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ABSTRACT 

ARF is an alternative reading frame product of the INK4a/ARF locus, which is 

inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an 

irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering 

MDM2, a p53 E3 ligase, in the nucleolus, thus activating p53. Besides MDM2, ARF has 

numerous other interacting partners that induce either cellular senescence or apoptosis in a 

p53-independent manner. This further complicates the dynamics of the ARF network. 

Expression of ARF is frequently disrupted in human cancers, and its cause has been mainly 

attributed to epigenetic and transcriptional regulation. Vigorous studies on various 

transcription factors that either positively or negatively regulate ARF transcription have been 

carried out. However, recent focus on posttranslational modifications, particularly 

ubiquitination, indicates wider dynamic controls of ARF than previously known. In this 

review, we discuss the role and dynamic regulation of ARF in senescence and cancer.  
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INTRODUCTION 

The tumor suppressors p15ink4b, p14ARF, and p16ink4a, are well-characterized 

products of the INK4b/ARF/INK4a gene locus. Corresponding to the region of mouse 

chromosome 4, this locus is situated on chromosome 9 of the human genome within a 35 kb 

region. As expected for potent tumor suppressors, the INK4b/ARF/INK4a locus is frequently 

targeted for deletion or epigenetic suppression in numerous cancers. The coding regions of 

p14ARF and p16ink4a start from exons 1β and 1α, respectively. Moreover, owing to an 

alternative reading frame, they comprise of completely different amino acids despite sharing 

exons 2 and 3. Although p15ink4b has a similar role in cell cycle inhibition, it has a coding 

region physically separated from that of p14ARF and p16ink4a (Figure 1) (1, 2).  

ARF’s major role as a tumor suppressor is intimately related to p53 stabilization, which 

induces cellular senescence and prevents tumor cell growth. ARF releases p53 from MDM2, 

a well-known E3-ubiquitin ligase of p53, by trapping MDM2 in the nucleolus via direct 

interaction, which physically separates p53 from MDM2 (3-6). ARF’s interactions with 

protein partners other than MDM2 also result in suppression of tumor growth via induction of 

either cellular senescence or apoptosis in a p53-independent manner. These have been 

evidenced using p53-deficient cell lines and knockout (KO) mice models. Moreover, recent 

identification of posttranslational regulatory mechanisms further complicates the dynamics of 

the ARF mechanism (7-9). In this review, we discuss the transcriptional as well as 

posttranslational regulatory mechanisms of ARF, in an attempt to provide comprehensive 

understanding of the same.  
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REGULATION OF ARF 

Transcriptional regulation of ARF 

Since the emergence of ARF as a tumor suppressor, the regulation of its expression has 

been one of the most pursued areas of research. Numerous transcription factors (TFs), which 

regulate ARF either positively or negatively, have been discovered (Figure 2). In particular, 

the E2F1 transcription factor (regulates genes involved in cell cycle regulation) induces ARF 

transcription by directly interacting with its binding site upstream of the exon 1β, thus 

activating apoptosis and cell growth arrest (10). This is one of the most well characterized 

pathways of oncogene-induced senescence, activated upon oncogenic stress. However, this 

process is differently modulated by different E2F isoforms. For instance, E2F3b, an isoform 

of E2F3, represses ARF transcription and stimulates cellular growth. The observation that the 

loss of ARF can rescue E2F3b depletion-mediated cell growth arrest clearly suggests anti-

reciprocal correlation between these two proteins (11). Myc, another well-established and 

vigorously investigated oncogene, exhibits regulatory patterns similar to E2F1. To prevent 

hyper-proliferation of cells under oncogenic stress, it also activates fail-safe programs such as 

apoptosis and cellular senescence by inducing ARF transcription (12). Frederique and 

colleagues reported that Myc overexpression induces accumulation of ARF both at the 

mRNA and protein levels in mouse embryonic fibroblasts (MEFs) (13). They showed that 

Myc-induced ARF activates p53 signaling thus preventing immortalization of the MEFs. 

Further, Myc also activates FoxO-mediated ARF transcription. Caroline and colleagues 

reported that Myc signaling increases nuclear FoxO, which in turn binds to the ARF promoter 

and thus suppresses Myc-driven lymphomagenesis in mice (14). A cyclin D-binding Myb-like 

protein, DMP1, also induces ARF. Kazushi and colleagues demonstrated that DMP1 binds to 
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the ARF promoter and activates its transcription in MEFs, which results in cell cycle arrest 

(15). Furthermore, the ARF promoter also provides several binding sites for acute myeloid 

leukemia-1 (AML1), which activates its transcription leading to cellular senescence in MEFs. 

However, the t(8;21) fusion protein AML1-ETO, which is frequently expressed in acute 

leukemia, represses ARF expression (16). Meanwhile, oncogenic signaling by RAS 

influences ARF expression in a DMP1-dependent manner. RAS signaling induces Jun-

mediated DMP1 transcription thus increasing ARF expression (17). Next, Yanbin and 

colleagues suggested that TGFβ signaling directly induces ARF expression. They found that 

TGFβ signaling elevates the ARF mRNA levels through Smad2/3 and p38 MAPKs in MEFs. 

Smad2/3 is known to bind directly to the ARF promoter upon stimulation by TGFβ. However, 

it is yet to be addressed how Smad and p38 MAPK signaling cooperate to induce ARF 

expression (18). p38 MAPK has previously been reported to regulate ARF expression. 

Dmitry and colleagues found that decreased Wip1 phosphatase increases ARF expression in a 

p38 MAPK-dependent manner in Ppm1d-/- MEFs (19). Moreover, a recent study suggests 

that HKR3 (Human Krüppel-related 3) activates ARF transcription by binding to the ARF 

promoter with coactivator p300, which induces acetylation of the histones H3 and H4 (20). 

Meanwhile, several repressors of ARF transcription have also been reported (Figure 2). 

For example, the polycomb group gene BMI-1 suppresses cellular senescence through 

repression of ARF transcription. BMI-1-deficient MEFs show impaired cell cycle progression 

and enter premature senescence, which can be rescued by ARF depletion (21). BMI-1 also 

requires the EZH2-containing Polycomb-Repressive Complex 2 (PRC2) to repress ARF 

transcription. PRC2 maintains the levels of H3K27Me3 as well as the BMI-1/PRC1 complex 

at the ARF locus (22). Another polycomb group gene, CBX7, is known to increase the 
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lifespan of normal human cells and MEFs through suppression of ARF expression, 

independent of BMI-1 (23). Further, TBX2 immortalizes MEFs and decreases senescence in 

normal human cells by repression of ARF transcription (24). The basic helix-loop-helix 

(bHLH) transcription factor Twist-1 is also known to activate the recruitment of EZH2 to the 

ARF transcription start site. Thus, it increases the levels of H3K27Me3 on the ARF locus, 

followed by repression of ARF transcription (25).  

Although many factors that regulate the transcription of ARF are well described, its 

posttranslational regulation is largely unknown. Recently, some posttranslational regulators of 

ARF have been reported, thus magnifying its importance in senescence and tumorigenesis. 

Posttranslational regulation of ARF 

Although the functional importance of ARF in cellular senescence and tumor 

suppression is well characterized, knowledge about its posttranslational regulation is limited. 

A previous report suggested that ARF, which has no lysine sites, is polyubiquitinated at its N-

terminus followed by proteasomal degradation by unknown an E3-ubiquitin ligase (26). Five 

years later, the first E3-ubiquitin ligase for ARF, TRIP12, was identified and named ULF 

(ubiquitin ligase for ARF) (Figure 3) (7).  ULF induces polyubiquitination and proteasomal 

degradation of ARF, thus activating cell proliferation. Interestingly, the ULF-mediated 

degradation of ARF is further regulated by NPM and c-Myc, suggesting that Myc regulates 

ARF both transcriptionally and translationally. Subsequently, Ko and colleagues reported a 

second E3-ubiquitin ligase, Makorin 1 (MKRN1), which targets ARF. MKRN1 KO MEFs 

presented retarded cell growth and senescence with concomitant increase in the ARF protein 

levels (8). Corroborating these results, MKRN1 was also shown to induce ubiquitination and 

proteasomal degradation of ARF. Moreover, its ablation decreased tumor growth through 
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induction of the ARF-dependent senescence in xenograft models using p53-positive and -

negative gastric cancer cell lines. Further, tumor tissues from gastric cancer patients showed 

negative correlation between MKRN1 and ARF proteins. Siva1 has also been reported as an 

E3-ubiquitin ligase for ARF. It induces proteasomal degradation of ARF, thus inhibiting p53 

function (9). The existence of several E3 ligases for ARF is intriguing. Systemic studies on 

the cellular localization of these E3 ligases might help to shed some light. It is also possible 

that each ligase is a mediator that links the different signaling pathways involving ARF. 

Extensive studies on each ligase are required for the complete elucidation of ARF regulation.  

 

ARF IN SENESCENCE AND CANCER 

Tumor suppressive function of ARF  

Senescence is an irreversible cell growth arrest that prevents hyper proliferation of 

cancer cells. As oncogenic signal stimulation always carries the risk of cancer cell eruption, 

normal cells require senescence as a fail-safe program to prevent hyper proliferation and 

tumorigenesis. ARF plays a key role in this fail-safe program through activation of the p53 

pathway (Figure 4). ARF binds and sequesters MDM2 in the nucleolus leading to the 

activation of p53 in the nucleoplasm (3-6). The activated p53 then promotes transcription of 

numerous target genes such as BAX or p21, thus inducing either cellular senescence or 

apoptosis (27-29). Mice lacking p19ARF are susceptible to early tumors. In fact, ARF and 

p53 double KO mice show tumor incidences similar to those with p53 KO alone. This 

suggests that the tumor suppressive function of ARF is entirely p53-dependent (30).  

While there is no argument on the dependency of ARF on p53, some evidence shows 
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that ARF might have a p53-independent tumor suppressive function as well. Weber and 

colleagues reported that triple KO (TKO) mice for MDM2, p53, and p19ARF show greater 

frequency of multiple tumors than do double KO mice for MDM2 and p53. Moreover, 

reintroduction of ARF into TKO MEFs induces cell cycle arrest. These results suggest that 

ARF has an additional tumor suppressive role that is p53/MDM2-independent (31). Genetic 

deficiency in ARF but not p53 accelerates development of melanoma in a genetically 

engineered mouse model, while senescence is induced in p53- but not in ARF-deficient 

primary melanocytes (32). The induction of cell cycle arrest, cellular senescence, apoptosis, 

and regression in xenograft tumors by ARF in p53-deficient cell lines indicates obvious p53-

independent roles for ARF (33-38). Possibly, p53-independent functions of ARF are carried 

out through its interactions with numerous regulatory proteins (Figure 4). For example, Tip60 

directly binds to and induces acetylation of RB, leading to its destabilization through 

proteasomal degradation. ARF prevents the Tip60-mediated RB acetylation and leads to 

accumulation of hyper phosphorylated RB, which then triggers anti-proliferative functions 

(39). Further, through MALDI-TOF analyses, NPM was also identified as a binding partner 

of ARF. ARF binds and sequesters NPM in the nucleolus thus blocking its nucleocytoplasmic 

shuttling, and resulting in subsequent cell growth arrest (40, 41). ARF also inhibits the 

activities of various TFs such as E2F1, HIF-1α, Foxm1, c-Myc and n-Myc through direct 

interaction, thus preventing cell proliferation (33, 42-45). This shows the negative feedback 

regulation of ARF induced by some of these TFs. ARF also induces the ATR/CHK1-

dependent RelA (NF-kB) phosphorylation and reduces its transcriptional activity (46). 

Furthermore, CtBP1 and 2, transcription co-repressors that have anti-apoptotic functions, are 

also reported to interact with ARF. Binding of ARF to CtBP1 and 2 promotes their 
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proteasomal degradation (47). In addition, ARF also stimulates the sumoylation of several 

target proteins including NPM, MDM2, WRN, and Miz-1 (48-52). While its mechanism 

remains unclear, the observation that ARF interacts with UBC9, a sumo E2 conjugating 

enzyme, indicates that ARF might facilitate sumo transfer from the E2 complex to its target 

proteins (52). In addition, there are many other proteins that interact with ARF (such as 

HPV16E7, HSP70 and others) and assist in its p53-dependent or -independent functions (53, 

54). 

In short, ARF has numerous interacting partners other than MDM2, which facilitate and 

maximize its tumor suppressive effect via induction of cellular senescence or apoptosis in 

p53-dependent or -independent manner (Figure 4). Given its p53-dependent and -independent 

functions, elaborate studies on the context-dependent roles of ARF are required, since most 

cancer cells are either deprived of p53 or carry mutant p53. 

ARF KO mice 

The first KO mice for ARF were developed even before it was found that INK4a and 

ARF coexist on the same genomic locus. As a result, the first KO mice had both the INK4a 

and ARF sites eliminated. These mice spontaneously developed various types of cancers 

within the first year. KO MEFs also displayed significantly faster growth rate than wild type 

MEFs. Furthermore, they were transformed by oncogenic stimulus of RASV12 (55). Later, 

mice lacking p19ARF but not p16INK4a were also generated by targeting exon 1β. These 

mice also developed numerous tumors- spontaneously as well as upon carcinogen treatment, 

leading to death within the first year. In several mouse strains (C57BL6, 129svj X C57BL6 

and FVB), ARF-specific KO mice develop sarcoma, squamous cell carcinoma, lung 

carcinoma, and metastatic lymphoma. Moreover, exposure to carcinogens such as DMBA, X-
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rays, and irradiation make ARF KO mice more prone to tumors (Table 1) (56-58). The fact 

that mice and MEFs lacking ARF alone show similar features of cancer development and cell 

growth raised curiosity about the characteristics of mice KO for Ink4a alone. In contrast to 

p19ARF-deficient MEFs, MEFs that lack p16Ink4a but retain p19ARF show normal cell 

growth features and are susceptible to RAS-induced senescence (59). Meanwhile, p16-null 

MEFs exhibit increased immortalization compared with wild type MEFs, though less 

compared with p19ARF KO and p19ARF/p16ink4a KO MEFs. KO mice lacking p16 alone 

also develop spontaneous and carcinogen-induced tumors, which indicate that p16Ink4a 

functions as a tumor suppressor in association with p19ARF.  

Immunoglobulin promoter enhancer (Eµ)-driven Myc expression promotes B-cell 

lymphoma in mice. The B-cell lymphoma latency is significantly shortened in mice lacking 

both Ink4a and ARF, or ARF alone (27, 60, 61). Moreover, the role of the INK4a/ARF locus 

in HRASV12-induced melanoma has been reported using melanocyte-specific HRASV12 

transgenic mice. Mice lacking p19ARF and p16ink4a were shown to develop melanoma with 

short latency and high penetrance (62).  

The tumor suppressive role of Ink4a/ARF was also studied in a super Ink4a/ARF 

mouse strain (carrying a transgenic copy of the entire INK4a/ARF locus), wherein increased 

activities of these tumor suppressors were observed (63). Furthermore, cells derived from 

these mice showed increased resistance to oncogene-induced transformation. Surprisingly, 

the super Ink4a/ARF mice showed higher resistance to carcinogen-induced tumor 

development without affecting normal viability and aging. This suggests that restricted 

increase in the amount of tumor suppressors at systemic levels might enhance an individual’s 

ability to resist cancer development. 
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Status of ARF in human cancers 

Given that, ARF plays an important role in tumor suppression, its deregulation in 

numerous cancers is also reported (Table 2). Studies on the deregulation of ARF have focused 

on gene loss or silencing by promoter hyper methylation and mutation. Its expression patterns 

have been mainly studied at the transcript level because of its low expression, and availability 

constraints of its antibodies for immunohistochemistry. However, ARF protein expression in 

human cancers has been constantly pursued since the importance of its posttranslational 

regulation was postulated. Low mRNA levels of ARF have been frequently observed in 

human cancers including those of the breast, colon, and liver. This has chiefly been attributed 

to gene silencing by promoter methylation and deletion of the gene locus. Both homologous 

deletion and loss of heterozygosity for this locus have been detected in human cancers (35, 44, 

64-69). These alterations mostly result in deletion of the entire INK4a/ARF locus affecting 

the expressions of both ARF and Ink4a. The best-known genetic alteration that specifically 

affects ARF expression is promoter hyper methylation. In this context, the ARF promoter is a 

CpG island that can be silenced by DNA hyper methylation. Silencing of the gene by this 

mechanism has been reported in numerous human cancers including those of the colon, liver, 

breast, and lung (64-66, 69-82). Hyper-methylation of the ARF promoter occurs 

independently of the INK4a promoter methylation, thus suggesting specific alteration of the 

ARF expression in these cancers. Contrastingly, elevated levels of ARF mRNA have also 

been reported in tumors (68). ARF might also be upregulated in cancers by various oncogenic 

stimuli such as c-Myc, RAS, and E2F1. Furthermore, mutations such as short deletions or 

insertions in the ARF-specific exon 1β, and missense mutations in exon 2 have been 

frequently reported in familial melanoma syndromes (83-86).  
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Sylvie and colleagues reported that protein expression of ARF is low in lung cancer, 

and that there is frequent uncoupling between transcript and protein levels (87). Thus, they 

suggested that ARF is also inactivated at the posttranslational level in cancers. In a recent 

study, the authors also reported that the ARF protein is expressed at low levels in gastric 

cancer, and is negatively correlated with MKRN1 expression (an E3 ubiquitin ligase that 

induces ARF degradation) (8). These results also support the importance of the 

posttranslational regulation of ARF in tumor suppression/progression.  

 

CONCLUSION 

The role of ARF in tumor suppression is relatively well established through various 

experiments using cancer cells, mice models, and human patients with cancer. As is well 

known, the key mechanism of tumor suppression by ARF is induction of cellular senescence 

via activation of the p53 pathway. ARF binds and sequesters MDM2 in the nucleolus, thus 

preventing the degradation of p53. However, the p53-independent role of ARF is still to be 

clearly delineated, and its targets verified. Toward this, KO mice models have proven to be 

useful as shown by Weber and colleagues (discussed above). On one hand, these results led to 

the discovery of novel ARF interacting partners that regulate tumor suppression in a p53-

independent manner. On the other, the discovery of too many interacting partners has now 

caused considerable confusion. ARF interacts with numerous partners and regulates their 

sumoylation, transcriptional activities, or protein turnover resulting in p53-independent 

inhibition of tumor cell growth. As p53 is frequently mutated in many cancers, a clear 

understanding of this p53-independent function of ARF might provide crucial clues to finding 
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therapeutic targets in p53-mutated cancers. To this end, the downstream and upstream factors 

of ARF, along with their regulatory mechanisms, must be addressed extensively. In addition, 

the differential posttranslational regulation of ARF associated with tumor suppression and 

tumorigenesis must be elucidated using mouse models and human patient samples. 
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FIGURE LEGENDS 

Figure 1. The INK4b/ARF/INK4a locus. The INK4b/ARF/INK4a locus encodes three 

proteins including p15INK4b, p14ARF, and p16INK4a. The coding regions of p14ARF and 

p16ink4a start in different exons—exon 1, 1 ,  and 1 ,  respectively. Exon 2 of the 

INK4b/ARF/INK4a locus is shared by p14ARF and p16ink4a. They comprise completely 

different amino acids despite sharing the exons 2 and 3, through an alternative reading frame. 

Figure 2. Transcriptional regulation of ARF. Positive and negative regulators of ARF 

transcription. Transcriptional activators and repressors are shown in the upper part and lower 

parts, respectively. 

Figure 3. Posttranslational regulation of ARF. Three ubiquitin E3 ligases have been 

reported. ULF, MKRN1, and Siva1 bind directly to and induce ubiquitination of ARF 

resulting in the induction of its proteasomal degradation.  

Figure 4. p53 dependent and independent tumor suppressive functions of ARF. ARF 

plays a key role in cellular senescence and tumorigenesis through activation of the p53 

pathway. ARF binds and sequesters MDM2 in the nucleolus leading to the activation of p53 

in the nucleoplasm. p53 Leads to transcription of numerous target genes and activates cellular 

senescence or apoptosis. ARF also functions in a p53-independent manner through interaction 

with numerous target proteins. ARF regulates sumoylation, transcription activities, or protein 

turnover of target proteins, which lead to tumor suppression and senescence. 
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None

Sarcoma(43%)
Lymphoid malignancies(29%)

Carcinoma(17%)
/Squamous cell carcinoma

/Pulmonary adenocarcinoma
/Poorly differentiated carcinoma in pancreas

/Salivary gland carcinoma
Tumors of the nervous system(11%)

/Spinal cord neural sheath tumor
/Glioma

~38 weeks

DMBA

Squamous cell carcinoma
/+Lymphoma

/+Sarcoma and adnexal tumor
/+Sarcoma and lymphomax

/+sarcoma

~24weeks

X-ray
Sarcomas
Lymphoma

Meningeal tumor

None

Small lymphoma(33%)
Malig. Sp. Cell neo(30%)

Lung carcinoma(12%)
Osteogenic sarcoma(9%)

Tumors of the nervous system(9%)
Carcinoma/HCC(6%)

~62weeks

DMBA
Small lymphoma(60%)

Malig. Sp. Cell neo(40%)
Lung carcinoma(15%)

~24weeks

None

Fibrosarcoma(33.3%)
Metastatic salivary gland carcinoma(16.7%)

Thymoma(16.7%)
Malignant fibrous histocytoma(16.7%)

Lymphoma(brain)(16.7%)

~21weeks

DMBA

Epidermal papilloma(55.5%)
Lymphoma, Epidermal papilloma

Fibrosarcoma, malignant adenexal tumor
Fibrosarcoma, epidermal papilloma

Invasive epidermoid carcinoma

~20weeks

Irradiation
Fibrosarcoma(50%)

Lymphoma(brain)(50%)
~19weeks

None
Soft-tissue sarcoma(12.8%)
Splenic lymphoma(10.25%)

Melanoma(2.56%)
~44weeks

DMBA

Thymic lymphoma(13%)
Splenic lymphoma(6%)

Soft-tissue sarcoma(10%)
Malignant spindle-cell neoplasma(6%)

Lung adenoma(6%)
Squamous papilloma(29%)

~23weeks

None

Fibrosarcoma(33.3%)
Sarcoma

Liposarcoma, Lyphoma
Angiosarcoma

B-cell lymphoma
Lymphoma

~36weeks

UV
Fibrosarcoma(50%)

Squamous cell carcinoma
Lymphoma

~36weeks

DMBA+UV

Fibrosarcoma(50%)
B-cell lymphoma

Lymphoma
Low grade Fibrosarcoma
Squamous cell carcinoma

~14weeks

Table 1. Knockout mice of ARF and INK4a

58Exon1C57Bl/6ARF-/-

56

57

ARF-/-
129svj X
C57BL6

Exon1

FVB Exon1ARF-/-

C57BL/6 Exon2, 3
INK4a-/-
,ARF-/-

55

INK4a-/- FVB Exon1 59
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Low mRNA 77

promoter methylation 50

HD 11.5

LOH 27

High mRNA 17

no alteration 88

promoter methylation 24 71

promoter methylation 56 72

LOH 22

HD 14

mutation 2

promoter methylation 33 73

promoter methylation 50.8 74

promoter methylation 28.2 80

promoter methylation 32 75

promoter methylation 25

HD 4

LOH 16

promoter methylation 12 77

HD 2.3

mutation 4.6

High mRNA 93.2

promoter methylation (diffuse type) 45.5

promoter methylation (intestinal) 25

promoter methylation 30

LOH 26

promoter methylation 8 79

promoter methylation 18

HD 12

promoter methylation 43.8

HD 26.5

promoter methylation 6.25

HD 6.25

Kidney HD 23.5 81

Brain promoter methylation 22 79

Liver

Gastric

Lung

Table 2. ARF status in human cancers

65

HD: Homologus Deletion, LOH: Loss Of Heterozygosity

Oral

Prostate

70

68

76

67

78

69

66

64

Breast 

Bladder

Colon


