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ABSTRACT 

The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is 

increasing worldwide. Over the past decade, the connection between these disorders and the 

microbiota of the gut has become a major focus of biomedical research, with recent studies 

demonstrating the fundamental role of intestinal microbiota in the regulation and 

pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, 

however, the underlying molecular mechanisms by which the gut microbiota is associated 

with metabolic disorders remain poorly understood. In this review, we summarize recent 

studies that investigate the role of the microbiota in both human subjects and animal models 

of disease and discuss relevant therapeutic targets for future research. 

 

THE MICROBIOTA IN THE GUT MUCOSA 

The human gut is populated with as many as 100 trillion (1014) cells, including bacteria, fungi, 

viruses, and other microbial and eukaryotic species (1, 2). These complex, heavily diverse 

communities provide tremendous enzymatic capability and thus play a fundamental role in 

manipulating host physiology (3, 4). It is well established that five bacterial phyla, Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia, are dominant 

components of the human gut microbiota (5). More than 90% of the bacterial populations are 

gram-negative anaerobes and include the predominant genera Bacteroides, Eubacterium, 

Bifidobacterium, and Fusobacterium (6). Additionally, the gut microbiota is indispensable for 

carbohydrate fermentation and nutrient absorption (1), protection of pathogenic bacteria (7), 

and regulation of metabolic disorders (8).  

The host intestine is unique with respect to its constant exposure to a plethora of 

antigens from daily food intake and exogenous bacteria. The resident gut microbiota contains 
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a number of components able to activate both innate and adaptive immunity responses (3, 9). 

For example, the majority of intestinal bacteria are gram-negative anaerobes equipped with 

diverse agents, such as lipopolysaccharide (LPS) and flagella, allowing for innate signaling to 

intestinal epithelial cells through toll-like receptors (TLRs) (10). Segmented filamentous 

bacteria (SFB) embedded in the ileum can also stimulate adaptive, T helper 17 (TH17) 

responses and induce the production of mucosal immunoglobulin A (IgA) (11). In addition, 

commensal microbe-derived butyrate is associated with regulatory T (Treg) cell 

differentiation in the colon (12).  

 

THE GUT MICROBIOTA AND METABOLIC DISORDERS 

According to the World Health Organization, more than 1.9 billion adults were overweight in 

2014, with over 600 million of those adults classified as obese. Obesity results from energy 

imbalance and is associated with other metabolic complications such as type 2 diabetes. The 

relationship between gut microbiota and metabolic diseases was first reported by the 

laboratory of Jeffrey Gordon at Washington University. Specifically, the Gordon laboratory 

demonstrated that leptin-deficient mice, notable for their excessive appetite and profound 

obesity, contained fewer Bacteroidetes and more Firmicutes than control mice (13). This 

study provided the first direct evidence of differences in the microbial communities of lean vs. 

obese animals. In support of this finding, a follow-up study from the Gordon laboratory 

observed fewer Bacteroidetes and more Firmicutes in obese human subjects than in lean 

subjects (14). Furthermore, the proportion of Bacteroidetes increased with either fat- or 

carbohydrate-restricted diet and subsequent weight loss. In people who lost weight after a 

gastric bypass procedure, increased levels of Bacteroides and Prevotella were negatively 

correlated with energy intake and adiposity (15). Other studies, however, have not observed a 
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shift in the ratio of Bacteroidetes and Firmicutes in human subjects with weight loss (16-18). 

Thus, although it is possible that certain microbial species in the human gut contribute to 

weight gain and others contribute to weight loss, it is also possible that any observed changes 

in the gut microbiota are the result of weight shifts. 

To address this concern, microbiota transplantation experiments have since been 

adopted. An initial study conducted by Gordon et al. demonstrated that conventionalization of 

germ-free mice with a normal microbiota resulted in increased body fat content and insulin 

resistance within 14 days, despite reduced food intake (19). This study provided the first 

mechanistic evidence that gut microbes can increase the host’s ability to store body fat. 

Furthermore, germ-free mice that received gut microbes from an obese twin donor showed an 

increase of total body and fat mass as well as obesity-associated metabolic phenotypes 

compared with those that received a lean twin’s microbiota (20). Interestingly, the gut 

microbiota from a lean mouse could invade the microbiota of an obese mouse and provide 

protection from weight gain, but this influence was dependent on diet. Other studies have 

demonstrated that germ-free mice transplanted with obesity-associated microbiota gained 

weight, but not to an excessive, obese level (21). Thus, the role of diet and other factors need 

to be considered.  

 

DIET ALTERS THE GUT MICROBIOTA 

Diet is a major factor in obesity, and it also helps shape the gut microbiota. Human studies 

from the past decade have revealed that the gut microbiota responds rapidly to large changes 

in diet; in many cases, the composition and function of the gut microbiota shifts within 1–2 

days (22, 23). Despite these rapid dynamics, long-term dietary habits are still critical in 

determining the gut composition of an individual (24), and the effectiveness of a specific diet 
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largely relies on the initial composition of the gut microbiota (25).  

Extensive research has shown that the gut microbiota of a traditional rural population 

(i.e., high-fiber, low-fat diet) is more diverse and contains distinct taxa than the microbiota of 

Western populations (i.e., low-fiber, high-fat diet) (26). Preservation of microbial diversity by 

a high-fiber, low-fat diet allows individuals to maximize energy intake from fiber while also 

protecting them from inflammation and noninfectious colonic diseases. Although it is unclear 

whether increased microbial diversity contributes to protection from metabolic diseases, 

several metagenomics studies indicate that improved outcomes in metabolic diseases are 

associated with increased microbial diversity (27, 28). For example, a team of researchers 

sequenced the microbiomes of 169 obese and 123 non-obese individuals and observed that 

individuals fell into two groups: a group with a low amount of microbial gene diversity and 

another group with high diversity (27). Those with fewer genes tended to have more 

pronounced adiposity, insulin resistance, and dyslipidemia than individuals containing more 

diverse gut microbiotas. Furthermore, obese individuals with lower bacterial diversity 

showed more weight gain over time. These data imply that manipulation of microbial 

diversity in the gut could be a promising avenue for amelioration of metabolic disorders. 

 

MICROBIAL REGULATION OF METABOLITES  

The gut microbiota produces numerous amounts of metabolites. For example, the microbiota 

contributes to host metabolic efficiency by increasing energy availability via the production 

of short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate (29). Previous 

studies demonstrated that SCFA levels were elevated in obese human subjects and animal 

models, consistent with the fact that SCFAs provide extra calories to the host (8, 16). Most 

recently, researchers observed that amplified production of acetate increased the likelihood of 
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obesity by triggering secretion of ghrelin, the appetite-inducing hormone (30). By contrast, 

other studies have demonstrated that SCFAs directly contribute to host protection from 

metabolic diseases. For example, SCFAs are an important energy source for gut epithelial 

cells through activation of G-protein-coupled receptors, such as GPR41 and GPR43, which 

influence enteroendocrine regulation (31, 32). Butyrate acts as a main energy source for 

colonocytes (33), and propionate can induce intestinal gluconeogenesis, thus protecting the 

host from diet-induced obesity via the gut-brain neural axis (34). Interestingly, consumption 

of a complex diet resulted in increased levels of SCFAs and increased diversity within the gut 

microbiota (26). Reduced dietary intake of carbohydrates for obese humans, however, 

resulted in decreased butyrate levels in their feces and correlated with a reduced abundance of 

butyrate-producing bacteria (i.e., Roseburia spp. and Eubacterium rectale) (17). Furthermore, 

levels of propionate specifically correlated with the amount of Bacteroidetes in the gut (35).  

In addition to the production of SCFAs, the microbiota forms bile acids from host 

cholesterol. Bile acids are a family of steroid acids synthesized from cholesterol in the liver 

and mostly secreted into the lumen of the intestine to control the digestion and absorption of 

dietary fat and fat-soluble vitamins (36). Commensal microbiota plays a pivotal role in the 

conversion of primary bile acids in the lower part of the small intestine and the colon to 

generate secondary bile acids (37, 38). Although it has become clear that bile acids act as 

signaling molecules for metabolic pathways, fundamental questions remain concerning 

whether additional administration of specific commensal bacteria can regulate bile acid 

metabolism and the potential role of these altered bile acids in metabolic diseases, such as 

obesity and type 2 diabetes (39, 40). A recent study demonstrated that the bile acid profiles in 

the gut and serum of control mice were quite distinct from those of germ-free mice (41), 

while another animal study reported that taurine-conjugated bile acids were dominant in 
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germ-free and antibiotic-treated mice (42). Furthermore, administration of probiotics altered 

gut microbiota composition and enhanced bile acid deconjugation and fecal excretion (43). 

Notably, the increased probiotic bacteria were associated with the induction of hepatic bile 

acid synthesis via the farnesoid X receptor (FXR) (43). The gut microbiota also regulates the 

G-protein-coupled bile acid receptor 1 (known as TGR5) (44). Our group has detected 

increased levels of bile acids in fecal tissue as well as TGR5 in adipose tissue from B. 

acidifaciens-fed mice (45). Additional studies have suggested that bile acid-TGR5-cAMP 

signaling pathways enhance energy expenditure in adipose tissue (46, 47). In total, specific 

commensal microbiota may regulate host metabolic actions through modulation of bile acid 

synthesis or reabsorption and by interaction with receptors such as FXR and TGR5.  

Gut microbiota ultimately contribute to the regulation of incretin hormone secretion 

through the interaction between the aforementioned metabolites (SCFAs, bile acids) and their 

receptors (GPR1 and GPR43, TGR5), which are expressed on enteroendocrine L cells (48-52). 

The stimulated enteroendocrine L cells secrete incretin hormone peptides, such as glucagon-

like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and peptide YY (PYY), which in 

turn stimulate insulin release and decrease blood glucose levels (48). These secreted peptides 

affect a wide range of organs and tissues to improve insulin sensitivity, glucose tolerance, and 

energy homeostasis (Figure 1), thereby contributing to protection in metabolic disorders such 

as obesity and type 2 diabetes.  

 

MICROBIAL REGULATION OF INFLAMATION 

Several lines of evidence point to a role for gut microbiota in the induction of systemic and 

adipose tissue inflammation (49, 50). For example, the gut microbiota produces substantial 

amounts of inflammation-inducing factors, including LPS and peptidoglycan. Additionally, 
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monocolonization of Escherichia coli into germ-free mice promoted macrophage 

accumulation in white adipose tissues and polarized macrophages toward inflammation, 

suggesting that gut microbiota-derived endotoxins, such as LPS, play a role in obesity 

regulation (10). Furthermore, food-derived microbiota exacerbated C-C motif chemokine 

ligand 2 (CCL2)-dependent macrophage infiltration in white adipose tissues through TLR 

signaling (51). In mouse models, obesity is associated with increased numbers of effector T 

cells and decreased numbers of Treg cells (52, 53). Because many studies have demonstrated 

that microbiota-generated SCFAs promote anti-inflammatory responses in mucosal and 

systemic tissues through Treg cells (12, 54, 55), it is tempting to speculate that gut microbiota 

may control obesity through the generation of Treg cells.  

 

SYMBIONTS IN METABOLIC DISEASES 

There are several strategies to control metabolic diseases by a single species of the gut 

microbiota (Table 1). One such strategy is the consumption of beneficial bacteria as 

prebiotics or probiotics. For example, Akkermansia (A.) muciniphila, known as the mucin-

degrading bacterium (56), can be administered as a prebiotic to reduce the likelihood of 

obesity and diabetes. This microbe commonly constitutes 3%–5% of the human gut microbial 

community and is more abundant in healthy individuals than in obese/diabetic patients or 

animals (57-59). In one study, treatment of high-fat diet (HFD)-fed mice with metformin, a 

widely prescribed type 2 diabetes therapeutic agent, improved the glycemic profile and 

resulted in a higher abundance of A. muciniphila (60). Moreover, oral administration of A. 

muciniphila to HFD-fed mice without metformin treatment led to antidiabetic effects. 

Interestingly, exposure to the cold resulted in significant changes to gut microbiota 

composition, and reconstitution of cold-suppressed A. muciniphila reduced caloric uptake 
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(61).  

Gordon et al. reported lean phenotypes in mice that were correlated with Bacteroides 

species, such as B. cellulosilyticus, B. uniformis, B. vulgatus, B. thetaiotaomicron, and B. 

caccae (20). Oral administration of the B. uniformis CECT 7771 strain ameliorated HFD-

induced metabolic dysfunction in obese mice (62). Our group has recently reported that HFD-

fed mice given B. acidifaciens for 10 weeks gained less fat mass and body weight than those 

given PBS alone (45). We have suggested that peroxisome proliferator-activated receptor α 

(PPARα)-mediated fat oxidation in adipose tissues and an expanded half-life of GLP-1 are 

involved in the regulation of host adiposity and insulin resistance by B. acidifaciens. 

Furthermore, metabolites secreted by B. acidifaciens may play a critical role in maintaining 

low levels of dipeptidyl peptidase-4 (DPP-4) in the gut (45) (Figure 2). It would be 

interesting to conduct a follow-up study to identify underlying mechanisms how beneficial 

symbionts working on and soluble factors produced by those bacterium and their cross-talks. 

 

CONCLUSIONS AND PERSPECTIVES 

It is likely that nothing is simple when considering the link between diet, gut microbes, and 

metabolic diseases. Although mechanistic studies in animal models have produced valuable 

insight and revealed potential therapeutic targets, future studies are challenged with 

translating these findings into the human patient.  
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FIGURE LEGENDS 

Figure 1. Interactions between the gut microbiota and host metabolism  

The gut microbiota can be influenced by a number of external factors, including host 

background, diet type, and medical treatments. Imbalance of the intestinal microbiota can 

lead to severe metabolic disorders (e.g., obesity) by altering host insulin sensitivity or energy 

homeostasis. 

 

Figure 2. Proposed mechanism for modulation of host insulin sensitivity by Bacteroides 

acidifaciens (BA)  

The selected commensal bacterium (i.e., BA) causes intestinal epithelial cells to secrete lower 

amounts of dipeptidyl peptidase-4 (DPP-4) in the gut and increased levels of glucagon-like 

peptide-1 (GLP-1), which may contribute to glucose homeostasis. At the same time, 

increased levels of bile acids (i.e., cholate and taurine) may contribute to GLP-1 activation in 

the intestine and to peroxisome proliferator-activated receptor α (PPARα) activation through 

TGR5 in adipose tissues, ultimately resulting in fat oxidation and improved insulin sensitivity.  
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UNCORRECTED PROOFTable1. Gut Microbiota Associated with Obesity 

Microbes Mechanisms References 

Akkermansia muciniphila  Improve glucose homeostasis 

Methanobrevibacter smithii  

Ley et al (2005, 2006) 

Samuel et al (2007) 

Enhance dietary energy 

recovery 

Increase energy harvest 

Bacteroidetes /Firmicutes ratio 

Increase SCFA levels 

Bacteroides (B.) cellulosilyticus  

B. vulgatus  B. thetaiotaomicron  

B. caccae  B. uniformis  

High invasiveness into 

the gut  
Ridaura et al (2013) 

Santacruz et al (2010) 

Bacteroides acidifacients  Activate lipid oxidation Yang et al (2016) 

Schwiertz et al (2010) Bacteroidetes /Firmicutes ratio 


