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ABSTRACT 

Adoptive cell transfer (ACT), a form of cell-based immunotherapy that eliminates cancer by 

restoring and strengthening the body's immune system, has revolutionized cancer treatment. 

ACT entails intravenous transfer of either tumor-resident or peripheral blood-modified immune 

cells into cancer patients to mediate anti-tumor response. Although these immune cells control 

and eradicate cancer via enhanced cytotoxicity against specific tumor antigens, several side 

effects have been frequently reported in clinical trials. Recently, exosomes, potential cell-free 

therapeutics, have emerged as an alternative to cell-based immunotherapies, due to their higher 

stability under same storage condition, lower risk of GvHD and CRS, and higher resistance to 

immunosuppressive tumor microenvironment. Exosomes, which are nano-sized lipid vesicles, 

are secreted by living cells, including immune cells. Exosomes contain proteins, lipids, and 

nucleic acids, and the functional role of each exosome is determined by the specific cargo UN
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derived from parental cells. Exosomes derived from cytotoxic effectors including T cells and 

NK cells exert anti-tumor effects via proteins such as granzyme B and FasL. In this mini-review, 

we describe the current understanding of the ACT and immune cell-derived exosomes and 

discuss the limitations of ACT and the opportunities for immune cell-derived exosomes as 

immune therapies. 

 

INTRODUCTION 

Cancer cells functionally design their microenvironment through the secretion of various 

factors such as cytokines and chemokines to maintain their proliferation and survival (1). In 

this process, immune cells are reprogrammed to undergo a dramatic phenotypic change toward 

a pro-tumor profile, contributing to immune escape. Traditional cancer therapies, such as 

radiotherapy and chemotherapy, which target the tumor cells, initially induce positive 

responses in most patients, but is associated with frequent relapses and resistance (2, 3). Thus, 

immunotherapy, which utilizes the body's immune system to induce anti-tumor effects, is 

emerging as a useful tool (4-6). 

The main goal of cancer immunotherapy is to boost and restore the anti-tumor immune 

response to eliminate cancer cells (7). Cancer immunotherapy includes adoptive cell transfer 

(ACT), checkpoint blockade, and anti-cancer vaccines (8). ACT utilizes T lymphocytes isolated 

from tumor tissues or genetically manipulated to recognize the specific antigen. The use of 

other immune cell types, such as natural killer (NK) cells, is also currently being studied. ACT 

of tumor-specific immune cells has proven clinical success in cancer treatment (9, 10). 

However, the challenges include autologous administration, auto-immune responses, off-tumor 

toxicity, and severe side effects such as cytokine release syndrome (CRS) (11). 

Exosome-based cell-free therapy is emerging as a potential treatment to address these 

limitations of cell-based therapy. Exosomes are small endosomal derived, nano-sized lipid UN
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bilayer extracellular vesicles that carry a cargo of proteins, lipids, and nucleic acids (12, 13). 

Exosomes serve as important messengers that deliver functional cargo derived from parent 

cells to target cells and adjust the physiological or pathological processes of the target cells 

(14). NK cell-derived exosomes harboring FasL and NKG2D can mediate anti-tumor response 

(15). Also, dendritic cell (DC)-derived exosomes can induce an adaptive immune response by 

activating CD4+ T cells or CD8+ T cells via peptide-MHC complex (16).  

Recently, several preclinical studies have been conducted to verify the anti-tumor effect of 

exosomes as immune therapeutics (17-19). Since exosomes are biocompatible with low 

cytotoxicity and immunogenicity, they can be utilized as carriers of biomarkers, vaccines, drugs, 

and therapeutics (19-22). In this review, we provide an inclusive overview of ACT and 

exosomes. Also, we discuss the challenges of ACT and the therapeutic potential of immune 

cell-derived exosomes in cancer immunotherapy. 

 

1. ACT for cancer immunotherapy 

ACT is a form of cell-based immunotherapy that uses immune cells to eliminate cancer (10, 

23). ACT utilizes immune cells collected from patients selected or genetically engineered to 

express specific T-cell receptors (TCR) or chimeric antigen receptors (CAR). A sufficient 

number of immune cells expanded ex vivo, are infused into the patient. In this respect, ACT 

has multiple advantages over other forms of cancer immunotherapy that rely on the in vivo 

development of sufficient numbers of anti-tumor immune cells (24). As shown in Figure 1, 

ACT can be classified into four categories based on immune cell type and mechanism: tumor-

infiltrating lymphocyte (TIL) therapy, engineered TCR therapy, CAR-T cell therapy and NK 

cell therapy. 

 

1.1. The types of ACT  UN
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TIL Therapy 

TILs invading tumor tissues represent a heterogeneous population. TILs are primarily 

composed of T cells carrying a TCR capable of recognizing tumor-specific antigens and 

cytotoxic effects against tumors. TILs are emerging as important biomarkers for predicting the 

treatment outcome and efficacy. In the original TIL protocol, after isolating TILs from the 

tumor mass, a population of T cells with the desired TCR specificity can be selected and 

expanded in the presence of IL-2. These TILs are adaptively transferred to cancer patients via 

a lymphodepletion regimen.  

Since TIL therapy was first administered to patients with metastatic melanoma in 1988 (25), it 

has been shown to be effective in many cancers, including melanoma, colon cancer, 

cholangiocarcinoma, and lung cancer (26). Currently, the clinical trials with autologous TIL 

(formally called LN-145) involve advanced cervical cancer (NCT03108495), metastatic non-

small cell lung cancer (NSCLC) (NCT04614103), and triple-negative breast cancer (TBNC) 

(NCT04111510). Trials are also ongoing for combination therapy with TIL and chemotherapy 

(NCT03467516) or cytokines (NCT01740557). 

 

Engineered TCR Therapy 

Despite its clinical success, TIL therapy has limited availability and production of therapeutic 

T cells for a larger group of patients. T cells genetically engineered to express TCR and CAR 

have been proposed as an effective alternative (27). TCR therapy entails the use of TCR-

introduced T cells that can be linked to tumor antigens by extending the TIL therapy protocol. 

TCR is an  heterodimer composed of a constant region, which anchors into the T cell 

membrane, and a variable region, which recognizes and binds to the antigen-MHC complex.  

In 2006, Morgan et al. reported the first successful clinical trials using autologous T cells with 

a TCR that was HLA-A2 restricted, and specific for the MART-1 antigen (28). A persistent UN
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clinical response was detected in 2 of 17 patients with refractory metastatic melanoma. In a 

follow-up study, treatment of patients with T cells expressing highly reactive TCRs against 

MART-1 resulted in tumor regression among 30% of the cases (6 of 20) (29). Since then, 

Robbins PF et al. reported objective clinical responses of 60% and 45%, in synovial cell 

sarcoma and melanoma patients, respectively, in a study using a TCR that recognizes the NY-

ESO-1 antigen (30, 31). Currently, a clinical trial of NY-ESO-1-specific T cells in combination 

with chemotherapy including melphalan, for ovarian cancer, is underway (NCT03691376).  

 

CAR-T Cell Therapy 

Similar to TCR therapy, CAR-T therapy involves patient-derived T cells engineered to express 

chimeric antigen receptors (CARs) on the cell surface. CAR is a synthetic structure containing 

single-chain variable fragments (scFv) of a monoclonal antibody as the ligand-binding 

extracellular domain, a CD3ζ chain as the intracellular signaling domain and/or a co-

stimulatory domain, mainly CD28 and 4-1BB (32, 33). Since CAR-T cells directly recognize 

surface antigens, but not the antigen presented by MHC, CAR-T cells can detect and attack 

cancer cells, unlike T cells that fail to recognize cancer cells lacking MHC class in an evasion 

mechanism. CAR-T cells in contact with cancer surface antigen proliferate and eliminate 

cancer cells via the release of effector molecules such as IFN- and granzyme B.  

Most clinical studies have reported remarkable response rate against hematological neoplasms, 

such as acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL), 

suggesting the therapeutic potential of CD19-CAR-T therapy (34, 35). Since the first CAR-T 

therapies, Kymriah® (tisagenlecleucel) suspension for intravenous infusion for B-cell ALL 

was approved by the FDA in 2017, Yescarta® (axicabtageneciloleucel), Tecartus™ 

(brexucabtageneautoleucel), Abecma™ (idecabtagenevicleucel), and Breyanzi® 

(lisocabtagenemaraleucel) were approved for lymphoma or myeloma (36). UN
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NK Cell Therapy 

NK cells, the innate immune cells, play an essential role in cancer immune surveillance (37). 

NK cells can quickly recognize and eliminate cancer cells without HLA matching or prior 

sensitization. NK cells are capable of killing target cells via a cytotoxic mechanism similar to 

that of CD8+ cytotoxic T cells. Activated NK cells also mediate the innate and the adaptive 

immune system by releasing various inflammatory factors to recruit and activate other immune 

cells such as T cells and DCs. In addition, the NK cells are a significant factor predicting cancer 

prognosis (38).  

Early approaches to NK cell therapy used fresh NK cells isolated from the patient’s peripheral 

bold mononuclear cells (PBMCs) or whole blood (39). Because the number of NK cells in 

peripheral or cord blood is relatively low (10-15% of all circulating lymphocytes), the use of 

NK cells for ACT required an ex vivo expansion mechanism to yield sufficient numbers of NK 

cells with high purity and potency. This challenge has recently been overcome via the 

differentiation of NK cells from pluripotent stem cells (PSCs), as well as the generation of NK-

92 cell lines amenable to genetic manipulation for the recognition of specific tumor antigens 

(40). The use of antigen-presenting cells (APCs) as feeder cells in combination with CD137L-

IL21 also enabled the production of a large number of activated NK cells. This success has 

enabled many clinical trials for NK cell-based cancer immunotherapy (41). 

In addition, CAR-NK cells with improved anti-tumor activity than conventional NK cells have 

been developed using the basic structural framework of CAR designed for CAR-T cells (42). 

Many clinical trials are ongoing to evaluate the safety and efficacy of tumor-targeted CAR-NK 

cells. In the first clinical trial of CD33-CAR NK-92 cells in patients with relapsed and 

refractory acute myelogenous leukemia, there was no serious side effects showed when injected 

at doses of up to 5 billion cells per patient (NCT02944162) (43). In an ongoing CD19-targeted UN
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CAR-NK treatment clinical trial in patients with relapsed or refractory CD19+ cancer, about 

73% of patients (8 of 11) manifested objective responses to treatment without major toxic 

effects (NCT03056339). Clinical trials of ROBO1 CAR-NK cells in solid tumors expressing 

ROBO1, including pancreatic cancer, are also ongoing (NCT03940820, and NCT03941457). 

 

1.2. Challenges of ACT therapy 

The remarkable success of ACT therapy is undeniable, but there are still many challenges to 

overcome. The ACT protocol involves the deletion of pre-lymphocytes and the infusion of live 

immune cells. Infused immune cells can cause graft-versus-host disease (GvHD) by T cells 

that are not completely removed before treatment (44). Storage of expanded immune cells and 

reduction of their cytotoxicity and survival by freeze-thaw mechanisms should also be 

considered. The most common challenge is associated with toxicity including CRS induced by 

the immune cells used in ACT (45).  

 

On-target off-tumor toxicity 

Immune cells for ACT have been selected or genetically engineered to recognize tumor-specific 

antigens. However, the immune cells that target tumor antigens can also recognize healthy cells 

expressing the same antigen, causing “on-target off-tumor toxicity”. For example, treatment of 

MART-1 specific or gp-100 specific T cells for melanoma exhibited toxicity in normal tissue 

including skin and ear in the presence of melanocytes (29). In patients with colorectal cancer 

treated with carcinoembryonic antigen (CEA)-specific TCR therapy, severe inflammatory 

colitis occurred due to CEA reactivity expressed in the normal colon epithelium (46). Similarly, 

the treatment for B cell malignancies by CD19 CAR-T cell induced B cell depletion and 

hypogammaglobulinemia (47). It has been reported that low levels of HER2 expression in 

normal lung tissue resulted in fatal lung toxicity in patients with metastatic colon cancer UN
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exposed to HER2 CAR-T therapy (48).  

 

CRS  

The most common toxicity induced by ACT involves CRS, a severe form called a cytokine 

storm (49). In immunotherapy, activated immune cells eliminate target tumors by releasing 

cytotoxic molecules including cytokines. CRS is mainly observed in CAR-T therapy due to the 

activation of the large number of T cells injected and antigen recognition (50-52). CRS 

typically occurs within a few days following immune cell infusion and is associated with cell 

proliferation in vivo and a marked increase in the level of serum cytokines such as IFN-γ, TNF-

α, and IL-6 (53, 54). CRS is accompanied by symptoms such as fever, hypertension and 

hypoxemia, which can range from mild or moderate to life-threatening manifestations. A 

patient with metastatic colon cancer showed elevated levels of the serum cytokines including 

IFN-γ, TNF-α, GM-CSF, IL-6 and IL-10, after HER2 CAR-T treatment, eventually leading to 

death (48). In some patients (4 of 8) with B cell malignancies, excessive levels of serum 

cytokines (IFN-γ and TNF-α) were observed after CD19 CAR-T cell infusion (47).  

 

Immune escape 

Another challenge faced by ACT is that the tumor microenvironment (TME) depletes the anti-

tumor function of the infused immune cells or interferes with their migration and penetration 

into solid tumors (55, 56). TME, composed of blood vessels, immune cells, extracellular matrix 

(ECM), and cancer cells, provides a milieu for tumor proliferation and progression. As infused 

T cells experience continued antigen stimulation and are exposed to immunosuppressive 

factors in TME, the T cells may be exhausted due to the loss of their effector function and up-

regultion of inhibitory receptors such as PD-1 and Tim-3 (57). Moreover, the regulatory T cells 

or immunesuppressive modulators including prostaglandin E2 (PGE2), IL-6 and TGF- can UN
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suppress the cytotoxicity of infused NK cells (58-60). Solid tumors also prevent cytotoxic 

immune cells from migrating into or invading the tumor via secretion of chemokines or the 

formation of biological barriers such as ECM (61). Therefore, ACT for hematologic cancers 

has been effective, but the efficacy for solid cancers has room for improvement. 

 

2. Immune cell-derived exosomes for cancer immunotherapy 

Despite its outstanding performance, ACT is limited by the direct use of immune cells. As 

mentioned above, several toxicities, including CRS and off-target effects, are triggered by 

uncontrolled immune cells in vivo. Moreover, current ACT strategies are limited in that they 

are costly and time-consuming to produce, preserve, and transport clinical-grade immune cells 

suitable for direct therapeutic use. Recent studies highlight the therapeutic potential and 

effectiveness of immune cell-derived exosomes as a cell-free immunotherapy.  

 

2.1 Overview of exosomes 

Exosomes are nano-sized membrane vesicles (30-150 nm) derived from various cell types 

including immune cells, tumor cells and mesenchymal stem cells (MSCs) (62, 63). Exosomes 

originate from endosomal pathway (62-64). Fusion of the multivesicular bodies (MVBs) 

generated by the inward budding of the late endosome with the cell membrane releases the 

intraluminal vesicles within into the extracellular space as exosomes. Exosomes are composed 

of proteins, nucleic acids, amino acids, metabolites and lipids (65). Exosomes are generally 

made up of many proteins involved in the biogenesis and function of exosomes including 

proteins associated with MVB biogenesis (Alix and TSG101), heat-shock protein (Hsp70) and 

the tetraspanins (CD9, CD63, CD81, and CD82) used as exosome markers. Exosomes also 

contain adhesion molecules such as ICAM-1 and integrins for cellular internalization (66). In 

addition, the exosomes contain an abundance of cholesterol, phosphatidylcholine, and UN
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diglycerides in the lipid rafts (67).  

Although exosomes were initially considered as vesicles released to eliminate unnecessary 

contents, exosomes are involved in intracellular communication and represent a key factor 

regulating cellular function, especially the immune system (68, 69). Released exosomes can be 

present in diverse biological fluids such as milk, urine, and saliva, and delivered to target cells 

via blood and other body fluids (13). Also, exosomes are continuously released by donor cells, 

but their release is also controlled by cellular conditions, regulating the body's physiological 

responses (13).  

 

2.2. Immune cell-derived exosomes 

One of the earliest reported physiological targets of exosome-mediated cell-to-cell 

communication is the immune system. In late 1990s, Raposo et al. demonstrated that exosomes 

secreted from B lymphocytes play a role in antigen presentation by inducing an antigen-specific 

CD4+ T cell response via a peptide-MHC class II complex on the surface (70). Subsequently, a 

variety of studies have reported the characteristics of exosomes derived from immune cells and 

their role in immune system. Immune cell-derived exosomes represent the functional properties 

of parental immune cells. APC-derived exosomes stimulate CD4+ and CD8+ T cells via antigen-

MHC complex expressed on their membrane (16).  

Immune cell-derived exosomes express cell-specific marker proteins such as MHC class I and 

II and co-stimulatory molecules on APC-derived exosomes, CD56 on NK-derived exosomes 

and TCR/CD3 complex on T cell-derived exosomes (71). In addition, the tetraspanin family is 

abundant in immune cell-derived exosomes (72). These proteins regulate the immune response 

by interacting with MHC molecules or cell adhesion molecules including LFA-1 and ICAM-1 

or by regulating the clustering of MHC complexes.  

Clinical studies of exosomes derived from dendritic cells pulsed with tumor-specific peptides, UN
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as cancer vaccines, suggest the immunotherapeutic potential of immune cell-derived exosomes 

(73). Here, the anti-tumor functions of T cell-derived exosome and NK-derived exosome 

serving as an alternative to ACT are discussed in the following sections. 

 

T cell-derived exosomes 

T cell-derived exosomes are produced only after T cells are activated (74). It was found that 

the interaction between tetraspanins, ceramides, and myelin and lymphocyte protein (MAL) 

proteins is important for the biogenesis of exosome by T cells. In particular, MAL protein, a 

tetraspanning membrane protein that is partly expressed in T cells, is involved in fusion of 

MVBs with the cell membrane (75). T cell-derived exosomes strongly harbor TCR/CD3 

complex and contain miRNAs and cytotoxic molecules including IFN-γ and granzyme B. 

Exosomes originating from activated human CD3+ T cells, along with IL-2, induced the 

proliferation of resting CD3+ T cells and enhanced the level of cytokines and chemokines in 

the CD3+ T cells (76). Li et al. confirmed that exosomes generated from cytotoxic T 

lymphocyte (CTL) stimulated with IL-12 contain enriched exosomal proteins such as Alix, 

CD9, CD81 and Tsg101 and CTL-associated proteins including granzyme B, STAT3, and 

STAT5B (77). Although these exosomes did not mediate memory CTL formation, they 

activated naïve CD8+ T cells regardless of antigen, and reinforced the activation of CTLs under 

mild antigen stimulation. In addition, upon formation of immune synapse, miRNA-loaded 

exosomes were unidirectionally transferred from T cells to APCs (78). These results indicate 

that T cell-derived exosomes control the immune response.  

Recently, Fu et al. reported that exosomes generated from CAR-T cell recognizing human 

EGFR and HER2 secreted cytotoxic effectors including granzyme B and perforin resulting in 

cytolytic activity and anti-tumor effects in xenograft models (79). In addition, CAR-T cell-

derived exosomes injected into tumor-bearing mice did not express PD-1 on their membranes UN
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and did not induce CRS unlike CAR-T cells. Yang et al. demonstrated that exosomes derived 

from CAR-T cells targeting mesothelin, one of the antigens for breast cancer treatment, 

effectively inhibited cancer growth in TBNC animal models without apparent side effects via 

expression of perforin and granzyme B (80). 

 

NK cell-derived exosomes 

NK cells can kill abnormal cells such as cancer and stimulate adaptive immune response via 

secretion of pro-inflammatory cytokines and chemokines (37). Similar to parental cells, NK 

cell-derived exosomes express NK marker CD56 and receptors such as NKG2D that bind to 

ligands with restricted expression in malignant cells, and contain cytolytic molecules such as 

FasL, perforin and granzymes (15). In an early study of the NK cell-derived exosome, Lugini 

et al. reported that exosomes purified from NK cells expressed not only NK cell marker CD56, 

but also FasL and perforin, and showed cytolytic activity only in hematological cancer cells 

such as Jurkat and K562 cell lines (81). Later, it was demonstrated that exosomes isolated on a 

large scale from activated NK cells exerted cytotoxic activity against several cancer types 

including ALL and neuroblastoma via caspase-mediated pathway (82). These studies suggest 

that the activation of NK cells releases potent exosomes. Zhu et al. observed that NK cell-

derived exosomes (NK-92 Exo) induced apoptosis in melanoma, but not normal cells and 

inhibited tumor growth in xenografts bearing melanoma cells (83). In addition, exosomes 

isolated from NK cells previously exposed to neuroblastoma (NB) cells carried NK cell 

receptors such as CD56 and NKG2D and exhibited anti-tumor effects against NB tumors in 

vitro and in vivo (84). NK cell-derived exosomes also induce cancer cell apoptosis via DNAX 

accessory molecule-1 (DNAM1) expressed on the surface (85). These results support the 

therapeutic potential of NK-derived exosome against cancer. Besides proteins including FasL 

and perforin, miRNA contained in NK-derived exosome is also involved in anti-tumor activity. UN
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Neviani et al. confirmed that exosomes derived from activated NK cells containing the tumor 

suppressor miR-186 displayed cytotoxicity against the MYCN-amplified NB cell line and 

restrained TGF- dependent immune escape (86). 

 

Other immune cell-derived exosomes: DC-derived exosomes and macrophage-derived 

exosomes 

In addition to exosomes derived from cytotoxic effectors that potentially kill tumor cells, 

exosomes derived from DCs or macrophages could serve as cancer vaccines. Exosomes 

isolated from tumor peptide-pulsed DCs promote tumor-specific T cell priming by delivering 

MHC-restricted peptide loaded on the exosome surface to T cells or inducing expression of 

MHC/peptide complexes in DCs (16). Thus, like DC vaccines, DC-derived exosomes (DEXs) 

therapy can lead to tumor growth inhibition and tumor regression by inducing the patient's 

adaptive immune system to specific tumor antigens. 

As a representative APC, DCs play an important role in mediating innate and adaptive 

immunity by recognizing, processing, and presenting antigens to T cells (87). Likewise, it has 

been demonstrated that DEXs can induce T cell priming by directly or indirectly presenting the 

MHC-antigen complex to T cells, and can also amplify T cell activation via co-stimulatory 

molecules such as CD86 and CD80 expressed on the surface (16). In addition, DEXs can 

facilliate activation and proliferation of NK cells via IL-15Ra ligand and NKG2D ligand (88). 

It was confirmed that TNF superfamily ligands (TNFSFLs) expressed on the DEX surface 

induce apoptosis in cancer cells and activate NK cells (89). Moreover, compared to DC-based 

vaccines, DEX immunotherapy has more resistance to tumor immunosuppression, higher 

bioavailability and biostability, with higher yields and lower costs (16). Based on these effects, 

DEXs have been used in several clinical trials investigating NSCLC (90, 91), metastatic 

melanoma (92) and colorectal cancer (93). UN
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Among macrophage subtypes, M1-like macrophages can promote T cell-mediated immune 

responses by releasing cytokines such as IFN-γ, TNF-α, IL-12 and IL-6 or antigen presentation 

via phagocytosis. M1-like macrophage-derived exosomes, which retain immunostimulatory 

properties of parental cells can accelerate anti-cancer effects by releasing pro-inflammatory 

cytokines including IL-6, IL-12 and iNOS (94, 95). M1-like macrophage-derived exosomes 

containing anti-cancer drugs such as paclitaxel and cisplatin can enhance anti-cancer activity 

by inducing cancer cell apoptosis, increasing drug sensitivity and circumventing drug 

resistance mechanisms (95-98). 

 

2.3. Opportunities and challenges of immune cell-derived exosomes in immune therapies 

Recent studies have evaluated the role of exosomes derived from immune cells such as NK 

cells and T cells in immune modulation and their efficacy in preclinical studies. These results 

suggest that immune cell-derived exosomes display numerous functions suitable for clinical 

application. Furthermore, their advantages relate to storage and transplantation.  

Stable storage of exosomes is an important issue in the transport and clinical application of 

exosomes. The storage techniques currently studied include cryopreservation, freeze-drying 

and spray drying. Cryopreservation (-80°C frozen storage) is a complete method for the stable 

storage of exosomes (99). The characteristics, function and efficacy of DEXs stored for a long 

time at -80°C were not affected by freezing and thawing (73, 90, 100). Further, the large number 

of exosomes isolated from NK cells expanded ex vivo were stable when stored at -80°C for at 

least 12 months, and their cytotoxic effect was maintained (82). These results suggest that 

exosomes can be stably stored long term via cryopreservation. 

Exosomes may be less toxic compared with cell-based therapies (ACT) that elicit serious 

immune responses such as GvHD or CRS. Morse et al. reported the treatment of patients with 

advanced NSCLC using DEXs without serious toxicity or autoimmune reactions, and no UN
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serious organ damage due to the vaccine occurred (90). In addition, Fu et al. reported that CAR-

T cell-derived exosome did not induce changes in serum cytokine levels and body weight in 

mice, unlike CAR-T cells (79). 

 

Despite the long-term storage of exosomes with their efficacy and properties intact, and low 

toxicity in ongoing clinical trials, currently no specific regulatory guidelines are available for 

clinical applications such as standardization, optimization and quality control. Given the 

heterogeneity and complexity of exosomes and most conventional laboratory-scale methods 

used for exosome isolation, it is difficult to isolate large volumes of exosomes with clinical 

grade-quality and purity (101). Recently, tangential flow filtration combined with a 

chromatographic method has been attempted to mass-produce high-quality exosomes that 

comply with good manufacturing practice (102-104). In addition, it has been proposed to use 

well-characterized cell lines instead of primary cells to ensure the uniformity and stability of 

exosomes (104). 

 

CONCLUSION AND PERSPECTIVES 

ACT entails the use of patient-derived immune cells such as T cells and NK cells that recognize 

tumor-specific antigens to eliminate cancers. Immune cells with unique cytotoxic effects show 

improved tumor recognition, continuous activation, and potent tumor killing capabilities 

through genetic engineering. ACT-based cancer immunotherapy has yielded promising results 

in clinical trials. Despite the encouraging results, many challenges remain. In vivo expansion 

and cytokine release of the infused immune cells induce adverse effects such as CRS and auto-

immune responses. Also, the efficacy of ACT in solid cancers is limited due to poor cell 

migration and penetration into the tumor site, and immunosuppressive TME.  

Exosomes derived from immune cells offer sufficient therapeutic potential as substitutes for UN
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ACT. Immune cell-derived exosomes exert immune-regulatory effects due to biofunctional 

cargo such as proteins and nucleic acids derived from their parental cells. Here, we highlight 

that exosomes isolated from cytotoxic effectors including T cells and NK cells exhibit anti-

tumor effects identical to parental cells mediated via cytotoxic molecules such as FasL, IFN- 

and perforin (Figure 2). Further, the preclinical results provide evidence suggesting that these 

exosomes have low toxicity compared with ACT (79, 80), which reinforces the exosome 

therapeutic potential. 

Recent interest in exosomes worldwide has spurred research and production of exosomes for 

therapeutic purposes. The current state of exosome therapy is similar to early years of cell-

based therapy limited by poor understanding of effective cell therapy, which hindered the large-

scale development and manufature of specialized cells for treatment based on clinical studies. 

Further studies are needed to explore the possibility of immune cell-derived exosomes as 

immunotherapeutic agents. However, the results of existing preclinical studies demonstrate the 

potential of immune cell-derived exosomes as immunotherapeutics. Accordingly, exosomes 

derived from immune cells represent potential immunotherapeutic alternatives to ACT. 
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FIGURE LEGENDS 

Figure 1. Schematic diagram of adoptive cell therapy (ACT) process using T cells and NK 

cells. 

 

 

Figure 2. Exosomes derived from immune cells. (a) T cell or NK cell-derived exosomes that 

express FasL or NKG2D and contain cytotoxic molecules such as perforin, Granzyme B, IFN-

γ, and TNF-α induce cancer cell death and inhibit cancer cell growth. (b) DC-derived exosomes 

induce the activation of T cells and NK cells through the expression of some ligands such as 

NKG2D ligand, co-stimulatory molecules, and MHC/antigen complex. Macrophage-derived 

exosomes lead to cancer cell death by releasing pro-inflammatory cytokines such as iNOS, IL-

6 and IL-12 or anti-cancer drugs.  
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