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Abstract 

Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen 

species. Although dynamic regulation of mitochondria morphology is a critical step to maintain 

cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we 

identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial 

fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced 

mitochondrial elongation, increased mitochondrial ATP synthesis, mitochondrial membrane potential 

and oxygen consumption rate. These results indicate that miR-200a-3p positively regulated 

mitochondrial elongation by downregulating MFF expression. 
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Introduction 

Mitochondria play essential roles in balancing cellular energy homeostasis as well as regulation of 

apoptosis (1-3). Tight regulation of mitochondrial morphology in response to various cellular stimuli 

is critical to maintain mitochondrial function. Mitochondria continuously change their morphologies 

by dividing (fission) or elongating (fusion) each other. Several key proteins regulating mitochondrial 

morphology have been identified. Dynamin-related protein (DRP1), mitochondrial fission 1 protein 

(FIS1), and mitochondrial fission factor (MFF) promote mitochondrial fragmentation, while mitofusin 

1/2 (MFN1/2), and optic atrophy 1 (OPA1) lead to mitochondrial elongation (3-6). Relative 

expression levels or post-translational modifications of key regulatory proteins are responsible for 

dynamic changes in mitochondrial morphology (3, 4, 6-9). Although recent reports have shown that 

post-translational regulatory mechanisms to control the quality of key proteins including 

phosphorylation (10), de-acetylation (11), and ubiquitination (12), detailed mechanism governing 

mitochondrial morphology is not fully understood. 

microRNAs (miRNAs), small non-coding RNAs (18-22 nt long) downregulate gene expression by 

destabilizing target mRNAs or inhibiting translation, thereby affecting various cellular processes such 

as cell proliferation, survival, death, and differentiation (13-24). miRNA expression could be 

regulated in time- and tissue-specific manners, and differential regulation of miRNAs is closely 

related to the pathogenesis of diseases (14, 19, 25-28). Recent studies have shown that miRNAs 

regulate dynamic changes of in the mitochondria morphology by regulating the expression of several 

key proteins governing mitochondrial dynamics. For example, miR-483-5p and miR-484 are 

responsible for suppressing mitochondrial fission by targeting FIS1 (29, 30). miR-499 affects 

mitochondrial dynamics by down-regulating DRP1 expression (31). miR-140 and miR-19b have been 

reported to decrease mitochondrial elongation through targeting MFN1, and miR-106, miR-195, and 

miR-761 down-regulate MFN2 expression (32-36). miR-27, miR-761, and miR-593 are responsible 

for mitochondrial dynamics by downregulating MFF expression (37-39). 
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In this study, we investigated the role of miR-200a-3p as a novel factor governing mitochondrial 

dynamics by targeting MFF, that function as a Drp1 receptor (40). The results of this study indicate 

that miR-200a-3p is bound to 3‘untranslated region (3’UTR) of MFF mRNA and decreased MFF 

expression. Ectopic expression of miR-200a-3p in Hep3B cells enhanced mitochondria elongation and 

increased mitochondrial activity without changes of other regulatory proteins including DRP1, 

MFN1/2, and OPA1. Our results suggest that miR-200a-3p functions as a novel factor regulating 

mitochondrial dynamics by decreasing MFF expression. 

 

Results 

miR-200a-3p is a novel factor regulating MFF expression. 

Mitochondria dynamics is tightly regulated by several key proteins including DRP1, OPA1, MFN1/2 

and MFF (3, 6). It has been reported that expression and activity of those key regulators are 

modulated via multiple steps including transcriptional, translational, post-transcriptional, and post-

transitional modification. Previous studies have reported that miR-27, miR-593-5p, and miR-761 

regulate MFF expression (38, 39, 41). In this study, we identified miR-200a-3p as a novel regulator 

governing MFF expression. A survey using two different miRNA prediction algorithms, Targetscan 

and microrna.org, revealed that MFF mRNA 3’UTR has a potential binding site for miR-200a-3p (Fig. 

1A). To investigate whether miR-200a-3p affects MFF expression, MFF mRNA and proteins levels 

were determined by RT-qPCR and Western blotting after miR-200a-3p transfection. As shown in 

Figure 1B, MFF mRNA level did not change by miR-200-3p. However, miR-200a-3p overexpression 

decreased MFF protein, and inhibition of miR-200a-3p increased it. To further analyze the regulation 

of MFF expression by miR-200a-3p, EGFP reporter was constructed by inserting MFF 3’UTR (1751-

2040 nt) at the 3’UTR of EGFP open reading frame and EGFP levels were assessed after miR-200a-
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3p expression. miR-200a-3p downregulated the reporter expression containing MFF 3’UTR, but not 

that of mutant reporter that missing the seed region for miRNA binding (Fig. 1C and D). These results 

suggest that miR-200a-3p is responsible for MFF downregulation. 

miR-200a-3p increases mitochondrial elongation by MFF downregulation. 

To investigate the effect of miR-200a-3p on the morphological changes of mitochondria, we observed 

mitochondria morphology of CHANG cells expressing mtYFP or Hep3B cells incubated with 

Mitotracker, after regulation of miR-200a-3p level. As shown in Figures 2A and B, ectopic expression 

of miR-200a-3p increased the number of cells having elongated mitochondria, whereas miR-200a-3p 

inhibition increased the portion of cells having fragmented mitochondria in CHANG mtYFP cells. 

The regulation of mitochondria morphology by miR-200a-3p was further analyzed in Hep3B cells. As 

shown in Figures 2C and D, miR-200a-3p also increased the number of cells having elongated 

mitochondria of Hep3B cells.  

Next, the effect of miR-200a-3p affected the levels of key proteins governing mitochondrial dynamics 

was investigated. The levels of DRP1, MFN1/2, and OPA1 did not change after upregulation or 

inhibition of miR-200a-3p (Fig. 3). Taken together, those results indicate that miR-200a-3p promotes 

mitochondrial elongation via MFF downregulation.  

miR-200a-3p enhances mitochondrial activity.  

Morphological changes of mitochondria directly affect mitochondrial function including cellular 

respiration, ATP synthesis, reactive oxygen species production, and mitochondrial-mediated apoptosis 

(42-45). We investigated whether miR-200a-3p changes the mitochondrial activity. Mitochondrial 

ATP synthesis and membrane potential were assessed by Toxglo assay and JC1 staining after ectopic 

expression of miR-200a-3p. As shown in Figure 4A, miR-200a-3p overexpression increased 

mitochondrial ATP synthesis and membrane potential. These results suggest that miR-200a-3p 

positively regulates the mitochondrial activity. In addition, oxygen consumption rate (OCR) was also 
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measured in Hep3B cells transfected with miR-200a-3p using a Seahorse FX analyzer. miR-200a-3p 

increased the basal respiration rate of mitochondria (Fig. 4B). These results indicate that miR-200a-3p 

has a potential to increase the mitochondrial activity via MFF downregulation.  

 

Discussion 

Fine-tuning of mitochondrial morphology is a critical step to maintain cellular homeostasis, and 

impaired regulation of mitochondrial dynamics leads to mitochondrial dysfunction that is responsible 

for the pathogenesis of several diseases such as cancer, neurodegenerative diseases, cardiovascular 

diseases (7, 46-48). Previous studies have shown that epigenetic and post-translational modifications 

are important regulatory mechanisms to control the quality of key proteins control mitochondrial 

dynamics (10-12, 31, 49). In addition, several studies have indicated that miRNAs are one of critical 

regulators governing the morphological changes of mitochondria (29, 31-36, 38, 41, 50). In this study, 

we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting MFF. 

miR-200a-3p is a member of miR-200 family consisting of miR-200a, miR-200b, miR-200c, miR-141, 

and miR-429. miR-200 family play a role in the regulation of cancer progression by targeting zinc 

finger E-box-binding homeobox 1/2 (ZEB1/2) (51-55). miR-200a-3p is differentially expressed in 

various types of cancers and functions as a potential therapeutic target (56, 57). Besides tumor 

suppressive roles of miR-200a-3p, functional studies of miR-200a-3p are not fully elucidated. Herein, 

we found that miR-200a-3p is involved in the mitochondrial quality control by enhancing 

mitochondrial elongation. Ectopic expression of miR-200a-3p downregulated MFF level (Fig. 1) and 

promoted mitochondrial elongation thereby increasing mitochondrial membrane potential and basal 

respiratory rate (Fig. 2 and 4) Although several reports have shown differential expression of miR-

200a-3p in some types of disease models (58-62), the correlation between miR-200a-3p and 
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mitochondrial dynamics in those models has not yet investigated in this study. Further studies are 

needed to confirm the implication of miR-200a-3p/MFF axis in the pathogenesis of human diseases.  

Materials and Methods 

Cell culture, transfection, plasmids and miRNAs 

Human CHANG liver cells that stably express yellow fluorescent protein, targeting mitochondria 

(CHANG-mtYFP cells) and Hep3B cells were cultured in Dulbecco’s modified Eagle’s medium 

(Invitrogen) contained with 10% fetal bovine serum and 1% antibiotics. For reporter analysis, 

Enhanced green fluorescent protein (EGFP) reporter vectors were constructed by inserting 3’UTR 

region of MFF mRNA (1509-1778 bp) into pEGFP-C1 (BD Bioscience) (41). A mutant reporter 

lacking the binding sites for the miR-200a-3p seed region was generated by site-directed mutagenesis 

using a KOD-Plus-Mutagenesis Kit (Toyobo). miRNAs (Bioneer) were transiently transfected using 

Lipofectamine 2000 (Invitrogen). 

Western blot analysis 

Cells were lysed in RIPA buffer (10mM Tris–HCl (pH 7.4), 150mM NaCl, 1% NP-40, 1mM EDTA 

and 0.1% sodium dodecyl sulfate) and analyzed by SDS-PAGE. Transferred membranes were 

incubated with primary antibodies against MFF (Abcam), GFP (Santa Cruz Biotech), MFN1 (Abcam), 

MFN2 (Sigma Aldrich), OPA1 (BD Bioscience), or β-actin (Abcam), and further incubated with 

appropriate secondary antibodies conjugated to horseradish peroxidase (Santa Cruz Biotech). 

Chemiluminescent signals were developed using ClarityTM Western ECL substrate (Bio-Rad).  

Fluorescence microscopy  

Mitochondrial morphologies were observed under a fluorescence microscope, Axiovert 200M 

microscope (Carl Zeiss). Yellow fluorescence from mtYFP or red fluorescence from MitoTracker Red 

CMXRos (Invitrogen) was analyzed as described by Tak, et al.(41). Images were acquired using an 
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Axiovertcam mRM camera attached to Axiovert 200M microscope (Carl Zeiss). Mitochondrial length 

was determined by analyzing random 100 cells images of the cells transfected with mtYFP or stained 

with MitoTracker using Image J software. 

Measurement of the mitochondrial membrane potential and ATP level 

Mitochondrial membrane potential or mitochondrial ATP levels were determined using a JC1 

Mitochondrial Membrane Potential Assay Kit (Abcam) or the Mitochondrial ToxGlo assay (Promega) 

according to the manufacturer’s protocol (41).  

Analysis of oxygen consumption 

Oxygen consumption rate (OCR) was assessed by Seahorse FX24 Extracellular Flux Analyzer 

(Seahorse Bioscience) according to the manufacturer’s instruction. The number of cells (1 × 103) was 

used for OCR measurement. Basal OCR was measured for 3 min every 8 min for four points. Small 

molecule-metabolic modulators oligomycin (3 μM), FCCP (1 μM), and antimycin A (1 μM) were 

injected sequentially at the indicated time points after baseline OCR measurement.  
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Figure legends 

Figure 1. miR-200a-3p down-regulated MFF expression. 

(A) Schematic diagram of MFF mRNA having miR-200a-3p binding site. (B) Hep3B cells were 

transfected with pre-miR-200a-3p, anti-miR-200a-3p, and control miRNA (CTRL). Forty-eight hours 

after transfection, abundance of MFF mRNA and protein were analyzed by RT-qPCR and western 

blotting, respectively. (C) Schematic diagrams of the reporter plasmids pEGFP-C1 (control), pEGFP-

MFF 3U, and pEGFP-MFF 3UM that lack miR-200a-3p binding site in in the MFF mRNA. (D) After 

transfection of miRNAs and EGFP reporters, GFP expression levels were analyzed by western 

blotting. Results are representative of three independent experiments. 

 

Figure 2. miR-200a-3p inhibited mitochondria fission. 

(A) CHANG-mtYFP cells were transfected with pre-miR-200a-3p, anti-miR-200a-3p, and control 

miRNA (CTRL). Forty-eight hours after transfection, mitochondrial morphology was observed by 

tracing YFP signals. (B) The number of cells was counted and grouped into three different categories 

according to mitochondrial morphology (intermediate, elongated or fragmented forms) from 100 cells. 

(C) Hep3B cells were transfected with pre-miR-200a-3p, anti-miR-200a-3p, and control miRNA 

(CTRL). After transfection of miRNAs, mitochondria were stained with MitoTracker and 

mitochondrial morphology was observed using a fluorescence microscope. (D) The number of cells 

were analyzed as described in (B). Images are representative of three independent experiments and the 

data represent the mean±SEM from three independent experiments. Arrows indicate elongated form 

of mitochondria and arrow heads indicated fragmented mitochondria. *P<0.05 

 

Figure 3. Expression of DRP1, MFN1/2, and OPA1 were not changed by miR-200a-3p. 
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CHANG-mtYFP cells were transfected with pre-miR-200a-3p, anti-miR-200a-3p and control miRNA 

(CTRL). Forty-eight hours after transfection, MFF, DRP1, MFN1/2, and OPA1 proteins were 

analyzed by western blotting. Results are representative of three independent experiments.  

 

Figure 4. miR-200a-3p affected mitochondrial function by regulating MFF expression. 

(A) Hep3B cells were transfected with miR-200a-3p or control miRNA, and stained with ATP 

detection reagent (left) and JC-1 dye (right) to determine mitochondrial membrane potential and 

mitochondrial ATP levels. Change in the relative luminescence was assessed by measuring the 

fluorescence. Data represent the mean±SEM from three independent experiments. (B) Oxygen 

consumption rates in miRNA transfected cells were analyzed using a Seahorse XF analyzer. Data 

represent the mean±SEM from three independent measurements. *P<0.05 
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Fig. 6 Figure 2
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Fig. 7 Figure 3
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