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ABSTRACT 

Regulatory B cells, also well-known as IL-10-producing B cells, play a role in the 

suppression of inflammatory responses. However, the epigenetic modulation of regulatory B 

cells is largely unknown. Recent studies showed that the bromodomain and extra-terminal 

domain (BET) protein inhibitor JQ1 controls the expression of various genes involving cell 

proliferation and cell cycle. However, the role of BET proteins on development of regulatory 

B cells is not reported. In this study, JQ1 potently suppressed IL-10 expression and secretion 

in murine splenic and peritoneal B cells. While bromodomain-containing protein 4 (BRD4) 

was associated with NF-κB on IL-10 promoter region by LPS stimulation, JQ1 interfered the 

interaction of BRD4 with NF-κB on IL-10 promoter. In summary, BRD4 is essential for toll 

like receptor 4 (TLR4)-mediated IL-10 expression, suggesting JQ1 could be a potential 

candidate in regulating IL-10-producing regulatory B cells in cancer. 
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INTRODUCTION 

B cells have long been known to have antibody production and antigen presenting 

functions. Recent studies have also confirmed the existence of a regulatory B cell subset with 

the ability to regulate the inflammatory response just as regulatory T cells (Tregs) do (1). In 

addition, the immune regulation of IL-10-producing regulatory B cells (Breg or B10) has 

been reported in inflammatory immune diseases such as contact hypersensitivity, collagen-

induced arthritis, experimental autoimmune encephalomyelitis, anaphylaxis, and food allergy 

(2-7). Recently, the distribution and partial functions of regulatory B cells have been reported 

in some cancers, and regulatory B cells are expected to have a mechanism to inhibit immune 

cell activity against cancer cells like Tregs (8-11).  

IL-10-producing regulatory B cells have various phenotypes such as CD1dhiCD5+, 

CD21hiCD23+ (Transitional 2-marginal zone precursor (T2-MZP)), Tim-1+, CD9+, and are 

known to produce anti-inflammatory cytokines such as interleukin (IL)-10 or Transforming 

growth factor (TGF)-β (12-15). The deficiency of IL-10-producing regulatory B cells further 

exacerbates the development of a variety of inflammatory immune diseases but the 

mechanism of IL-10 production from regulatory B cells in anti-inflammatory responses 

remains unclear. While recent studies have uncovered the mechanism regulating the 

production of IL-10 in the cytoplasm of B cells such as the B-cell linker (BLNK) subtype 

signaling pathway and the phosphoinositide 3-kinase (PI3K), there is a lack of research on UN
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the signaling system such as transcription in the nucleus (16, 17). 

The bromodomain and extra-terminal domain (BET) protein family consists of four 

proteins including BRD2, BRD3, BRD4, and tetris-specific BRDt, is known to read 

acetylated lysine on histones in the nucleus and change chromatin structure through their 

bromodomain (18, 19). As development of a couple of BET protein inhibitors, the role of 

BET proteins have been highlighted and they play critical functions in a variety of cellular 

processes such as cell growth, cell cycle, inflammation, and cancer development (20-22). 

Among BET protein inhibitors, JQ1 has been widely used as a potent, relative BRD4 

selective and the first generation inhibitor (23). 

In B cell immunology fields, BET bromodomain has been known to be involved in the 

development of germinal center B cells and the switching of immunoglobulins in B cells (24, 

25), but it has not yet been studied how BET bromodomain functions in IL-10-producing 

regulatory B cells. In this study, we demonstrate for the first time that IL-10 production in 

regulatory B cells is reduced via interfering interaction of BRD4 at the promoter of IL10 

which NF-kB co-binds by JQ1, and verify that BRD4 plays an important role in 

transcriptional activation for the production of IL-10 in regulatory B cells. Our results suggest 

that JQ1 can be used as a novel therapeutic molecule for anti-cancer immunity targeting 

regulatory B cells.  
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RESULTS 

LPS-stimulated IL-10 production is controlled by JQ1 in B cells 

First, the expression of IL-10 gene in splenic B cells was confirmed by 

lipopolysaccharide (LPS) stimulation. IL-10 gene expression in splenic B cells was increased 

in response to LPS stimulation in a time- and dose-dependent manner (Fig. 1A and B). It was 

also found that IL-10 secretion by splenic B cells was also increased by LPS stimulation (Fig. 

1C). Next, the expression of IL-10 in B cells by JQ1, a specific inhibitor of BRD4, was 

examined. IL-10 gene expression decreased in a dose-dependent manner when splenic B cells 

stimulated with LPS were treated with JQ1 (Fig. 1D and E). The concentration of JQ1 

treatment in vitro were determined at the preliminary experiment (Supplementary Fig. 1), and 

the JQ1-mediated regulation of IL-10 gene expression and secretion by LPS was not due to 

cytotoxicity (Fig. 1F).  

 

BRD4 pathway is associated with the development of IL-10-producing B cells  

We observed that the treatment of JQ1 did not change the phenotype of B cells (Fig. 2A). 

It is well known that the frequency of IL-10-producing B cells is closely related to the splenic 

CD1dhiCD5+ phenotype (12). We next checked whether the decrease in IL-10 production 

function of B cells by JQ1 correlates with the decrease of CD1dhiCD5+ B cells. Unexpectedly, 

there was no frequency change of CD1dhiCD5+ B cells by a JQ1 treatment (Fig. 2B). Flow UN
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cytometry analysis showed that IL-10 production in LPS-induced B cells decreased in a dose-

dependent manner (Fig. 2C). In previous study, Tedder and coworkers reported that precursor 

cells of regulatory B cells can differentiate into mature regulatory B cells by long-term 

stimulation of LPS (26). The effect of JQ1 on the differentiation of precursor cells by long-

term LPS stimulation was also investigated. JQ1 reduced the differentiation of precursor cells 

to mature IL-10-producing regulatory B cells (Fig. 2D and E). 

The major population of regulatory B cells in the peritoneal cavity (PeC) has the 

phenotype of CD5+CD11b+ (B-1a). The changes of CD5+CD11b+ regulatory B cells by JQ1 

were examined and it was found not to induce any phenotypic change as in splenic regulatory 

B cells (Fig. 2F). However, it was also observed that IL-10 production of LPS-induced B 

cells was decreased by JQ1 as in splenic regulatory B cells (Fig. 2G). Consistently, the 

differentiation of precursor cells of PeC regulatory B cells by the long-time treatment of LPS 

and the IL-10 secretion of PeC B cells were also suppressed by JQ1 (Fig. 2H and I). Of note, 

the production of IL-10 in splenic CD1dhiCD5+ and PeC CD5+CD11b+ B cell subsets, but not 

the other subsets, were suppressed by JQ1 (Supplementary Fig. 2). These results suggest that 

the BRD4 pathway affects LPS-induced IL-10 production in spleen and peritoneal cavity but 

not regulatory B subset frequency. Therefore, we hypothesized that the BRD4 pathway is 

associated with the signal transduction pathway for the production of IL-10 in regulatory B 

cells.  UN
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LPS treatment does not affect expression of BET proteins and NF-κB in B cells 

Next, we investigated whether LPS stimulation can change the expression of BET 

proteins themselves. As a result, any change of BET proteins was not observed in splenic B 

cells by stimulation of LPS (Fig. 3A to D). The expression of NF-κB p65 was also not 

changed by the treatment of LPS (Fig. 3E and F). Additionally, we hypothesized that the 

suppression of IL-10 production from B cells by JQ1 is associated with the expression of NF-

kB p65. We then found that JQ1 did not alter the expression level of NF-κB p65 (Fig. 3G), 

suggesting that the negative mechanism of JQ1 is not directly associated with the levels of 

NF- kB p65 in the process of IL-10 production in regulatory B cells. 

 

JQ1 inhibits the recruitment of BRD4 and NF-κB p65 at IL-10 promoter region upon 

LPS stimulation  

In the TLR signal transduction pathway by LPS stimulation, several reports 

demonstrated that the multiple chromatin complex with NF-kB p65 are formed at IL-10 DNA 

regulatory regions (27, 28). Besides, NF-kB was also known to interact with BRD4 in other 

cells (29). Based to these, we designed three sites for IL-10 DNA regulatory regions covering 

the hyper sensitive site (HSS, upstream 4.5 kb) (30), distal promoter (DP, upstream 1.2 kb), 

and proximal promoter (PP, upstream 0.2 kb) (31, 32) which are known as functional DNA UN
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elements for IL-10 transcription (Fig. 4A). We then performed chromatin 

immunoprecipitation (ChIP) assay with antibody against BRD4 and NF-κB p65 in splenic B 

cells. We found that NF-κB p65 binding, but not BRD4, was increased at two promoter sites 

by LPS (Figs. 4C to 4D). Interestingly, the ChIP analysis revealed significant increase in 

binding of BRD4 on IL-10 proximal promoter among three sites where the greater NF-κB 

p65 binding was observed concurrently and these recruitments suppressed by JQ1 (Figs. 4C). 

Therefore, we argue that BRD4 may be critical for NF-κB p65 binding on IL-10 proximal 

promoter for the production of IL-10 in regulatory B cells.  

 

DISCUSSION 

In the past decade, the suppressive effects, mainly through the secretion of IL-10, of 

regulatory B cells on inflammatory responses have been reported in a variety of immune 

disorders (33-36). Additionally, immune regulation through the interaction of immune cells 

with the intrinsic phenotype of regulatory B cells (e.g., CD1dhiCD5+, T2-MZP, Tim-1+, and 

CD9+) were demonstrated in various diseases, and it plays a critical role in autoimmune 

diseases (37). In recent studies, functional studies in cancer diseases are emerging (38-40). In 

particular, the change of the distribution of regulatory B cells in cancer tissue is considered to 

one of important indicators (8-10). Emerging evidence suggests that regulatory B cells 

suppress effector immune cells including IFN-γ-producing cytotoxicity cells in various UN
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cancer diseases through the secretion of IL-10 (11). Although regulatory B cells have to play 

the suppressive role on the effector function of T cells in autoimmune diseases to cure 

diseases (41), regulatory B cells need to be suppressed to induce anti-cancer immunity to cure 

cancer. 

As development of BET protein inhibitors, there are tremendous effort to apply these 

drug to various fields such as cancer and immune disorders. In cancer, they are well known as 

pivotal regulators for the expression of several oncogenes, such as c-Myc and Bcl-2 (42, 43). 

Moreover, several BET protein inhibitors have been under clinical research (44). However, 

there is no study on the relationship between BET proteins and regulatory B cells, especially 

for IL-10 production. Furthermore, the epigenetic mechanism the production of IL-10 in the 

nucleus of regulatory B cells is largely unknown. This study proposes BRD4, a chromatin 

reader is a critical modulator of regulator B cells. We found that the gene expression and 

secretion of IL-10 by LPS stimulation were reduced in regulatory B cells by the treatment of 

JQ1 in a dose-dependent manner (Fig. 1). The effect of JQ1 is not due to the induction of 

changes of regulatory B cell phenotype but modulation of the IL-10 production in regulatory 

B cells (Fig. 1G and Fig. 2).  

It is generally accepted that LPS-mediated TLR4 signal pathway is critical to increase 

the frequency of IL-10 producing regulatory B cells. However, the epigenetic regulation on 

the production of IL-10 in regulatory B cells by LPS is not well unknown. It has reported that UN
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BRD4 is interacted with various proteins including several transcription factors. Among them, 

NF-kB is critical for the production of IL-10 (27-29). In this study, we examined whether the 

relationship between BET proteins and NF-κB (a major transcription factor for IL-10 

production by LPS) were altered by LPS stimulation. The expression of total BRD4 (also 

BRD2 and BRD3) and NF-κB p65 proteins was not affected by LPS stimulation or JQ1 

treatment in B cells (Fig. 3A to G). These results suggest that BRD4 may be directly involved 

in transcriptional activation IL-10 via the TLR4 signal by LPS. Therefore, we further 

assessed the role of BRD4 in LPS-mediated IL-10-producing B cells by using ChIP assay. 

Three major sites such as hyper sensitive site (HSS), distal promoter (DP), and proximal 

promoter (PP) were investigated by ChIP assay. LPS stimulation caused recruitment of 

BRD4 and NF-kB to the IL-10 proximal promoter region of B cells, and this process was 

inhibited by JQ1 (Fig. 4D), suggesting that BRD4 play critical role for production of IL-10 of 

regulatory B cells. Although it was reported that BRD4 directly binds to acetylated NF-kB 

p65 in LPS stimulation (45), whether both proteins are directly interacted in regulatory B 

cells remained to be determined. 

In summary, this study demonstrates that BRD4 as a novel epigenetic regulator directly 

participates in the transcriptional process for IL-10 production via altering chromatin 

structure in regulatory B cells upon LPS simulation and presumably this mechanism could 

contribute anti-cancer effects of JQ1 in various cancer diseases.  UN
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MATERIALS AND METHODS 

Mice 

C57BL/6 (5-6-week-old male) mice were purchased from Orient Bio Inc. (Gyeonggi, Korea). 

Mice were housed under specific pathogen free facility at Koukuk University (Seoul, Korea). 

The animal study was done in accordance with the institutional guidelines. The protocol was 

approved by the Institutional Animal Care and Use Committee (IACUC) at Konkuk 

University. 

 

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

Splenic B cells were purified with CD19 mAb-conjugated microbeads (Miltenyi Biotech, 

Auburn, CA) according to the manufacturer’s instructions, to > 95% purity. Total RNA was 

isolated from sorted Splenic CD19+ B cells (1 × 107 cells) by using easy-BLUE (iNtRON 

Biotechnology, Gyeonggi, Korea) and reverse-transcribed with the ImProm-II reverse 

transcription first-strand synthesis system (Promega, Madison, WI) according to the 

manufacturer’s protocol. PCR was performed at 95°C for 2 min, 30 cycles of 95°C for 20 sec, 

58°C for 40 sec, 72°C for 30 sec, and 72°C for 5 min. Primers used as follow: mouse BRD2 

(forward 5′-CCACGAAAAGACTTGCCTGA-3′, reverse 5′-

CAGCGTGCTTCTTTGAGAGC-3′); mouse BRD3 (forward 5′-UN
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CTATGCGTGGCCCTTTTACA-3′, reverse 5′-CTTCCTTTTGACCGTGCTGA-3′); mouse 

BRD4 (forward 5′-CAAAAGGAAGAGGACGAGGG-3′, reverse 5′-

ACAGGTGGAGGAGGGTTCTG-3′); mouse IL-10 (forward 5′-

GGCCCAGAAATCAAGGAGCA-3′, reverse 5′-GGGGGATGACAGTAGGGGAA-3′); 

mouse GAPDH forward 5′-TGACGTGCCGCCTGGAGAAA-3′, reverse 5′-

AGTGTAGCCCAAGATGCCCTTCAG-3′. 

 

Measurement of Interleukin-10 release by ELISA 

Isolated splenic CD19+ B cells (3 × 106 cells/well) and Peritoneal cavity fluid (PeC)-derived 

CD19+ B cells (1 × 106 cells/well) were stimulated with LPS (0, 0.1, 1, and 10 μg/ml) for 24 

or 48 h, the level of IL-10 by using a mouse BD OptEIA IL-10 ELISA kit according to the 

manufacturer’s instructions (BD Biosciences, San Jose, CA). 

 

Flow cytometry analysis 

Spleen and PeC CD19+ B cells (3 × 106 cells/well) stimulated for 5 or 48 h with LPS (10 

μg/ml, Sigma-Aldrich, St. Louis, MO). The B cells were incubated with LPS alone or with 

JQ1 (0, 20, 50, and 100 nM) for 5 h or indicated times in figure legends, and phorbol 12-

myristate 13-acetate (PMA, 50 ng/ml, Sigma-Aldrich), ionomycin (500 ng/ml, Sigma-

Aldrich), and Monensin (2 μM, eBioscience, San Diego, CA) were added during last 5 h. UN
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Prior to surface staining, Fcγ receptors were blocked with anti-CD16/CD32 monoclonal 

antibodies (2.4G2, BD Biosciences). Cells were fixed and permeabilized with a 

Cytofix/Cytoperm kit (eBioscience) and then were stained with anti-IL-10 (JES5-16E3, 

eBioscience). The antibodies against surface proteins were as follows: CD1d (1B1), CD5 (53-

7.3), CD11b (M1/70), CD19 (eBio1D3), CD21/CD35 (eBioBD9), CD23 (B3B4), CD40 

(HM40-3), CD86 (GL1), B220 (RA3-6B2), IgM (eB121-15F9), IgD (11-26), MHCII 

(M5/114.15.2), all purchased from eBioscience. Cells were analyzed with FACSCanto II (BD 

Biosciences, San Jose, CA) and FlowJo V10 software (TreeStar, Ashland, OR). The gate 

strategy for IL-10-producing B cells was illustrated in Supplementary Fig. 3. 

 

Measurement of cell viability 

Mouse splenic CD19+ B cells (3 × 106 cells/well) were plated on 24-well plates in LPS 

contained media with or without JQ1 for 24h. Then the cell viability was determined by using 

a cell counting kit-8 (CCK-8, Dojindo Labpratpries, Kumamoto, Japan), according to the 

manufacturer’s protocol. 

 

Immunoblotting 

Splenic CD19+ B cells (1 × 107 cells/well) were lysed in RIPA buffer containing protease 

inhibitor on ice for 10 min. Lysate centrifuged at 13000 ×g for 10 min at 4℃. Protein lysates UN
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of each sample were analyzed by western blotting using specific antibodies. Antibodies 

against NF-κB p65 and actin were purchased from Cell Signaling Technology (Danvers, MA, 

USA). Immunoreactive proteins were detected with HRP-coupled secondary antibodies and 

enhanced chemiluminescence according to the manufacturer's protocol (Amersham 

Biosciences, Piscataway, NJ). 

 

Chromatin immunoprecipitation (ChIP) 

ChIP was performed with the splenic B cells following to instructions from Upstate 

Biotechnology (Lake Placid, NY, USA). Cells (2 × 107 cells/well) were harvested from the 

culture and fixed with 37% formaldehyde for 10 min. For each assay, sheared by a sonication 

(the DNA fragment size was 200 to 400 bp), was precleared with protein A magnetic beads 

and then 50 μg DNA was precipitated by BRD4 (Bethyl Laboratories, Montgomery, TX) or 

NF-κB p65 (Cell Signaling Technology). After immunoprecipitation, recovered chromatin 

fragments were subjected to real-time PCR. IgG control experiments were performed for all 

ChIPs and incorporated into the IP/Input (1%) by presenting the results as (IP- IgG)/(Input-

IgG). The primers used as follow: ChIP_IL-10 hyper sensitive site (forward 5’- 

GCCCGAAATATCACCTATTGC-3’, reverse 5’-CCGGATTGAATGTCCTGAGA-3’); 

ChIP_IL-10 Distal Promoter (forward 5’-CCCTGGTGTGGTAACCCTCT-3’, reverse 5’-

ACCCTGGGCAAGCAACTACT-3’); ChIP_IL-10 Proximal Promoter (forward 5’-UN
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GCAGAAGTTCATTCCGACCA-3’, reverse 5’-GCCTTGTGGCTTTGGTAGTG-3’). 

 

Statistical analysis  

The data are expressed as the mean ± SEM. Statistical analysis was determined using 

Student's t-test or one-way ANOVA. All statistical significance (*P < 0.05 and **P < 0.01) 

was performed using the software SigmaStat (Systat Software, Inc., San Jose, CA, USA). 
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FIGURE LEGENDS  

Fig. 1. LPS-induced IL-10 expression is regulated by JQ1 in B cells. (A) Representative 

images and relative gene expression of IL-10. Splenic B cells were stimulated with LPS (10 

μg/ml) for indicated times or (B) indicated LPS concentration for 4h. Representative band UN
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images and data are the mean ± SEM from three independent experiments. **P＜0.01. (C) 

Quantitative analysis of secreted IL-10 from LPS-stimulated splenic B cells. Cells were 

stimulated with LPS for the indicated times and supernatant were harvested. IL-10 released 

into the medium were analyzed by enzyme-linked immunosorbent assay (ELISA). **P＜0.01 

(24h) or ##
P＜0.01 (48h) when compared with no LPS stimulation group. (D) Representative 

images and (E) relative gene expression of IL-10 gene expression in LPS stimulated splenic 

B cells with or without JQ1 (0 – 100 nM) for 4h. (F) Splenic B cells were incubated in 

triplicate LPS with or without JQ1 (0 – 100 nM) for 24h. Cell viability was determined using 

a cell counting kit-8. Representative band images (D) and data (E, F) are the mean ± SEM 

from three independent experiments. **P＜0.01. n.s., not significant. 

 

Fig. 2. Effect of JQ1 on regulatory B subsets and IL-10 producing ability in splenic and 

peritoneal cavity B cells. (A) Expressions of the B cell surface markers from DMSO or JQ1 

(100 nM) treated splenic B cells that were incubated with LPS for 4h. Black histograms 

represent B cells treated with DMSO (control), red histograms represent JQ1-treated B cells, 

and gray filled histograms show cells with isotype control. Plots are representative images of 

at least three independent experiments. (B and C) Splenic B cells were incubated with 10 

μg/ml of LPS + PIM for 5h in presence or absence of the indicated dose of JQ1 (0 – 100 nM). 

(B) Representative plots and frequencies of CD1dhiCD5+ subset and (C) IL-10+ in splenic B UN
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cells. **P＜0.01. n.s., not significant. (D) Frequencies of IL-10+ splenic B cells that 

contained LPS (10 μg/ml) for 43h + last PIM 5h in the presence of the indicated dose of JQ1. 

*P＜0.05, **P＜0.01. (E) Secretion of IL-10 in LPS stimulated splenic B cells with or 

without JQ1 (0 – 100 nM) for 24 and 48h. *P＜0.05, **P＜0.01 (24h) or ##
P＜0.01 (48h) 

when compared with JQ1 untreated B cells under LPS stimulation group. (F and G) PeC B 

cells were incubated with 10 μg/ml of LPS + PIM for 5h in presence or absence of the 

indicated dose of JQ1. (F) Representative plots and frequencies of CD5+CD11b+ B-1a cells 

and (G) IL-10+ in peritoneal cavity B cells. *P＜0.05, **P＜0.01. n.s., not significant. (H) 

Frequencies of IL-10+ peritoneal cavity B cells that contained LPS for 43h + last PIM 5h in 

the presence of the indicated dose of JQ1. *P＜0.05, **P＜0.01. n.s., not significant. (I) 

Secretion of IL-10 in LPS stimulated peritoneal cavity B cells with or without JQ1 (0 – 100 

nM) for 24 and 48h. *P＜0.05, **P＜0.01 (24h) or ##
P＜0.01 (48h) when compared with 

JQ1 untreated B cells under LPS stimulation group. All plots are representative images and 

data are the mean ± SEM from three independent experiments.  

 

Fig. 3. Expression of BET proteins and NF-κB in LPS stimulated B cells. (A and B) Splenic 

B cells were stimulated by 10 μg/ml of LPS for indicated times (0 - 4h). (A) Representative 

image of BET (BRD2, BRD3, and BRD4) genes and (B) relative gene expression level of 

BET proteins in a time dependent manner. (C and D) Splenic B cells were stimulated by UN
CO

RR
EC

TE
D 

PR
O
O
F



 25

indicated doses (0 – 10 μg/ml) of LPS for 4h. (C) Representative image of BET (BRD2, 

BRD3, and BRD4) genes and (D) relative gene expression level of BET proteins in a dose 

dependent manner. Representative images (A, C) and data (B, D) are the mean ± SEM from 

three independent experiments. n.s., not significant. (E and F) Cells were stimulated by 

indicated doses (0 – 10 μg/ml) of LPS for indicated times (0 – 4h). Representative band 

image and relative protein expression level of NF-κB in LPS stimulated B cells. (G) 

Representative band image and relative protein expression level of NF-κB in LPS stimulated 

B cells in the presence of the indicated dose of JQ1 for 4h. Representative band images and 

data are the mean ± SEM from three independent experiments. n.s., not significant. 

 

Fig. 4. JQ1 negatively regulates the IL-10-NF-κB complex via suppression of BRD4 binding 

at the IL-10 promoters. (A) Schematic diagram of the IL-10 hyper sensitive site (HSS), distal 

promoter (DP), and proximal promoter (PP) are indicated. (B) Splenic B cells stimulated by 

10 μg/ml of LPS with or without 100 nM of JQ1 for 2h. Chromatin was immunoprecipitated 

with anti-BRD4 or anti-NF-κB p65 antibody and each proteins binding at the hyper sensitive 

site, (C) distal promoter, and (D) proximal promoter regions of IL-10 was analyzed by real 

time PCR. The relative expression graph data are the mean ± SEM from three independent 

experiments. *P＜0.05, **P＜0.01. n.s., not significant. 
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Supplementary Fig. 1. Analysis of cell viability and effective concentration with JQ1 in 

mouse B cells. (A) Splenic B cells were incubated with or without JQ1 (0 – 1000 nM) in LPS 

(10 μg/ml) for 24h. Cell viability was determined using a cell counting kit-8. Data are the 

mean ± SEM from three independent experiments. *P＜0.05, **P＜0.01. n.s., not significant. 

(B) Splenic B cells were incubated with 10 μg/ml of LPS + PIM for 5h with or without JQ1. 

Representative images are shown form of at least three independent experiments. UN
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Supplementary Fig. 2. Effect of JQ1 on IL-10 production from mouse splenic CD1dhiCD5+ 

or PeC CD11b+CD5+ B subsets. Spleen or peritoneal cavity (PeC) fluid-derived B cells were 

incubated with 10 μg/ml of LPS + PIM for 5h in presence or absence of JQ1 (100 nM). (A) 

Representative plots and frequencies of IL-10+ B cells from mouse Splenic CD1dhiCD5+ or 

Non-CD1dhiCD5+ (CD1dloCD5-) B cell subsets. (B) Representative plots and frequencies of 

IL-10+ B cells from mouse PeC CD11b+CD5+ or Non-CD11b+CD5+ (CD11b-CD5-) B cell 
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subsets. All plots are representative images and data are the mean ± SEM from three 

independent experiments. **P＜0.01. 
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Supplementary Fig. 3. Sequential gating strategy for IL-10+ B cells and regulatory B subsets. 

(A) Splenic CD19+ B cells and (B) PeC CD19+ B cells were incubated with 10 μg/ml of LPS 

for 5h. Isolated B cells were identified according to lymphocytes area characteristics. Doublet 
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discrimination were undertaken by plotting FSC-A and FSC-H. IL-10+ B cells were identified 

by using an IL-10 mAb. Splenic regulatory B cells were identified by a CD1dhiCD5+ B 

subsets, and PeC regulatory B cells were characterized in CD11b+CD5+ B subsets. 
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