model, they found that both dramatic clearance of 

mitochondria and subsequent biogenesis of mitochondria occur at the early phase of differentiation. This 

remodeling of mitochondria is essential for metabolic shift from glycolysis to oxidative phosphorylation and 

myoblast differentiation to mature myotubes. Inhibition of autophagic flux abrogates both mitochondria 

remodeling and myoblast differentiation, implying pivotal role of mitophagy in C2C12 myoblast differentiation.  

Another representative example where mitochondrial remodeling occurs is during the differentiation process 

of stem cells. Nuclear reprogramming by Stemness-related transcription factors, such as Oct4, Sox2, Klf4 and c-

Myc, is sufficient to reverse-differentiate fibroblasts into pluripotent stem cells (22). Interestingly, recent studies 

have reported that the transition of mitochondrial restructuring and energy metabolism are required for the 

induction of orchestrated dedifferentiation and induced pluripotent stem (iPS) cells. While parental fibroblasts 

have well-developed elongated tubular-shaped mitochondria network in the cytoplasm, in iPS, there are 

distribution immature mitochondria primarily in the perinuclear region that are either globular or spherical 

shaped and contain underdeveloped cristae (23-26). In addition, dedifferentiation into iPS cells is accompanied 
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by metabolic remodeling by reducing mitochondrial DNA (mtDNA) copy number, reducing oxygen 

consumption, and increasing glycolysis. Since mitochondrial membrane potential and glycolytic genes precede 

the expression of pluripotent genes (23), metabolic remodeling is considered to have a causative role during the 

dedifferentiation process. Further studies are required to determine whether mitophagy is required in the 

induction process of iPS. Specifically, how mitophagy changes are linked to changes in nuclear gene expression 

will be an important question.  

 

4) Mitophagy in cell death 

Although mitochondria play an essential role in a cell’s survival, concurrently, it has a role in promoting cell 

death. In stress conditions, the permeability of the inner mitochondrial membrane increases and releases 

proapoptotic molecules such as cytochrome c and apoptosis inducing factor (AIF) to activate the cell death 

pathway. Despite mitophagy’s role in the suppression of cell death by removing damaged mitochondria, upon 

high stress conditions and the number of damaged mitochondria increases beyond the range that can be removed 

by mitophagy, the cell death pathway eventually becomes activated (27). Additionally, it has been identified that 

upon activation of apoptosis, caspase-mediated degradation of BECLIN1, AMBRA1, and others leads to 

suppression of mitophagy (28, 29). Therefore, the balance between mitophagy and the cell death pathway seems 

to play a critical role in determining the survival and death of cells dependent on normal and stress conditions 

(27). Identification of mechanisms that regulate the balance between mitophagy and cell death will provide 

important information in understanding the mechanisms underlying the maintenance of tissue function and 

disease.  

 

5) Mitophagy in immune response 

Recent studies have revealed the ability of mitophagy to suppress inflammation responses caused by viruses, 

bacteria, and others. Mitochondrial damage due to infection by foreign organisms results in the release of 

mitochondrial DNA and ROS and leads to the activation of inflammatory complexes such as NLRP3 (NLR 

family, pyrin domain containing 3). However, excessive inflammasome activation can lead to tissue damage and 

organ failure. Recently, it has been found that through the removal of damaged mitochondria by mitophagy, 

hyperactivation of NLRP3 inflammasome can be suppressed (30). Indeed, it was reported that PINK1-/- and 

Park2-/- mice were more sensitive to organ failure and death resulting from bacterial infection-mediated sepsis 
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(31). In addition, Kim MJ et al. demonstrated that SESN2 (sestrin2) can protect against sepsis-mediated damage 

by inducing mitophagy (32). Further studies are required to determine the molecular mechanism of how 

infection induces mitochondrial damage and how mitophagy is activated by infection-mediated mitochondrial 

damage.  

 
Overall, these results suggest that beyond its primary function to identify and selectively remove damaged 

mitochondria, mitophagy can influence various physiological processes. It has already been established that 

mitochondria can not only receive signals from the nucleus, but also send signals to the nucleus to as a 

mechanism to regulate gene expression. For example, unfold protein response (UPR) regulates transcription 

through signals sent to the nucleus as a response to increases in misfolded proteins. By specifically identifying 

how communication occurs between mitochondria, transcription processes of the nucleus, and other organelles, 

the novel functions of mitophagy will be understood.  

 

 

Role of mitophagy in human diseases 

Given the pivotal role of mitophagy in mitochondria homeostasis and quality control, it is not surprising that 

mitochondrial dysfunction is associated with many pathological conditions. Increasing recent studies 

reported defects in mitophagy process in various human diseases. 

 

1) Mitophagy in neurodegenerative disease 

Mitochondria damage and dysregulation of mitophagy have been implicated in several neurodegenerative 

disease including Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (33) (34). As a more direct 

evidences, the mutation of PINK1 and Parkin gene has been identified in hereditary Parkinson’s disease patients 

(35, 36). Consistent with the critical role of PINK1 and Parkin in mitophagy, dysfunctional mitochondria are 

found to be accumulated in the brain of Parkinson’s disease patients. The important role of PINK1 and Parkin in 

neuronal function was further supported by genetic studies in Drosophila model. The loss of PINK1 or Parkin 

function resulted in both mitochondria dysfunction and degeneration of dopaminergic neurons (8, 37). 

Interestingly, the impairment of mitochondria motility and mitophagy has also been recently reported in 

sporadic Parkinson’s disease (38). 
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Because of the morphological nature, the maintenance of mitochondrial homeostasis is very important for 

neuron. Thus, while mitophagy is thought to play a key role in the maintenance of neuronal function, studies on 

mitophagy within neurons are still limited. Specifically in axons, it is unclear how damaged mitochondria are 

removed by mitophagy. Recently, Ashrafi G et al reported that PINK1 and Parkin are also required to remove 

damaged mitochondria in neuronal axon (39). However, recent studies suggest that mitophagic clearance of 

damaged mitochondria in neuron is distinct from other type of cells. Transport of the damaged axonal 

mitochondria by microtubule-directed motor protein and mitochondria Rho-GTPase Miro has been shown to be 

important for mitophagy in axon (40), but considerable further studies are required to understand the exact 

molecular mechanism of neuronal mitophagy.  

In addition, mitochondrial abnormalities are also commonly found in diseases of the peripheral nerves (41, 

42). Charcot-Marie-Tooth disease type 2 (CMT), the inherited axonal neuropathies, is frequently associated with 

mutations in proteins related with mitochondria function such as MFN2, GDAP1 (43). Recently, Rizzo F et al. 

reported that motor neurons derived from iPS cells of CMT2A (MFN2) patients show defects in mitophagy (44), 

highlighting the importance of mitophagy activity to axonal homeostasis. Identification of the role of mitophagy 

in peripheral neuropathies is expected to present new therapeutic potentials. 

 

2) Mitophagy in cancer 

Dysregulation of mitochondria function and accumulation of mitochondrial DNA mutations have 

been frequently observed in human cancers. Recent studies have suggested that functional loss of 

mitophagy regulators is closely linked to cancer development and progression. The close relationship 

between mitophagy and cancer is evident through the regulation of expression of Parkin, BNIP3, NIX, 

and others by representative tumor suppressors such as p53 and Rb and oncogenes such as NF-κB, 

FOXO3, and HIF-1α (reviewed in (45). On the extension of this notion, recent studies have suggested 

that Parkin is a potential tumor suppressor. Parkin is located on chromosome 6q25-q27 that is 

frequently deleted in cancer (46, 47). It has been also observed that Parkin deletion is associated with 

progression of breast, colon, and liver cancer (48-50). In addition, Zhang C et al revealed that Parkin 

knockout increased spontaneous liver tumor and sensitized mice to γ-irradiation (IR)-induced 

tumorigenesis (51). These results further support the notion that Parkin may act as a tumor suppressor. 
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The expression of another important mitophagy regulator, PINK1, has been reported to be linked to 

the survival and prognosis of adrenocortical tumor (ACT) (52, 53). It was confirmed in a mouse 

model that knockdown of BNIP3 and NIX promotes tumor formation and metastasis (54, 55). These 

results suggest that mitophagy play a critical role to suppress cancer development. Increase of ROS 

could be responsible for facilitating cancer development upon mitophagy reduction. Indeed, the 

increase in ROS due to suppression of mitophagy has been demonstrated in the C. elegans model (14). 

Increased ROS induces DNA damage and contributes to cancer development by promoting 

abnormalities in gene expression.  

Contrastingly, studies have also presented that an increase in mitophagy in cancer cells promotes 

survival and adaption in microenvironments. Hypoxia condition is commonly developed in solid 

tumor. The removal of mitochondria is important to lower ROS generation and maintain oxygen 

homeostasis. It has been reported that HIF1α, which plays an important role in the adaptation and 

survival of cancer cells to hypoxic condition, induces the expression of BNIP3 (56). Therefore, it is 

suggested that the increase of mitophagy is an adaptive response to hypoxia to promote the survival of 

cancer cells (57). As such, increases in resistance of cancer cells may be an important factor in 

promoting the progression of cancer cells thereby consequently increasing metastasis. Overall, the 

role of mitophagy in cancer development seems rather complex. While the expression of mitophagy 

regulatory genes is reduced in a variety of cancers, the activation of these genes leads to cancer cell 

proliferation and tumor growth in nude mice. Furthermore, directed studies addressing whether 

mitophagy plays a causal role in cancer development and progression are very limited. Identification 

of more precise roles of mitophagy that is dependent on the cancer type and situation is expected to 

present the possibility of new treatment strategies. 

 

3) Mitophagy in heart and liver diseases 

Various cardiac dysfunctions in mouse models deficient mitophagy regulators illustrate the 

importance of mitophagy in heart. Mice deficient PINK1, BNIP3, NIX, and ATG5 developed various 
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heart defects including cardiomyopathy, cardiac hypertrophy, and accumulation of dysfunctional 

mitochondria (58-60). Gong G et al showed that Parkin-mediated mitophagy is essential for normal 

development of heart (61). Recent studies also reveal that mitophagy plays an important role in 

cardiac protection. Deletion of PINK1 and Parkin increased accumulation of dysfunctional 

mitochondria and exacerbated ischemia/reperfusion injury (62, 63). Ischemic preconditioning, which 

is the most potent intervention against ischemic injury, has been shown to induce Parkin translocation 

into mitochondria and require Parkin-mediated mitophagy (64). Previous studies suggest that 

mitophagy involves in development and maturation of heart and play important role in cardio 

protection in response to various stress.  

  In addition, mitochondria dysfunction and mitophagy also associate with liver diseases including 

diabetes, fatty liver disease. Takamura A et al reported that Atg7 knockout in liver let to accumulation 

of abnormal, swollen mitochondria in hepatocyte (65). BNIP3 deficiency led to increased proportion 

of mitochondria with loss of membrane potential and elevated inflammation, steatohepatitis (66). It 

has been also recently suggested that mitophagy protect liver against alcohol-induced injury (67). 

Thus, mitophagy is thought to protect against alcohol-induced liver injury and steatosis by selectively 

removing damaged mitochondria and by maintaining healthy mitochondria capable of degrade lipid 

through β-oxidation.    

 

4) Mitophagy in aging 

At both the cellular and individual level of aging, mitochondrial dysfunction and accumulation of mutations 

in mitochondrial DNA is commonly observed (3). The 'free radical theory' has been pointed out as the cause of 

aging, where mitochondrial dysfunction increases production of ROS, and through increases in mutations of the 

mitochondrial DNA, aging is promoted by the 'vicious cycle' in which mitochondrial dysfunction is exacerbated. 

Since mitophagy plays an important role in maintaining mitochondrial homeostasis, the decrease in mitophagy 

activity may be closely related to aging-related dysfunctions of cardiac and skeletal muscle, liver, and brain. As 

a direct evidence, using a mt-Keima model mouse that is capable of measuring mitophagy, a significant decrease 

in mitophagy activity in brain tissues of aged mice has been reported recently (68). Furthermore, it has been 
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demonstrated that in Drosophila and C. elegans models, suppression of mitophagy decreases life span (8, 14). 

Studies on the mechanism of aging-dependent reduction of mitophagy and the development of mitophagy 

improvement methods at the individual level will present new possibilities to cope with the decline of various 

tissue functions associated with aging. 

 

Recent studies proposed that targeting mitophagy would be a promising strategy for treatment of 

human disease. Although successful examples are still lacking mainly due to limitation of the method 

of increasing mitophagy, few examples suggest this strategy is worth a try. For example, 

overexpression Parkin led to increase of mitochondria activity and life span in Drosophila (69). Rye D 

et al recently reported that treatment of urolithin A, a novel mitophagy inducer, increased life span in 

C. elegans and improved age-related muscle function in mouse models (70).  

 

 

Molecular mechanism of mitophagy 

 

1) PINK1-parkin pathway 

While mitophagy mechanism has been systematically studied and the identified the important role of ATG 

genes in yeast (71), the regulatory pathway for mammalian mitophagy is still largely unknown. Studies on the 

molecular mechanisms of mitochondria in mammalian cells are mainly focused on the PINK1-Parkin pathway. 

According to studies conducted to date, in conditions where normal mitochondrial membrane potential (ΔΨm) is 

maintained, PINK1 protein is rapidly degraded and Parkin is present in the protoplasm. However, when 

mitochondrial damage occurs, membrane potential decreases, PINK1 is stabilized by autophosphorylation, 

recruit of Parkin to mitochondria and increased ubiquitin E3 ligase enzyme activity leads to the induction of 

mitophagy (13). It has been identified that Parkin-mediated ubiquitination promotes intervention of additional 

factors, and direct phosphorylation of ubiqiuitin by PINK promotes intervention of Parkin and mitochondrial 

receptors.  
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Recent findings from intensive studies show that mitophagy is regulated by a complex signaling network 

involving various regulators, rather than a simple linear regulatory pathway. For example, recently Richard 

Youle’s group published an interesting study investigating the function of several autophagy receptors in 

mitophagy of Hela cells (72). Through inactivating five autophagy receptors, TAX1BP1, NDP52, NBR1, p62, 

and OPTN (optineurin), in various combination by using gene editing techniques, they found only NDR52 and 

OPTN are actually involved in mitophagy. Interestingly, PINK1-mediated ubiquitin phosphorylation induces 

NDR52 and OPTN intervention but does not require the function of Parkin in this process. However, Parkin acts 

as an 'amplifier' to increase mitochondrial activity. This study well pointed out both the unique aspect of 

mitophagy mechanism and the requirement of further study that will clarify the exact functions of PINK1 and 

Parkin, which are important to understand the precise molecular mechanism of mitophagy. 

 

2) PINK1-Parkin independent pathway 

On the other hand, there have been reports regarding PINK1 and Parkin-independent occurrence of mitophagy. 

In 2013, the Kagan Group reported that during rotenone-mediated mitophagy, cardiolipin lipid components 

present in the inner mitochondrial membrane are essential for transport to the outer membrane, and that this 

occurs irrespective of PINK1 function (73). In the same year, the Ganley group found that mitophagy that is 

induced by treatment of deferiprone, an iron chelator, also occurred independently of the PINK1-Parkin pathway 

(74). Recently, the Gustafsson group published a remarkable study using PINK1-deficient mice (75). Upon 

application of myocardial infarction or mitochondrial uncoupler to heart tissue and myocardial cells of PINK1-

deficient mice, the transfer of Parkin to mitochondria, the ubiquitination of mitochondrial proteins and the 

mitochondria was found to occur normally. These results suggest that in addition to the PINK1-Parkin pathway, 

additional Parkin migration and mitophagy activation pathways exist as a compensatory mechanism in case of 

PINK deficiency. 

 

3) Regulators for mitophagy induction 

To understand the physiological function of mitophagy and its role in disease development, it is an essential 

task to identify regulatory pathway of mitophagy. Recent intensive studies have led to the identification of new 

regulatory genes and regulatory mechanisms. Mitochondrial receptors have also been found to contain several 

proteins, including NIX, BNIXP3, p62, and NBR1. More studies are required to investigate mitophagy-induced 
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signals in physiological environments. In addition to hypoxia conditions, iron chelation has been reported to 

induce mitophagy, however, the molecular mechanism is yet unclear (74). Interestingly, there have been studies 

involving lipids as a mitophagy regulator. It has been reported that ceramide, a typical sphingolipid inducing 

apoptosis and senescence, induces mitophagy (76). In addition, cardiolipin, a phospholipid present in the inner 

mitochondrial membrane, migrates to the mitochondrial outer membrane to promote mitophagy and remove 

damaged mitochondria (73, 77). Intriguingly, while peroxidized cardiolipin induces apoptosis, non-peroxidized 

cardiolipin induces mitophagy to protect cells from apoptotic cell death (77).  

Considerable attention has also been paid to the role of mitochondrial dynamics in mitophagy. Since an 

increase in mitochondrial fragmentation is observed in mitophagy-induced conditions, mitochondrial fission is 

thought to be a pre-requisite of mitophagy for mammalian cells. Consistent with this notion, it has been shown 

that Dynamin-related protein 1 (Drp1), which is a critical fission regulator, is essential for mitophagy in yeast 

(78). Drp1-deficient MEFs also exhibited significant reduction of Parkin-mediated mitophagy (79). However, 

whether increase in mitochondrial fission is sufficient for the induction of mitophagy remains unclear. In fact, 

Drp1-indendent mitophagy has been recently also reported (80). Gomes LC et al. showed previously that 

overexpression of a Fis1 mutant that induce mitochondrial fragmentation without mitochondria dysfunction did 

not induced mitophagy (81). Thus, in order to induce mitophagy, mitochondria fission seems to require 

additional signal that may derived from mitochondrial dysfunction.  

 

Concluding remarks 

Since Lemestars coined the term “mitophagy” in 2005, focused studies on mitophagy attained significant 

results including the discovery of the PINK1-Parkin pathway. Recent results of mitophagy analysis at the stage 

of development and cell differentiation suggest that mitophagy not only has a passive role to remove damaged 

mitochondria, but also has the ability to actively alter intracellular mitochondrial activity and further cell 

function. However, in order to understand the function of mitophagy, many questions remain to be answered. 

For example, what is the precise mechanism of PINK1-mediated mitophagy induction? What signaling 

pathways regulate mitophagy in addition to the PINK1-Parkin pathway? How are damaged mitochondria 

selectively removed? Why are human orthologues of yeast mitophagy-related genes unidentified? Can 

mitophagy dysfunction contribute to a variety of human diseases other than Parkinson's disease? Is the 
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mitophagy signaling pathway consistent among many cell types and tissues? How are mitophagy, mitochondrial 

biosynthesis, and fusion-fission mechanisms connected? Are there substances that selectively increase 

mitophagy? Can activation of mitophagy improve mitochondrial function in vivo? Does activation of mitophagy 

benefit aging? Can activation of mitophagy be used to treat human diseases including degenerative brain 

diseases?  

Fortunately, recent brilliant technological advances have given a positive outlook on mitophagy research. A 

prime example is the development of animal models and techniques for directly measuring mitophagy activity in 

living tissues (68). Identification of the molecular mechanism of mitophagy followed by its utilization to 

develop strategies for disease treatment is anticipated for the near future.  
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Figure legend 

 

Figure 1. Role of mitophagy in normal physiology and human disease. Mitophagy play important role 

in maintaining mitochondria homeostasis and various aspects of cellular function. These roles are 

critical to prevent developing human diseases and aging-related dysfunctions. 



FOR REVIEW
Mitophagy 

Mitochondrial quality control 

• Selective removal of damaged mitochondria 

• Induce mitochondria biogenesis 

Differentiation and development 

• Remove redundant/unnecessary 

mitochondria 

Cell reprogramming  

• Induce mitochondria remodeling 

• Coordinate nuclear and metabolic change 

Cell death  

• Suppress cell death by removing mitochondria 

• Coordinate survival and cell death  

Immune response  

• Regulate NLRP3 inflammasome 

• Suppress hyperactivation of inflammation 

Neurodegenerative disease 

• Accumulation of damaged mitochondria 

• Neuronal cell dysfunction 

Cancer 

• Metabolic shift, ROS increase  

• Increase survival in microenvironment 

Heart and liver disease 

• Abnormal/immature development 

• Decrease of protection against stress 

Aging 

• mtDNA mutation, mitochondria dysfunction  

• Increase in ROS production 

Figure 1.  


