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ABSTRACT 23 

CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the 24 

best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger 25 

nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and 26 

assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small 27 

guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped 28 

open the doors for multiplexible genome targeting in many species that were intractable using 29 

old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way 30 

biological researches are conducted and paves a bright future not only in research but also in 31 

medicine and biotechnology.  In this review, we evaluated the history, types and structure, the 32 

mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this 33 

powerful tool in autophagy research. 34 
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INTRODUCTION 43 

Genome engineering technology has come a long way since its humble beginning in the 1970s 44 

and since then, it has undergone rapid development which saw better, more efficient and robust 45 

tools for use in genetic perturbations. Genome engineering is essentially the process of 46 

modifying the genetic configuration of an organism in a targeted and specific manner, and 47 

encompasses the strategies or techniques to carry out the modification process as well. Such a 48 

breakthrough in biology has permitted researchers to expand our knowledge of what is known 49 

about gene function and the capacity to alter DNA also allows researchers to model human 50 

diseases in animal models, making it possible to exploit this for gene therapy and drug 51 

development (1).  52 

To date, there are currently four major classes of genome editing technologies namely 53 

meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effectors (TALENs) 54 

and the most recent addition, the clustered regularly interspaced short palindromic repeats 55 

(CRISPR) and CRISPR-associated (Cas) (CRISPR/Cas) as well as the CRISPR-Cpf1 (CRISPR 56 

from Prevotella and Francisella 1) systems (2, 3). These four technologies manipulate genetic 57 

material by inducing site-specific DNA double-strand breaks (DSBs) that result in genome 58 

editing either via homologous recombination (HR)-mediated recombination events or non-59 

homologous end joining (NHEJ) (4). Although all of them are collectively classified under the 60 

same category of programmable nucleases, the mechanism of each of these genome editing 61 

technologies differ from one another.  62 

In general, meganucleases, ZFNs and TALENs nucleases target specific DNA sequences through 63 

protein-DNA interactions(5). Meganucleases, also known as homing endonucleases, are nature’s 64 
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highly specific nucleases whereby its nuclease and DNA-binding domains are combined into one 65 

single domain. In contrast, ZFNs and TALENs are artificially engineered nucleases with a DNA 66 

binding domain fused to a non-specific nuclease domain of Fokl. In this sense, meganucleases 67 

are not as efficient as ZFNs and TALENs because they are limited in their capacity to bind to 68 

new DNA sequences with high specificity. ZFNs and TALENs would seemingly be better 69 

alternatives but these two tools are not without drawbacks. The complication of context-70 

dependent binding preference between individual finger domains of ZFNs make designing of 71 

programmable ZFNs difficult even though solutions have been drawn up to address this 72 

limitation (6) as extensive screening process is necessary. On the other hand, TALENs exhibit 73 

lesser context-dependent binding preference and their modular assembly makes it possible to 74 

target any DNA sequence (7).  Furthermore, assembly of DNA encoding the repetitive domains 75 

of TALENs requires unconventional molecular biology cloning methods which can be costly in 76 

terms of time and labor (8). Now, genome engineering technology has seen widely used with the 77 

advent of the CRISPR system that has shown promising results in addressing the issues pertinent 78 

to modular DNA-binding protein construction. The CRISPR system has been employed in a 79 

variety of studies for its ease of customization to target any desired DNA sequences in a genome 80 

simply via customized sgRNA (4).  81 

Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and 82 

organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core 83 

molecular machinery in control of autophagy. The ability of precise genome editing of 84 

autophagy-related-genes (Atgs)   plays a critical role to study the underlying mechanisms of this 85 

complex process(9). The first knockout Atgs is Beclin1 via embryonic stem (ES) cell-based 86 

gene-targeting technique in mice, which showed significant phenotypes (10, 11). After that, 87 
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many Atgs such as ATG4B, ATG5, ATG7 have been modified in cells and mice using Cre-Lox 88 

recombinase and/or ES cell-based gene-targeting approaches to study the role of those Atgs in 89 

autophagy regulation and related biological functions (12-16). Recently, the CRISPR system 90 

have been developed and the convenience of design, construction, and delivery of sgRNAs 91 

offered an excellent possibility of rapid genome editing in autophagy study via targeting Atgs 92 

using CRISPR system. Here, we reviewed the very recent study of the novel genome editing tool 93 

CRISPR in knockout of autophagy genes and reported our partial date in order to elaborate the 94 

important role of CRISPR in autophagy research. 95 

THE CRISPR STORY 96 

History of CRISPR 97 

CRISPR systems have created a profound and lasting effect ever since it was established as the 98 

latest genome editing tool along with past technologies like meganucleases, ZFNs and TALENs. 99 

CRISPR clustered repeats was first discovered in 1987 while Nakata and team were working on 100 

the IAP enzyme in E. coli and a set of 29-nt repeats downstream of the iap gene was found (17). 101 

In 2002, Jansen and Mojica collectively described the genomic loci of microbials which consists 102 

of an interspaced repeat array with the term CRISPR (18). The research on CRISPR was at its 103 

crux in 2005 when further analyse on spacer sequences that separate each direct repeats resulted 104 

in the conclusion that they were of extra chromosomal and phage-related nature (19).  105 

By 2010, the functional mechanism of the natural Type II CRISPR system was better understood 106 

to construct an RNA-guided DNA endonuclease for genome editing. Cas9 is the sole enzyme 107 

within the cas gene array to exert nucleolytic activity on DNA (20). Together with this data, a 108 

non-coding trans-activating crRNA (tracrRNA) which hybridizes with crRNA to facilitate RNA-109 
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guided targeting of Cas9 has been to be the key component in crRNA biogenesis and processing 110 

in Type II CRISPR system (21). Later in 2012, it was shown that crRNA-guided cleavage by 111 

purified Cas9 was possible (22) and that a single guide RNA (sgRNA) could be designed by 112 

joining a crRNA containing the  guide sequence to a tracrRNA (23) which aids DNA cleavage 113 

by Cas9. Currently, multiple guide RNAs could also be designed to target multiple genes at once 114 

for genome editing with high efficiency (24). Many open-source distributors and online user 115 

forums have helped to advance the Cas9 technology as well. 116 

Types of CRISPR/Cas system 117 

The CRISPR adaptive immune system and CRISPR-associated (Cas) systems which originated 118 

from bacterial and archaeal hosts (25) primarily function as an immune system that cleaves 119 

exogenous DNA (26) or RNA (27) via an RNA-guided nuclease. Therefore, this serves to protect 120 

the bacterial and archaeal hosts from invading viruses or plasmids. CRISPR systems have been 121 

classified into three major types (Table 1) based on their genetic content, structural and 122 

functional differences whereby the key differences among the three is established by the Cas 123 

genes and encode proteins (28). However, among the three, the Type II CRISPR system is the 124 

best characterized (29) which comprises of the nuclease Cas9, the crRNA array and an ancillary 125 

trans-activating crRNA (tracrRNA). 126 

 127 

The structure of Cas9 128 

It was found that S. pyogenes Cas9 (SpCas9 for short) has two lobes; recognition (REC) lobe and 129 

nuclease (NUC) lobe (30). The variable, α-helical REC lobe is composed of three regions as 130 

follows: a long α helix referred to as the bridge helix, REC1 domain and REC2 domain (31). The 131 
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NUC lobe similarly has three domains but they are the RuvC, HNH and PAM-interacting (PI) 132 

domains. Within both of these two lobes, two clefts that bind to gRNAs and target DNA 133 

sequences by the REC and NUC lobes respectively were identified. Between the REC and NUC 134 

lobes is a positively charged groove, which is formed as a result of RuvC domain interfacing 135 

with PI domain, where the negatively charged sgRNA:target DNA heteroduplexdocks.  136 

As aforementioned, Cas9 must first undergo conformational change to activate its catalytic 137 

function. Based on single-particle electron microscopy reconstructions, conformation of Cas9 in 138 

the apo (unbound) state do not permit binding and cleaving of target DNA (32). It is only upon 139 

association of crRNA-tracrRNA duplex with Cas9 that it induces the two lobes to rearrange its 140 

structure into a channel for the target sequence to dock (33). Hence, the presence of the crRNA-141 

tracrRNA duplex determines if Cas9 is activated or not. Additionally, the HNH and RuvC 142 

domains can be mutated for functions other than for carrying out strand-specific cleavage (29). 143 

By substituting aspartate with alanine (D10A) in the RuvC domain, the mutant Cas9 now nicks 144 

DNA to yield single-stranded breaks and the favored homology-directed repair (HDR) 145 

potentially reduces the frequency of undesirable indels from off-target DSBs (29).  146 

With a thorough and deeper understanding of the mechanism for the Type II CRISPR/Cas 147 

system, attempts to redesign its structure to facilitate genome engineering purpose have been 148 

successful. The result was the construction of a chimeric RNA with crRNA and tracrRNA-149 

derived sequences which was subsequently named as guide RNA (gRNA) (23). For highly 150 

specific DNA targeting, the crRNA or gRNA can be redesigned to target any DNA sequences 151 

and guide Cas9 to result in sequence-specific DSB. 152 

 153 
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Mechanism of action 154 

The Type II CRISPR/Cas system derived from the SpCas9 has been studied the most extensively 155 

and as such, its mechanism of action is one of the most established (34). One crRNA unit 156 

consists of a partial direct repeat and a 20-nt guide sequence that is responsible for guiding Cas9 157 

to a complementary 20-bp DNA target via Watson-Crick base pairing. The crRNA and tracrRNA 158 

fuse together to form a two-RNA structure which binds to either strand beside a PAM sequence. 159 

The target DNA precedes a 5’-NGG PAM (23) that is important for target recognition of Cas9 160 

nuclease. This double-stranded (ds) DNA endonuclease targets specific sites for cleavage via 161 

crRNA and tracrRNA to stimulate a DSB. 162 

Through single-molecule imaging, Cas9-gRNA complex was observed to strongly interact with 163 

target sequence containing a PAM (35) as compared to non-target sequences or complementary 164 

sequences lacking PAMs whereby binding was observed to be transient. Following PAM 165 

recognition, the Cas9-gRNA must unwind the double helix and initiate strand separation for 166 

complementary base pairing to occur between the target DNA and the crRNA guide sequence. It 167 

has been postulated (35) that PAM binding could either cause a destabilization of the DNA 168 

duplex along the length of the target sequence leading to random nucleation of the RNA-DNA 169 

heteroduplex or cause a local melting of the duplex. The latter involves the RNA-DNA 170 

heteroduplex nucleating at the 3’ end that is adjacent to PAM before nucleating towards the 5’ 171 

end. 172 

In addition to SpCas9, more than 20 additional Cas9 homologs derived from a variety of 173 

bacterial species have been isolated. The PAM sequences also shows the big variation which can 174 
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provide more option to us when no suitable SpCas9 PAM available in the gene you interested 175 

(36). 176 

A Cas9 homolog: Cpf1   177 

 Cpf1, a putative new class 2 nuclease was recently annotated from Feng Zhang’s lab. Cpf1 is 178 

classified as a novel, type V CRISPR system.  Cpf1 contains a RuvC-like endonuclease domain 179 

which is similar to Cas9, but without HNH endonuclease domain, indicating that Cpf1 may 180 

shows different function (37, 38).  181 

Cpf1 cleaves DNA requires only one RNA rather than the two (tracrRNA and crRNA) which is 182 

more convenient than Cas9.  In addition, Cpf1’s preferred PAM is 5’-TTN, differing from that of 183 

Cas9 (3’-NGG) in both genomic location and GC-content.  In terms of cleavage pattern, Cpf1 184 

can cause 5 nucleotide 5’ overhang which is also different to Cas9 that created blunt double 185 

stranded cleavage (39).  Since both Cpf1 and its guide RNAs are smaller than those in the 186 

SpCas9 system, they will also be easier to deliver in low-capacity vectors and shows high 187 

efficiency. Hence, the introduction of Cpf1-driven systems has added another option to the 188 

CRISPR toolbox and the application of Cpf1 to genome editing shows the potential advantages 189 

over Cas9 system. 190 

 191 

 192 

 193 

 194 
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APPLICATIONS AND DELIVERY SYSTEM 195 

Native Cas9-mediated genome editing 196 

As stated earlier, the native Cas9-mediated genome editing is executed through two steps. Firstly, 197 

Cas9 induces a DSB at a targeted site on the genomic DNA which is guided by a 20-nt guide 198 

sequence in the crRNA. Secondly, the DSBs then undergo either the error-prone NHEJ or the 199 

high-fidelity HDR pathway. For the native Cas9 system to work, the basic components required 200 

includes the Cas9 nuclease, tracrRNA and the customizable crRNA which should all be 201 

expressed in the foreign host. With the ease of customization of the 20-nt guide sequences, 202 

double deletion and/or multiplexed editing were made possible in E. coli(40) and human (41) 203 

genomes in one step. 204 

When the Type II CRISPR/Cas system was further simplified to include just the Cas9 nuclease 205 

and custom gRNAs, it opened up an even broader selection of cell types and organisms for 206 

genome editing. Studies to date have successfully engineered and edited the genomes of humans, 207 

mice, fruit flies, zebrafish, yeast, thale cress, tobacco, wheat and rice plants (42). This simplified 208 

version of the Type II CRISPR/Cas system was observed to be capable of disrupting five genes 209 

in a single genome simultaneously (43). Indeed, the Type II CRISPR/Cas system is an excellent 210 

platform for genomic studies with broad applications in a variety of hosts. 211 

Cas9 nickase-mediated genome editing 212 

By mutating the RuvC or HNH domain, the gRNA-guided Cas9 which originally induces a DSB 213 

at the target site now has the acquired nickase ability. This mutated complex, gRNA-guided 214 

Cas9n, with nicking function is useful for successful genome editing at target sites specifically 215 

through the generation of DSBs and NHEJ-induced mutations when used as a pair (42). This 216 
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double nicking strategy targets the opposite strand of a target site to initiate HDR that is higher in 217 

efficiency and faster in rate as compared to the native Cas9-mediated HDR and single Cas9n-218 

mediated HDR respectively (44). 219 

Off-target cleavages were surprisingly reduced by 50 to 1500 times in human cells via this paired 220 

nicking mechanism without comprising the efficiency of on-target cleavages (44). One other 221 

advantage brought about by paired nicking is that it generates accurate overhangs as predicted. 222 

Together with NHEJ-mediated ligation, double-stranded repair templates with complementary 223 

overhangs have demonstrated success in HDR-independent fragment integration at target sites 224 

(42). Furthermore, about 6kb worth of genomic fragments in HEK293FT cells were deleted 225 

when paired double nicks are induced at two sites using four customized gRNAs. As such, it 226 

could be concluded that Cas9n is able to induce highly accurate genome editing. 227 

Inactivated Cas9-based transcriptional control 228 

A completely inactive dCas9 coupled with a custom gRNA is able to exert transcriptional control 229 

without changing the target sequence. Such inactivated Cas9-based transcriptional control is 230 

termed as CRISPR interference (CRISPRi) and identifies target sequences via complementary 231 

base pairing. Once the target sequence is identified, CRISPRi inhibits the initiation of 232 

transcription and elongation (42) which were successfully observed in E. coli and human cells 233 

(45). Since the gRNAs are customizable, it makes it plausible to exploit this system for 234 

regulating several genes at any one time. 235 

Besides inhibiting the initiation of transcription and elongation, genes could also be silenced and 236 

this effect is made reversible with anhydrotetracycline-inducible promoter to initiate dCas9 and 237 

gRNA expression (45). The efficiency of this system to repress transcription was found to attain 238 
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repression about 1000 fold (45) which proves its usefulness in gene expression regulation at the 239 

transcriptional level. 240 

Gene therapy 241 

Besides its use in genetic studies in many species, Cas9 can be utilized to model the causal roles 242 

of specific genetic variations in human induced pluripotent stem cells (iPSCs) with specific 243 

mutations introduced or rectified (46). Human iPSCs are useful as they are a renewable source of 244 

cells for human biology and disease research and are also a potential candidate for gene or cell 245 

therapy development (47). In one recent study conducted by Smith et al., whole-genome 246 

sequencing analysis was performed and it was found that CRISPR/Cas9 demonstrated high 247 

specificity genome editing in human iPSCs. However, it remains to be evaluated in this study if 248 

the higher off-target rates observed in cancer cell lines are accounted by gRNAs and Cas9 249 

overexpression and/or due to aggravated faulty repair systems in these cells.  250 

Currently, ongoing studies are being conducted on the therapeutic potentials of the 251 

CRISPR/Cas9 system and results have been promising (48). Non-genetic or genetic disorders, 252 

which is largely due to point mutations, substitutions, deletions and insertions (49), or complex 253 

diseases could be rectified with engineered endonuclease Cas9. In the search for a form of cure 254 

for AIDS, it was understood that individuals who are homozygous for Δ32 deletion in CCR5 255 

(CCR5Δ32) have resistance to CCR5-tropic HIV-1 infections (50). Therefore, it is highly 256 

possible that through specific deletions executed by the engineered endonuclease Cas9, this 257 

novel technology could be a gateway for an eventual cure for AIDS (51). Moreover, besides a 258 

feasible strategy to circumvent HIV infection, deletion of PCSK9 (51)or angiopoietin(52) have 259 
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demonstrated convincing results as a potential means against stain-resistant 260 

hypercholesterolemia or hyperlipidemia. 261 

The different delivery systems of CRISPR 262 

The CRISPR system can be delivered into a wide range of cell types and organisms (Table 2) as 263 

mentioned above through various delivery techniques. Electroporation(53), nucleofection and 264 

Lipofectamine-mediated transfection (54)of non-replicating plasmid DNA have been utilized to 265 

transiently express Cas9 and gRNAs in mammalian cells in vitro(55-57). These methods are 266 

traditionally used to deliver RNA-guided nucleases but in terms of efficiency, it is not as 267 

efficient as lentiviral vectors which confer very high gene delivery efficiency of about 95-100%. 268 

On the other hand, it is also possible to directly introduce RNAs and plasmid DNA by 269 

microinjection into zebrafish, fruit flies, mice and rats embryos(55). Gonads of roundworms 270 

were similarly subjected to the same direct injection method in addition to the direct injection of 271 

purified Cas9 protein complexed with gRNA(58)in a separate study. Not only in animals, Cas9 272 

was also successfully delivered into many plant species such as wheat, rice, sorghum, tobacco 273 

and thale cress via delivery methods like PEG-mediated transformation of protoplasts, 274 

Agrobacterium-mediated transfer in embryos and leaf tissue and/or bombardment of callus cells 275 

with plasmid DNA(59). 276 

 277 

 278 

 279 

 280 
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 Off-target effects 281 

The issue of off-targeting exists because CRISPR/Cas9 tolerates mismatches up to 5-bp within 282 

the protospacer region (54). When the gRNA binds to a site within the genome that is not 283 

completely complementary, the Cas9 nuclease is misguided to stimulate a DSB at the off-target 284 

site instead. The repercussion of off-target cleavage would be a mis-interpretation of phenotypic 285 

effects in gene knockout experiments which could also result in undesirable toxicities (60). Off-286 

targeting is positively correlated with Cas9 concentration whereby off-target activity becomes 287 

more significant as concentration of Cas9 increases (61). However, this problem could be easily 288 

solved by adjusting Cas9 concentration and hence, the Cas9-sgRNA complex levels. As evident 289 

in the study by Hsu et al., specificity increased significantly as equimolar amounts of Cas9 and 290 

sgRNA transfected into 293FT cells were reduced from 400 ng to 10 ng of Cas9-sgRNA plasmid 291 

(61). Besides regulating Cas9-sgRNA complex levels, decreasing the amount of transfected 292 

DNA was another method to increase specificity (61). Although effective, decreasing the amount 293 

of transfected DNA would have an effect on on-target cleavage. 294 

Facing such an issue, two independently discovered CRISPR variants: eSpCas9 and SpCas9-HF1 295 

have been development to improve the on-target specificity respectively (62). Slaymaker et al 296 

believed that, if they decreased the positive charge in the HNH/RuvC groove would theoretically 297 

decrease off-target cutting (62).  Hence, a variety of alanine substitutions throughout the groove 298 

in 32 separate Cas9 mutants had created to decrease the electropositivity of the HNH/RuvC 299 

groove.  Two of the mutants, SpCas9(K855A) and eSpCas9, revealed that these mutants do not 300 

cause off-target effects at unanticipated sites.  Meanwhile, Kleinstiver et al. reasoned that the 301 

weaken sequence independent interactions between Cas9 and DNA also could diminish off-302 

target cutting (63).  SpCas9-HF1 (mutation Q926A)   generated fewer off-target cuts when 303 
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compared to WT SpCas9 across a variety of genomic sites. Accordingly, with the enhanced 304 

specificity or other mutation combination, eSpCas9 and SpCas9-HF1 should enable researchers 305 

to make precise edits in mammalian cells with decrease worries about off target effects in future. 306 

CRISPR AS A POWERFUL TOOL IN AUTOPHAGY STUDY 307 

Current application of CRISPR in autophagy 308 

Although many chemical inhibitors of autophagy had been widely used in autophagy study, 309 

those can block a given pathway but have limitations for specific and efficient inhibition.  For 310 

example, some inhibitors such as chloroquine, bafilomycin A1, and 3-methyladenine (3-MA), 311 

can target many components or many aspects of the autophagic pathway, suggesting that these 312 

inhibitors are not exclusive (64). Chloroquine and bafilomycin A1 can block autophagy by 313 

impairing lysosomal function, while 3-MA is an inhibitor of phosphoinositide 3-kinase (PI3K) 314 

(65, 66).  In addition, these inhibitors also play an important role in other pathways involved in 315 

other different physiology function (67, 68). 316 

To enhance the specification of the inhibition of autophagy, siRNA and shRNA had been used to 317 

inhibit autophagy by genetic silencing of ATG genes. Compared with those pharmacological 318 

inhibitors, these strategies show more specific function in autophagy inhibition. While the 319 

knockdown effects caused by gene silence are often incomplete so as to the autophagy inhibition. 320 

Hence we need new genome-engineering strategies, such as CRISPR/Cas9 to achieve complete 321 

gene deletion and autophagy inhibition. 322 

With the development of the excited CRISPR technique, researchers had applied this tool to 323 

autophagy research field.  Since autophagy is an evolutionarily conserved pathway and proteins 324 

coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of 325 

autophagy (9). The ability of precise genome editing of Atgs plays a critical role to study the 326 
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underlying mechanisms of this complex process (Figure 1). Currently, most works for genome 327 

editing of the Atgs were focued on the gene knockout as well as knockin (69).  The effects of 328 

several Atg genes knockout have been well studied from the formation of autophagosomes to 329 

autolysosomal biogenesis (70, 71).  Using CRISPR/Cas9 to delete of the canonical autophagy-330 

essential genes ATG5, ATG7, ATG16L and ULK1 have also been reported in in vitro or in vivo 331 

models (72-76).  In addition, A genome-wide CRISPR screen in MTOR signaling and the entire 332 

macroautophagy machinery as key regulators of SQSTM1 suggesting that the 333 

pooled CRISPR screening as a powerful method to map the cellular pathways that regulate the 334 

fate of an individual target protein (77) (Table 3).  Table 3 summarized the recent studies of the 335 

CRISPR/Cas9 application for Atgs target.  Next, we present our own data on ATG7 knockout 336 

and investigate the effect of ATG7 deletion on autophagy. 337 

ATG7 knockout blocks basal and starvation-induced autophagy level 338 

Here, two construct systems pSpCas9 (BB)-2A-GFP (PX458) (Addgene plasmid #48138) and 339 

pSpCas9(BB)-2A-Puro (PX459) (Addgene plasmid #48139) were used to investigate the effect 340 

of ATG7 knockout on autophagy. Sanger sequencing results show that in instances where indels, 341 

do occur, they were mostly found within the target sequences. Overall, indel rates for the two 342 

target sites of ATG7 (ATG7-1 and ATG7-2) in both PX458 and PX459 transfection systems 343 

were  87.0% ,75.0%  and 85.0%, 84.7%  respectively (Data not shown). 344 

ATG7 protein levels were significantly lower in knockout mutants as compared to the controls, 345 

non-transfected cells and cells transfected with empty vectors. There is a general trend of high 346 

SQSTM1 protein levels among knockout mutants as observed. It was also noted that mutants had 347 
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lower LC3-II protein levels than the controls suggesting that the ATG7 knockout effectively 348 

blocks the basal level of autophagy in the two Cas9 systems (Figure 2A). 349 

Under starvation condition, ATG7 mutants generally had relatively higher levels of SQSTM1 and 350 

lower levels of LC3-II than the control cells transfected with empty vectors regardless EBBS 351 

(Earle's Balanced Salt Solution) and/or CQ treatment. As expected in PX458 transfection 352 

systems (Figure 2B), when controls in both transfection systems were administered EBSS and 353 

CQ simultaneously, levels of LC3-II in mutant were significantly reduced compare to control. 354 

Thus, we believe that the disruption of ATG7 genes induced by CRISPR-Cas9 either at single or 355 

multiple target sites could effectively reduce the basal and starvation induced autophagy level. In 356 

addition, ATG7-1 and ATG7-2 knockout mutants exhibited significantly greater cell death under 357 

starvation conditions (EBSS treatment groups) as compared to mutants that were not starved 358 

(DMEM treatment groups) suggesting that ATG7 knockout promotes cell death (data not shown).  359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

CONCLUSION 367 
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Clearly, the understanding of the CRISPR/Cas9 system has been evolving over the past 3 368 

decades and so far, the system has proved itself to be full of potential in the field of genome 369 

engineering. The customizable 20-nt guide sequence of the Cas9-gRNA complex confers 370 

flexibility to the CRISPR/Cas9 system to recognize any desired target sequences. The 371 

simplification of the system through the construction of a chimeric RNA to give rise to the 372 

gRNA has allowed greater targeting efficiency and multiplexible genome targeting. Although 373 

primarily found to provide immunity against exogenous genetic elements, the CRISPR/Cas9 374 

system was found to be involved in various other applications as well as in autophagy study.    375 

Since this system is still evolving, we believe that in the future we will be able to understand the 376 

mechanism behind CRISPR systems better and be well equipped to operate this technology more 377 

cost effectively. The CRISPR/Cas9 system has aided in many genomic studies in many areas 378 

where traditional tools were unable to achieve. This emerging trend of genome editing is set to 379 

potentially help to study the underlying mechanisms in autophagy research in detail via genome 380 

modification. Since CRISPR-Cas9 system is an appealing approach to disrupt specific genomic 381 

regions with the easily designed gRNA. This rapid and convenient technique might facilitate 382 

understanding of molecular mechanisms of a wide range of biological function and regulation 383 

involving in autophagy process. 384 

 385 
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FIGURE LEGENDS 414 

Figure 1. Schematic diagram of the mammalian autophagy core machinery and 415 

CRISPR/Cas9 targeted genes The Atg proteins form several important functional groups in 416 

control of autophagosome formation. (i) The ULK1 complex, consisting of the serine/threonine 417 

kinase ULK1, ATG13, focal adhesion kinase family interacting protein of 200 kDa (FIP200) and 418 

ATG101, controls the induction or initiation of autophagy for the formation of phagophore and is 419 

negatively regulated by mechanistic target of rapamycin (mTOR). (ii) The Beclin 1-class III 420 

PI3K complex controls the nucleation step of autophagosome formation. (iii) The two ubiquitin-421 

like conjugation systems (the ATG12-ATG5 system and the LC3 system) mediate the elongation 422 

stage, leading to formation of a complete autophagosome. And (iv) The ATG9 retrieval process 423 

functionally involves a protein complex of WIPI1/2 and ATG2. The CRISPR targeted genes 424 

(Table 3) in the autophagy core machinery in this review was indicated by an asterisk (*). 425 

Figure 2.The effect of knocking out ATG7 on autophagy. (A)  The effect of knocking out 426 

ATG7 on basal level of autophagy in the two Cas9 systems. (B) The effect of starvation and/or 427 

CQ treatment on autophagic flux in ATG7 knockout cells in PX458 systems.  Immunoblotting of 428 

ATG7, LC3 and SQSTM1 using lysates from HEK293FT cells transfected with respective 429 

vectors inserted with two target sites, either ATG7-1 or ATG7-2. β-ACTIN served as a loading 430 

control. Cells were subjected to EBSS starvation and/or 50 μM of CQ treatment for two hours. 431 

 432 
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Table 1. 3 Major types of CRISPR systems 435 

Types I II III 
Subtypes A B C D E F A B C A B 
Organism Bacteria Bacteria Archaea & Hyperthermophiles 
Target DNA DNA DNA RNA 
Genetic cas1,cas2,cas3*,cas5,cas6,cas7 cas1,cas2, cas9* cas1,cas2,cas6,cas10* 

Signature 
genes cas8a cas8b cas8c cas10d cse1,cse2 csy1 csn 2 cas4 - csm2 cmr5 

References (28) (28) (78) 
 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 
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 448 

Table 2. Application of Type II CRISPR/Cas system in various cell types and organisms 449 

 Application Cell types/Organisms References 

Genome editing 

Mouse (79) 
Human HUES62, HEK293T, 
293FT, K562 & iPS cells 

(79-82) 

Rice protoplast and callus 
cells 

(83-86) 

Streptococcus pneumoniae (40) 
Escherichia coli (40) 
Zebrafish embryos (82, 87) 
Drosophila preblastoderm 
embryos 

(88) 

Caenorhabditis elegans germ 
line 

(89, 90) 

Xenopus tropicalis embryos (91) 
Saccharomyces cerevisiae (92) 
Arabidopsis protoplast and 
seedlings 

(40, 93) 

Wheat protoplast (86) 
Tobacco protoplast and leaf (84, 93, 94) 
Sorghum immature embryos (84) 
C. elegans germ line (95) 
Mouse zygotes (96) 

Transcriptional 
control 

E. coli (97) 
S. pneumoniae (97) 
Human HEK293, 293T cells (80, 98) 
S. cerevisiae (98) 

 450 

 451 

 452 

 453 
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Table 3 The genes targeted by CRISPR/Cas9 involved in autophagy core machinery 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

  475 

Target 
Genes 

Effects on autophagy Delivery systems Refs 

ULK1,ATG101 Suppression of induction Transfected  into U937, 
MEFs 

(72, 99) 

ATG5  Resistance to gossypol in ATG5 knockout 
cells is associated with increased 
cytoprotective autophagy, independent of 
ATG5. 

Transfected into A375P 
cells,  IPEC-J2. 

(74, 100) 

ATG3,ATG7, 
ATG13 

Suppressed translation and ULK1 
degradation can restrict autophagy   under 
prolonged starvation; Suppression of  
Vesicle Elongation 

lentiCRISPR v1 vector;  
Transfection  in  K562; 

(73, 75, 101-
103) 

Atg8/LC3 Knockout of LC3/GABARAPs was failure 
to drive autophagosome-lysosome fusion 

Transfected  into HeLa 
cells 

(71) 

ATG9 Suppression of retrieval process injecting an expression 
plasmid 

(104) 

ATG16L1 Suppression of  Vesicle Elongation Transfected  into HAP1 
cells 

(105) 

SQSTM1/MTO
R 

Pooled CRISPR screening  to map  MTOR 
signalling and the entire macroautophagy 
machinery 

lentiviral delivery into 
H4 cells 

(77) 

VPS34/ATG14 Suppression of vesicle nucleation Transfected  into 
HEK293 

(106, 107) 

SMPD1 Induces a severe autophagy defect 
characterized by altered trafficking of 
ATG9A  

Transfected  into  MCF7  (108) 
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Figure 2 


