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ABSTRACT

Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the
bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating
mutations in epiderma growth factor receptor-tyrosine kinase (EGF-TK) is frequently
associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting
EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well
as the underlying mechanism remain unclear. Afatinib dramatically suppressed receptor
activator of nuclear factor kB (RANK) ligand (RANKL)-induced osteoclast formation in
bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of
osteoclast marker genes whereas it upregulated the expression of negative modulator genes.
The bone resorbing activity of osteoclasts was aso dramatically abrogated by afatinib. In
addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-
terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses
osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce

osteolysis after bone metastasis.

K eywor ds: Afatinib, osteoclast, differentiation, bone resorption, RANK signaling
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INTRODUCTION

The bone undergoes a constant remodeling process to replenish and maintain bone volume,
mineral density, and architecture. The appropriate balance between bone formation by
osteoblasts and resorption by osteoclasts is critical for normal remodeling. Secretory factors
including the RANK ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and
osteoprotegerin (OPG) are involved in a functiona coupling mechanism between osteoblasts
and osteoclasts. RANKL and M-CSF are secreted by osteoblasts and promote differentiation
of preosteoclasts into osteoclasts (1, 2). OPG is a decoy receptor for RANKL, and thus can
block the interaction between RANKL and RANK. Particularly, the RANKL/OPG ratio is

critical for controlling RANK L-induced osteoclast formation and activation (3, 4).

A pathological imbalance of either bone formation or bone resorption may alter bone volume
and architecture. When metastatic tumor cells arrive in bone, they modulate the bone
microenvironment and disrupt bone remodeling balances. Malignant cells secrete many
growth factors involved directly or indirectly in osteoclast differentiation and activation,
leading to osteolysis by increased bone resorption. They include RANKL, interleukin-1,
interleukin-6, parathyroid hormone related protein (PTHrP), and macrophage inflammatory
protein-1-a (5). Enhanced bone resorption, in turn, releases transforming growth factor-f and
insulin-like growth factor-1 from the bone matrix, which stimulates PTHrP production and

promotes tumor growth (6, 7).

Lung cancer is the third most common cancer to metastasize to bone and is classified into two
main groups: NSCLC and small cell lung cancer. NSCLC accounts for 80-85% of lung

cancers; the common types include squamous cell carcinoma, large cell carcinoma,
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adenocarcinoma, and several other types. As NSCLC progresses, approximately 30-40% of
patients affected by NSCLC develop bone metastasis (8). Bone metastasis has a significant
morbidity burden, including osteolysis, bone pain, hypercalcaemia, fractures, spina cord

compression, and bone marrow infiltration (9).

Activating mutations in epidermal growth factor receptor (EGFR) are largely associated with
NSCLC, and treatment of EGF-mutation-positive NSCLC patients with reversible EGFR
tyrosine kinase inhibitors (EGFR-TKIs) such as erlotinib and gefitinib improved progression-
free survival as compared with chemotherapy (10, 11). However, EGFR mutation-positive
patients responding to these EGFR-TKIs inevitably develop resistance after administration
for approximately 1 year (12). The second-generation irreversible EGFR-TKI, afatinib, has
shown clinical efficacy in phase Ill trias in patients with NSCLC and head and neck
squamous cell cancer. In 2013, afatinib was approved for the first-line treatment of EGFR
mutation-positive NSCLC (13). However, whether afatinib can relieve the skeletal burden

after bone metastasis remains unclear.

EGFR has been demonstrated to be involved in the formation of osteoclasts. EGFR-deficient
mice showed delayed primary ossification due to defective osteoclast recruitment (14).
RANKL binding to RANK induces an interaction with EGFR, which is required for
osteoclast differentiation and survival (15). These results suggest that there is an interactive
network in RANK and EGFR signaling during osteoclast formation. Therefore, we
hypothesized that in addition to its anticancer effects, afatinib may abolish osteoclast

differentiation and functioning by downregulating RANK signaling pathways.
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RESULTS

Afatinib suppresses RANKL -induced osteoclast differentiation

To clarify the effect of afatinib on RANKL-induced osteoclast differentiation, BMMs were
cultured with M-CSF (10 ng/mL) and RANKL (20 ng/mL) in the presence or absence of
afatinib (1, 2.5, and 5 uM). After 4 days, TRAP-positive MNCs were generated in response
to M-CSF and RANKL. However, treatment with afatinib reduced osteoclast formation in a
concentration-dependent manner (Fig. 1A and 1B). At an afatinib concentration of 2.5 uM,
the formation of TRAP-positive MNCs was significantly suppressed (98.3% inhibition) (Fig.
1B). To determine whether these inhibitory effects of afatinib were caused by cytotoxicity,
the viability of osteoclast precursors was evaluated using MTT assay. Afatinib (up to 5 uM)
showed no cytotoxic effect on BMMs (Fig. 1C). We further examined the stage-specific
effect of afatinib during osteoclast differentiation. When afatinib was added from the
beginning of culture to the time of pre-osteoclast formation (period ), osteoclast formation
was nearly completely abolished (Fig. 1D and 1E). However, when afatinib was treated after
pre-osteoclast formation (period 11), TRAP-positive MNCs were still formed, but the number
of TRAP-positive MNCs decreased by 58.7%. In addition, the morphology of TRAP-positive
MNCs was not round or oval shaped, indicating that the actin ring structure had not properly
formed (Fig. 1D). These results demonstrate that afatinib acts on both the formation of pre-

osteoclast and proper morphology of mature osteoclasts.

Afatinib downregulates the expression of osteoclast-specific markers

To further elucidate the role of afatinib in osteoclastogenesis, the expression of osteoclast-

specific markers was determined by real-time PCR (QPCR) and immunoblotting. BMMs

5
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stimulated with M-CSF and RANKL were treated with afatinib (2.5 uM). As shown in Fig.
2A, RANKL dramatically upregulated the expression levels of TRAP (Acp5), cathepsin K
(Ctsk), DC-STAMP (Dcstamp), and NFATcl (Nfatcl). Compared with RANKL-treated
controls, the expression levels were significantly decreased by the addition of afatinib (Fig.
2A and 2C). Immunofluorescence analysis was performed to examine the expression level
and nuclear tranglocation of NFATc1, which is a mgor transcription factor regulating the
differentiation of BMMs into osteoclasts. The expression level of RANKL-induced NFATcl
in the nucleus as well as the number of cells positive for nuclear NFATc1 was considerably
decreased by afatinib treatment (Fig. 2B). In accordance with the decreased level of Dcstamp,
the formation of multinucleated giant cells was suppressed by the addition of afatinib (Fig.
2B). These data indicate that afatinib inhibits the expression of RANKL-induced genes

involved in osteoclast differentiation and function.

Afatinib inhibits the suppression of negative mediators of RANKL-induced osteoclast

differentiation

During RANKL-induced osteoclast differentiation, RANK signaling downregulates the
expression of interferon regulatory factor-8 (IRF8) and B-cell lymphoma 6 (Bcl6), which act
as negative regulators of osteoclastogenesis (16, 17). To investigate the effect of afatinib on
the negative mediators of osteoclast differentiation, we analyzed Irf8, Ifng, and Bcl6
transcript levels using gPCR. As shown in Fig. 3A, the inhibition of Irf8, Ifng, and Bcl6
MRNA expression mediated by RANKL was abrogated by treatment with afatinib, indicating

that blocking the suppression of these negative molecules impaired osteoclast differentiation.

Afatinib attenuates bone resor ption activity
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Mature and active osteoclasts contain actin ring structures that create sealing zones between
the cells and bone matrix during the resorption phase (18, 19). However, in the differentiation
stage-specific experiment, osteoclast morphology appeared abnormal or immature (Fig. 1D).
Therefore, we examined whether afatinib can modulate osteoclast activity using the
resorption pit assay. BMMs were incubated on bone slices in osteoclast-inducing medium for
3 days to generate osteoclast-like MNCs, and then treated with afatinib or vehicle for an
additional 2 days. As shown in Fig. 3B, afatinib markedly inhibited the formation of
resorption pits compared to the positive control (70.5% reduction). The result suggests that

afatinib strongly suppresses the bone-resorbing activity of osteoclasts.

Afatinib downregulates RANKL -induced phosphorylation of Akt/PKB and JNK

After demonstrating that afatinib dramatically suppresses osteoclast differentiation and
activation, we next evaluated whether afatinib inhibits RANK signaling pathways. RANKL
induced phosphorylation of Akt/PKB, c-Jun N-terminal kinase (JNK), p38, extracellular
signal-related kinase (ERK), 1kB, and p65 from 5 min after RANKL stimulation in the
positive (RANKL-treated) control (Fig 4). Pretreatment with afatinib decreased RANKL-
induced Akt/PKB and JNK phosphorylation, whereas phosphorylation of p38, ERK, IxB, and
p65 was not downregulated by pretreatment with afatinib (Fig 4). Phosphorylation of p38 and
JINK was somewhat activated at 15 min by afatinib. These results suggest that afatinib
inhibits the activation of Akt/PKB and JNK, leading to suppression of RANKL-induced

osteoclast differentiation.
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DISCUSSION

Afatinib is the first-line treatment drug for NSCLC with EGFR mutations (20, 21). Afatinib
irreversibly blocks homo- and hetero-dimeric ErbB receptors (EGFR/ErbB1, HER2/ErbB2,
ErbB3, and ErbB4) (22, 23). A reactive acrylamide group of afatinib covaently and
irreversibly binds to specific cysteine residues in the kinase domains of EGFR (773), HER2
(805), and HER4 (803), and inhibits auto- and transphosphorylation in the receptors (22-24).
We demonstrated that afatinib dramatically inhibits osteoclast differentiation and activation.
Direct treatment of BMMs incubated with RANKL and M-CSF with afatinib dramatically
inhibited osteoclast differentiation (Fig. 1). In addition, osteoclast differentiation marker
genes were strongly inhibited by afatinib (Fig. 2A). These results demonstrate that afatinib
directly inhibits osteoclast differentiation. Because differentiating osteoclasts express EGFR,
ErbB2, ErbB3, and ErbB4 (15), afatinib may target EGFR and other ErbB isoforms. These
results are consistent with those of previous studies showing that reversible EGF-TKIs and
shRNA targeting EGFR can inhibit osteoclast differentiation and survival (15).

The indirect action of EGFR in osteoclast differentiation has also been suggested. A
reversible EGFR-TKI, gefitinib, inhibits the expression of RANKL and M-CSF in human
bone marrow stromal cells, and thus suppresses osteoclast differentiation (25). Erlotinib aso
inhibits osteolytic bone invasion of the human NSCLC cel line NCI-H292 by
downregulating RANKL in osteoblast/stromal cells (26). Therefore, EGFR-TKIs including
afatinib, gefitinib, and erlotinib can directly or indirectly suppress osteoclast differentiation.
We also demonstrated that negative regulators of osteoclast differentiation such as IRFS,
IFNy, and BCL6 were dramatically induced by afatinib (Fig. 3A). Particularly, IRF8 can

block NFATcl, the master transcription factor in osteoclast differentiation (17), and thus
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block the differentiation of macrophages into osteoclasts. Consistently, Nfatcl expression
was dramatically inhibited by afatinib (Fig. 2A and 2B).

After formation, multinucleated osteoclasts go through an activation stage. During this stage,
osteoclasts polarize and develop a specialized membrane structure known as a ruffled border
(27). The mature osteoclasts now acquire the capacity to resorb bone. As shown in Fig. 3B,
mature osteoclasts on dentin slice formed pits on their surface; afatinib dramatically inhibited
pit formation, suggesting that afatinib significantly suppresses the bone resorption activity of
mature osteoclasts. The suppressive activities of afatinib on bone resorption as well as
osteoclast differentiation may contribute to reducing the osteol ytic bone phenotype caused by
bone metastasis of NSCLC.

RANK signaling pathways underlying osteoclast differentiation can be modulated by EGFR
signaling. This was demonstrated using reversible EGFR-TKIs such as AG1478 and
PD153035. AG1478 suppressed the RANKL-mediated activation of osteoclastogenic
signaling pathways, including JNK, nuclear factor «xB (NF-xB), and Akt/PKB (15).
Interestingly, afatinib also inhibited JINK and Akt/PKB, but did not affect 1kB degradation
and p65 phosphorylation, indicating no changes in NF-xB activation. The differential
inhibition profile of RANK signaling pathways may be attributed to covaent binding of the
afatinib to EGFR-TK domain. Recently, resistance to EGFR-TKIs has been attributed to NF-
kB (28). Pharmacological and genetic inhibition of kB kinase restored erlotinib sensitivity
by accumulating IxB and subsequently activating NF-«xB in lung cancer cell line H1650 cells
(29). Whether there is a resistance mechanism of afatinib and erlotinib to the formation of
osteoclast and how NF-«B isinvolved in this resistance process requires further investigation.

Transient high phosphorylation of ERK and delayed phosphorylation of p38 by afatinib were
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also observed (Fig. 4). Again, it can be speculated that irreversible covaent binding of
afatinib to cysteine 773 gives rise to conformational changes in the cytoplasmic domain of
EGFR, and thus may disturb the tyrosine phosphorylation profile, resulting in aterations in
signaling pathways.

In summary, we demonstrated the inhibitory effect of afatinib on osteoclast differentiation of
bone marrow monocytes/macrophages and bone resorbing activity by osteoclasts. Afatinib
also dramatically inhibited RANK signaling pathways. Therefore, our results suggest that
afatinib relieves the skeletal burden after bone metastasis in particular osteolytic lesions. In
addition, because RANKL is a critical factor responsible for osteoclast differentiation and
activation in other pathological conditions such as osteoporosis and inflammatory bone
erosion, and afatinib inhibited RANKL-induced osteoclast differentiation and activation,

afatinib can be applied to treat other skeletal diseases.

10
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MATERIALSAND METHODS

Mice and reagents

Six-week-old male ICR mice were purchased from Dae Han Bio Link (Chungbuk, Korea).
All animal experiments were approved by the committees on the care and use of animals in
research at Kyungpook National University and were conducted in accordance with the
guidelines for the care and use of laboratory animals. Recombinant mouse M-CSF and mouse
RANKL were obtained from R&D Systems (Minneapolis, MN, USA). Afatinib (BIBW2992)
was purchased from Selleckchem, (Houston, TX, USA). Fetal bovine serum (FBS) and a-
minimum essential medium (a-MEM) were obtained from Gibco BRL (Grand Island, NY,

USA).

Osteoclastogenesis

Bone marrow cells (BMCs) were collected from six-week-old male ICR mice sacrificed by
CO, inhaation as previously described (30). BMCs were incubated in a-MEM containing
10% FBS and M-CSF (30 ng/mL) for 3 days. To generate mature osteoclasts, bone marrow
macrophages (BMMs) were plated in 96-well plates and incubated with afatinib (1, 2.5, and 5
uM) in the presence of RANKL (20 ng/mL) and M-CSF (10 ng/mL).

After 4 days of culture, the cells were fixed and stained with tartrate-resistant acid
phosphatase (TRAP)-staining solution prepared following the manufacturer’s instructions
(Sigma-Aldrich, St. Louis, MO, USA). TRAP-positive multinucleated cells (MNCs), having

more than 3 nuclei, were counted using a microscope.

Cell viability assay

11
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The cel viability of BMMs was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, Sigma-Aldrich) assay. BMMs were cultured with
various concentrations of afatinib in the presence of M-CSF (10 ng/mL). After incubation for
3 days, MTT was added to each well, and the plate was incubated for 2 h. Absorbance was

measured at 570 nm using a 96-well microplate reader (BioRad, Hercules, CA, USA).

Quantitativereal-time PCR

Total RNA was isolated from cells using the TRI-solution (Bioscience, Seoul, Kored), and the
MRNA was reverse-transcribed by SuperScript 11 reverse transcriptase (Invitrogen, Carlsbad,
CA, USA). Quantitative real-time PCR was performed in a LightCycler 1.5 real-time PCR
system (Roche Diagnostics, Basel, Switzerland) using TOPreal gPCR 2x PreMIX with
SYBR green (Enzynomics, Dagjeon, Korea). The primers and conditions used for PCR were

as previously described (31).

Western blot analysis

Total protein was extracted using RIPA buffer containing protease and phosphatase inhibitors.
The protein concentration was measured with a BCA protein assay kit (Pierce Biotechnology,
Rockford, IL, USA), and equivalent amounts of total protein (30 pug) were separated by 10%
sodium dodecyl sulfate polyacrylamide gel electrophoresis. Next, the proteins were
transferred to nitrocellulose membranes (Whatman, Florham Park, NJ, USA). After transfer,
the membranes were incubated with 3% non-fat dry milk in TBS-T (25 mM Tris-HCI, pH
7.4, 150 mM NaCl, and 0.2% Tween 20) to block nonspecific binding sites. The membranes
were incubated with primary antibodies at 4°C overnight, followed by incubation with the

appropriate secondary antibodies. Proteins were detected using the WesternBright enhanced

12
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chemiluminescent substrate (Advansta, Menlo Park, CA, USA). Specific antibodies against
phospho-p38, phospho-INK, phospho-ERK, phospho-AKT, phospho-p65, and phospho-1xBa
were purchased from Cell Signaling Technology (Danvers, MA). Monoclona anti-p-actin

was obtained from Sigma-Aldrich (St. Louis, MO).

| mmunofluorescence

BMMs were cultured on glass coverslips with RANKL (20 ng/mL) and M-CSF (10 ng/mL)
either in the presence of absence of 2.5 uM afatinib for 4 days. The cells were fixed with 4%
paraformaldehyde, permeabilized using 0.25% Triton X-100, followed by blocking in
blocking buffer (3% bovine serum abumin in PBS) for 1 h. The cells were incubated with an
anti-NFATc1 antibody, followed by incubation with an Alexa Fluor-488 conjugated secondary
antibody (Invitrogen, Carlsbad, CA, USA). F-actin was stained with rhodamine-conjugated
phaloidin (Cytoskeleton, Denver, CO, USA) and nuclei with 4',6-diamidino-2-phenylindole
dihydrochloride (DAPI; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Fluorescent

images were obtained using a BX51 fluorescence microscope (Olympus, Tokyo, Japan).

Resor ption pit assay

Mouse BMMs were seeded on bone slices (IDS Nordic, Herlev, Denmark) and cultured with
M-CSF (10 ng/mL) and RANKL (20 ng/mL) for 3 days to induce osteoclast differentiation.
The cells were then incubated with or without afatinib (2.5 uM) for 2 more days. All cells
were removed from the bone slices, and the pit area was visualized by Mayer’s hematoxylin
staining. The area of resorbed pits was measured using the i-Solution image anaysis software
(IMT i-Solution, Dagjeon, Korea).

Statistical analyses
13
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All experiments were conducted three times, and the data are presented as the mean +
standard deviation (SD). Statistical analyses were performed by the two-tailed Student’s t-test
or one-way analysis of variance with Tukey’s multiple comparison post-hoc test. A p value of

< 0.05 was considered statistically significant.
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Figurelegends

Figure 1. Afatinib suppresses RANKL-induced osteoclast differentiation. (A) BMMs
were cultured for 4 days with M-CSF (10 ng/mL) and RANKL (20 ng/mL) in the presence of
0, 1, 2.5, or 5 uM afatinib. Osteoclasts were stained with TRAP. (B) TRAP-positive
multinucleated cells with >3 nuclei were counted. *p < 0.05 and **p < 0.01 versus vehicle-
treated control. (C) BMMs were cultured for 3 days with M-CSF (10 ng/mL) in the presence
or absence of 1, 2.5, or 5 uM afatinib. Cell viability was evaluated by the MTT assay. (D)
BMMs were cultured with M-CSF (10 ng/mL) and RANKL (20 ng/mL), and afatinib (2.5
uM) treatment was carried out from day O to day 4 (period I1+11), from day O to day 2 (period
1), and from day 3 to day 4 (period I1). Osteoclast formation was assessed by TRAP staining.
(E) TRAP-positive multinucleated cells with >3 nuclei were counted. **p < 0.01 versus

vehicle-treated control.

Figure 2. Afatinib suppresses the expression of osteoclast markers and localization of
NFATcl. (A) BMMs were cultured for 4 days with M-CSF (10 ng/mL) and RANKL (20
ng/mL) in the presence of 2.5 uM afatinib. The mRNA expression of TRAP (Acp5), DC-
STAMP (Dcstamp), cathepsin K (Ctsk), and NFATc1 (Nfatcl) was analyzed by real-time
RT-PCR. **p < 0.01. (B) BMMs seeded onto glass coverslips were incubated for 4 days with
M-CSF (10 ng/mL) and RANKL (20 ng/mL) in the presence or absence of afatinib (2.5 uM).
The cells were stained with anti-NFATcl antibody, and actin rings and nuclei were stained
with rhodamine-conjugated phalloidin and DAPI, respectively. Fluorescent images were
obtained. Magnification; 100X. Scale bar; 50 pm. (C) BMMs were cultured with M-CSF (10

ng/mL) and RANKL (20 ng/mL) in the presence or absence of 2.5 uM afatinib for the

16
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indicated days. The cell lysates were analyzed by western blotting with antibodies against

NFATc1 and cathepsin K.

Figure 3. Afatinib restores negative regulators for osteoclast differentiation and inhibits
resor ption pit formation. (A) BMMs were cultured for 4 days with M-CSF (10 ng/mL) and
RANKL (20 ng/mL) in the presence of 2.5 uM afatinib. The mRNA expression of 1rf8, 1fng,
and Bcl6 was anayzed by rea-time RT-PCR. *p < 0.05, and **p < 0.01 versus vehicle-
treated control. (B) BMMs were plated onto bone slices and incubated with M-CSF (10
ng/mL) and RANKL (20 ng/mL) for 3 days to induce differentiation into osteoclasts. The
cells were treated with or without afatinib (2.5 uM) for an additional 2 days. Resorption pits

were visualized by staining with hematoxylin. **p < 0.01 versus vehicle-treated control..

Figure 4. Afatinib regulates RANK signaling pathways. BMMs were incubated in serum-
free medium for 5 h, and then pretreated with afatinib (2.5 uM) or vehicle for 1 h before
RANKL (50 ng/mL) stimulation for the indicated times. Phosphorylation of p38, Akt/PKB,
ERK, JNK, IkB, and p65 was determined by western blotting using phospho-specific

antibodies. Total B-actin was used as the loading control.
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