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ABSTRACT 

 

Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical 

role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the 

VEGF has specific receptors, which it activates by binding to the extracellular domain of the 

receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. 

However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, 

particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide 

oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors 

to distant sites, where they can implant and begin the growth of secondary tumors. Thus, 

investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will 

facilitate the development of treatments for such illnesses.  
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INTRODUCTION 

 

Angiogenesis, the physiological process through which new vessels form from pre-existing 

vessels, is responsible for most, if not all, blood vessel growth during development (1, 2). 

Various angiogenic proteins, including fibroblast growth factors (FGFs), vascular endothelial 

growth factors (VEGFs/VEGFRs), angiopoietin/Tie receptors, platelet-derived growth factors 

(PDGFs/PDGFRs), and EphrinB2/EphB4 (3-8) result in the stimulation of angiogenesis. This 

process is tightly regulated depending on the balance of pro- and anti- angiogenic factors (9). 

However, if the angiogenesis is not properly controlled, various diseases are induced. For 

example, excessive angiogenesis can lead to chronic disease states such as tumor growth and 

metastasis, and several disease, such as ulcers and ischemic heart disease, are the result of 

insufficient angiogenesis (10). Among the angiogenic proteins, VEGF-VEGFR is a crucial 

regulator of pathological angiogenesis such as in cancer as well as physiological 

vasculogenesis and angiogenesis in early embryonic and adult stages (11). 

VEGFs bind to the VEGFRs on the cell surface, and stimulate cellular responses by 

causing the receptors to dimerize and become activated through transphosphorylation (12). 

When cells are deficient of oxygen, namely in hypoxia, the cell produces hypoxia-inducible 

factor (HIF), which can stimulate the release of VEGF. Thus, hypoxia may be an essential 

regulator of VEGF expression. Additionally, several diseases characterized by excess 

angiogenesis are associated with hypoxia-driven de-regulated VEGF expression (12, 13). 

Several antiangiogenic drugs target the VEGF-VEGFR system, including VEGF-neutralizing 

antibody (bevacizumab), small molecule kinase inhibitors (sunitinib, sorafenib, and apatinib), 

and humanized monoclonal antibody targeting the extracellular domain of the VEGFR 

(ramucirumab). However, the resistance mechanisms of cancer and the side effects of drugs 
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limits the use of these drugs in chemotherapy (14). Consequently, a more detailed 

investigation focused on the pathological angiogenesis, as a therapeutic target, is required for 

the development of safe and continuously available drugs. 

In this review, we describe the structural and functional information regarding the VEGF-

VEGFR system to increase understanding of angiogenesis in physiological and pathological 

processes. 

 

STRUCTURE AND BIOCHEMICAL PROPERTIES OF VEGFRs WITH ITS 

LIGANDS 

 

Genes encoding novel tyrosine kinase receptors were isolated in the early 1990s, and the 

tyrosine kinase receptors that positively and negatively regulate the formation of blood and 

lymph vessels were denoted VEGFRs (15, 16). Three genes are encoding three full-length 

receptors (VEGFR-1, -2, and -3) and one soluble molecule (sVEGFR-1), and most VEGFRs 

show similar overall structures that comprise of three primary domains. VEGFRs are 

typically composed of an extracellular ligand-binding domain (ECD) with a seven 

immunoglobulin (Ig)-like domain, a transmembrane domain and a tyrosine kinase domain 

split by a kinase insert and a carboxy terminus (Fig. 1A) (11, 17). The kinase domains of 

VEGFRs are the most conserved region, with high sequence identities (78–80%). The VEGF-

VEGFR system plays a central role in the regulation of tumor angiogenesis and can be a 

potential target for anti-angiogenic therapy. There are five VEGF family members (VEGF-A, 

VEGF-B, VEGF-C, VEGF-D, and placental growth factor) encoded from the mammalian 

genome (3, 18). Moreover, alternative splicing of primary RNA transcripts from the VEGF 

gene family generates various isoforms. For example, the isoforms of human VEGF-A are 
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labeled as VEGF-A121, VEGF-A145, VEGF-A165, VEGF-A189 and VEGF-A206, and 

homodimeric VEGF-B exists as two different transcripts, VEGF-B167 and VEGF-B186 (19). 

Among them, VEGF-A (known as VEGF) is one of the most critical factors for blood vessel 

formation during early embryogenesis (11). VEGF-A binds to Ig domains 2 and 3 localized in 

the ECD of VEGFR-1 and VEGFR-2 (20, 21). Interestingly, the affinity of VEGF-A to 

VEGFR-1 is about one order of magnitude higher than that to VEGFR-2, but the tyrosine 

kinase activity of VEGFR-2 in response to VEGF-A is much higher than that of VEGFR-1 

(17, 22). VEGF-B and placenta growth factor (PIGF) bind to VEGFR-1, but their 

mechanisms that activate the receptor are different (23). Specifically, VEGF-B stimulates 

Tyr1213 phosphorylation of VEGFR-1, whereas PIGF stimulates Tyr1309 phosphorylation 

(24). VEGF-C and VEGF-D are specific ligands for VEGFR-3, which plays a critical role in 

angiogenesis and lymphangiogenesis in adults (Fig. 2) (25). 

To date, many structural studies of the VEGF/VEGFR complex based on single-particle 

electron microscopy, small-angle X-ray scattering, and X-ray crystallography show how the 

ligand binds to the membrane distal Ig domains. Moreover, studies of other Ig domains of the 

VEGFR suggest the possibility of receptor-receptor interactions (19, 26-29). The first 

complete and recently reported VEGF/VEGFR ECD complex structure provides insightful 

information regarding the ligand binding and ligand-induced homotypic interactions of 

VEGFR (30). The structure of full-length VEGFR-1 ECD in complex with VEGF-A exists as 

two sets of 1:1 complexes in the asymmetric unit and two receptors linked by the dimeric 

VEGF-A bound to the Ig domains (Fig. 1B) (30). Unlike previous VEGFR-1 complex 

structures that contained only Ig domain 2, the recently reported complex structures include 

the complete ECD of the receptor with VEGF-A that interacts with both Ig domains 2 and 3 

of VEGFR-1 (19, 30-32). The results of these studies also suggest that the homotypic 
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receptor-receptor contacts in Ig domains 4–7 increase the binding affinity of VEGFR-1 ECD 

for VEGF-A based on the finding that the binding affinity is 20 times higher in the presence 

of homotypic interactions (30). Moreover, researchers have conducted many studies targeting 

the structure-based design of VEGFR-2 inhibitors as therapeutic agents since the crystal 

structure of the catalytic kinase domain of VEGFR-2 was determined (33-36). The overall 

fold and catalytic residue positions of the VEGFR-2 kinase domain are similar to those 

observed in other tyrosine-kinase structures. There are two lobes (N-lobe and C-lobe), and 

the catalysis of phosphotransfer takes place in the cleft between the two lobes (34). Despite 

differences in the kinase activity of VEGFRs in response to its ligands, the available 

structural information regarding the kinase domains of VEGFR-1 and VEGFR-3 remains 

sparse. Thus, more detailed investigations based on the molecular structure of the remaining 

VEGFR kinase domains are required to improve understanding of their catalytic and signal 

transduction mechanisms. 

 

BIOLOGICAL FUNCTION OF VEGF-VEGFR SYSTEM 

 

VEGF-VEGFR system is crucial to vascular development and neovascularization in 

physiological and pathological processes of both embryos and adults, and many studies have 

investigated anti-VEGF-VEGFR molecules disturbing signal transduction by the VEGF-

VEGFR system to improve anti-angiogenic therapy (12). VEGFR-1 is expressed in vascular 

endothelial cells and non-endothelial cells, including haematopoietic stem cells, macrophages, 

and monocytes. Fong et al. reported that VEGFR-1 knockout mice died at embryonic day 

8.5–9.0 because of overgrowth of endothelial cells and disorganization of blood vessels in the 

embryo (37). Moreover, to identify how VEGFR-1 negatively regulates angiogenesis during 

UN
CO

RR
EC

TE
D 

PR
O
O
F



7 

 

early embryogenesis, mice expressing only the VEGFR-1 extracellular and transmembrane 

domains were generated. Interestingly, angiogenesis in mice was almost average, indicating 

that the ECD of VEGFR-1, not the kinase domain, plays a critical role as a suppressor of 

vascular formation by trapping VEGF-A and thereby preventing VEGFR-2 activation (38). 

Autophosphorylation on tyrosine residues of VEGFR-1 and coupling to intracellular signal 

transducers can trigger weak signals for growth and survival of endothelial cells and pericytes, 

as well as for cell migration of macrophages (17). Phospholipase C (PLCγ) involved in the 

mitogen-activated protein kinase (MAPK) pathway adheres to the phosphorylated Tyr1169 of 

VEGFR-1 for regulation of endothelial cell proliferation (39, 40). The p85 subunit of 

phosphoinositide 3-kinase (PI3K) has also been reported to bind to the activated and 

phosphorylated VEGFR-1 (41). 

The VEGFR-2 expression is detected in not only vascular endothelial and lymphatic 

endothelial cells, but also megakaryocytes and haematopoietic stem cells (42). In VEGFR-2 

knockout mice, there were defects in vasculogenesis and haematopoietic development, 

resulting in death at embryonic stage 8.5–9.0 (43). These results show that VEGFR-2 acts as 

a positive signal transducer in growth and differentiation of endothelial cells. Consequently, 

these findings indicate that VEGFR-1 and VEGFR-2 collaborate in the regulation of vascular 

formation as a negative and positive regulator, respectively (17). Among the 

autophosphorylated tyrosine residues in VEGFR-2, phosphorylated Tyr1175 leads to binding 

of PLCγ, which stimulates the MAPK pathway involved in the regulation of DNA synthesis, 

and binding of PI3K involved in cell survival (17, 44). It has also been reported that Tyr951, 

another phosphorylated residue in VEGFR-2, leads to adaptation of T cell-specific adapter 

(TSA), which regulates actin stress fiber organization and migratory responses of endothelial 

cells by associating with the cytoplasmic tyrosine kinase Src (Fig. 3)  
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(45). VEGFR-3 is primarily expressed in lymphatic endothelial cells, and activation of 

VEGFR-3 by interaction with VEGF-C results in proliferation, migration, and survival of 

lymphatic endothelial cells. Additionally, VEGFR-3 plays an essential role in the 

development of the vascular network and the cardiovascular system during embryonic 

development (46, 47). There are five tyrosine phosphorylation sites in the VEGFR-3 kinase 

domain, and the receptor mainly mediates activation of the MAPK pathway (17, 48). 

 

ANGIOGENESIS AND ANTI-ANGIOGENIC THERAPY IN CANCER 

 

Uncontrolled cell growth and proliferation cause cancer, one of the most common diseases 

in humans. There are several biological hallmarks of cancer, including self-sufficiency in 

growth signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative 

potential, sustained angiogenesis, tissue invasion and metastasis, abnormal metabolic 

pathways, evading the immune system, and genome instability (49). Blood vessel growth is 

essential for the growth and metastasis of solid tumors; thus, angiogenesis is considered one 

of the most critical targets for investigation of tumor therapy (50). The VEGF-VEGFR 

system is known as a primary regulator of tumor angiogenesis, and inactivation of the system 

has been reported in a variety of human diseases such as tumor angiogenesis, tumor-

dependent ascites formation, metastasis, and inflammatory diseases including rheumatoid 

arthritis, rheumatoid psoriasis, hyperthyroidism and atherosclerosis (3, 18). VEGFR-1 may 

contribute to pathological angiogenesis by stimulating the activation of endothelial cells and 

the recruitment of bone marrow progenitor cells (51, 52). Additionally, sVEGFR-1 expressed 

in the trophoblast layer is a splice variant of VEGFR-1, and may play a critical role in the 

formation of a regulatory barrier against abnormal vascular permeability and abnormal 
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angiogenesis (11). The finding that artificial overexpression of sVEGFR-1 in a pregnant rat 

model induces hypertension and proteinuria strongly suggests that increased sVEGFR-1 is a 

crucial causative factor of the preeclampsia symptoms (hypertension and proteinuria) (53). 

VEGFR-2 has also been directly linked to tumor angiogenesis and blood vessel-dependent 

metastasis. Specifically, VEGFR-2 is upregulated under the hypoxic stress that occurs during 

the rapid growth of tumor cells (11). Either dysfunction or increased activation of VEGFR-3 

can be involved in human pathological conditions. Inactivation of VEGFR-3 can aggravate 

congenital lymphedema that results from decreased transport capacity of the lymphatic 

vessels and features chronic and disabling swelling of tissues (54, 55). Another lymphedema 

caused by filariasis, trauma or infection may be treated with VEGF-C, alleviating the 

increased activation of VEGFR-3 (17).  

The VEGF-VEGFR system has been confirmed to be useful as a target of new drugs to 

suppress a range of diseases, particularly malignancies. There are several anti-angiogenic 

compounds including VEGF-neutralizing antibody (bevacizumab) and tyrosine kinase 

inhibitor (sunitinib and sorafenib), which inhibit growth and metastasis of tumors. When 

tumors show drug-resistance to standard cytotoxic therapy, anti-angiogenic compounds may 

be the ideal drugs for treating cancer patients (11). Bevacizumab is a humanized monoclonal 

antibody targeting VEGF-A that can selectively neutralize VEGF-A, but not other VEGF 

family members. The FDA approved Bevacizumab in 2004 for the treatment of cancer. 

However, it was withdrawn in late 2011 because it has no clear efficacy data on overall 

survival in large-scale phase III clinical researches such as E2100, AVADO and RIBBON-1 

clinical trials (11, 56). Bevacizumab has some adverse effects that can be life-threatening, 

including hypertension, proteinuria, rhinorrhagia, thrombosis and bleeding (57). Additionally, 

certain cancers are resistance to bevacizumab through several mechanisms, such as the 
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enhancement of alternative pro-angiogenic signaling pathways, recruitment of bone marrow-

derived pro-angiogenic cells to the tumor, and increasing of pericyte in tumor (58). Sunitinib 

malate and sorafenib tosylate can selectively target some protein receptors, including 

VEGFRs, and inhibit their kinase activity. Moreover, they can be widely applied because they 

cause few adverse reactions (59). In addition, the development of other anti-VEGF-VEGFR 

drugs such as VEGF-Trap and humanized anti-VEGFR antibodies is consistently ongoing to 

overcome adverse drug effects. Recent studies suggest that VEGF pathway appears to be 

useful for prognosis of several cancers patients including breast cancer and is also conducted 

as the most critical pathway regulating liver and lymph node metastasis of breast cancer (60-

62). Therefore, we can use VEGF-VEGFR system as a potential target of new drugs, and 

more detailed structure-based insightful information regarding the VEGF-VEGFR system is 

essential to improve the anti-angiogenic therapy for the improved quality of life of cancer 

patients. 
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FIGURE LEGENDS 

 

Figure 1. Structure of the VEGFR-1 extracellular domain in complex with VEGF-A 

(A) Schematic representation of the domain organization of VEGFR is shown. (B) Complex 

crystal structure of VEGFR-1 extracellular domain with VEGF-A (PDB ID: 5T89) is shown. 

We have shown the structure in a ribbon representation with each chain depicted by a 

different color. The chains of the VEGF-A homodimer are shown in light blue and gray, and 

the VEGFR-1 D1-D6 chains in deep blue and magenta. 

 

Figure 2. Schematic illustration of the VEGF-VEGFR system The VEGF family including 

VEGF-A, VEGF-B, VEGF-C, VEGF-D and PIGF binds to its specific receptor. VEGFR-1 

and we have depicted its ligands in yellow, VEGFR-2 and its ligands in pink, and VEGFR-3, 

and its ligands in green. 

 

Figure 3. Signaling pathways activated by VEGFR2. The phosphorylation of tyrosine 

residues creates docking sites for the recruitment of downstream signaling effectors. 

Subsequently, signaling cascades activated by VEGFR2 can regulate gene expression, cell 

proliferation, survival, and migration. 
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Fig. 2 

 

 

 

 

 

 

 

 

 

 

 UN
CO

RR
EC

TE
D 

PR
O
O
F



22 

 

Fig. 3 
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