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ABSTRACT 

Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on 

mitochondrial function and autophagy-related proteins in the skeletal muscle are unclear. The 

purpose of this study was to investigate the effect of different doses of cisplatin on mitochon-

drial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-week-

old male Wistar rats (n = 24) were assigned to one of three groups; the first group was admin-

istered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg 

body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that 

had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, 

and mitochondrial function and upregulated levels of autophagy-related proteins, including 

LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal 

muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mi-

tochondrial function and increased the levels of autophagy-related proteins. These results, thus, 

suggest that reducing mitochondrial dysfunction and autophagy pathways may be important 

for preventing skeletal muscle atrophy following cisplatin administration. 
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INTRODUCTION 

Cisplatin—cis-diamine-dichloroplatinum II—is an effective anti-cancer drug (1, 2). The 

basic mode of treatment is cisplatin-induced DNA modification, activating damage recognition 

and repair of cancer DNA, cell-cycle arrest, and cell apoptosis (3). Although cisplatin treatment 

is highly effective, many patients suffer from severe side effects, especially muscle atrophy 

(4)(5). 

An animal model of cancer cachexia revealed that intraperitoneal injection of 1–3 mg/kg 

body weight (BW) (hereafter, mg/kg BW) of cisplatin for several days caused weight loss and 

muscle atrophy (4, 6-10). Clinical trials have also indicated that skeletal muscle mass signifi-

cantly decreased during chemotherapy in patients with advanced gastric cancer (11). Many 

previous studies have clarified that cisplatin-induced skeletal muscle atrophy or dysfunction is 

mainly caused by alterations in autophagy (12) and mitochondrial dysfunction (4, 12-15). It is 

widely accepted that the specific mechanism that helps maintain the muscle mass is supported 

by the IGF-1/PI3K/AKT/mTOR pathway (16). However, there is still a lack of studies that 

elucidate the effect of different concentrations of cisplatin administered on mitochondrial func-

tion, autophagy, and muscle mass in the skeletal muscles of animals. 

Considering the significant mitochondrial dysfunction caused by cisplatin administration, 

it is clear that retaining mitochondrial function and quality control are critical for maintaining 

the muscle mass (17). A previous study showed that cisplatin toxicity affected oxidative phos-

phorylation, as measured by the respiratory control ratio (RCR), and decreased the respiratory 

capacity of cisplatin-administered cells (15). Mitochondrial dysfunction in skeletal muscle fi-

bers of cisplatin-treated animals affected mitochondrial fusion and fission proteins, such as 

dynamin-related protein 1 (Drp 1), and caused muscle atrophy (18). The results of this study UN
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indicated that cisplatin administration decreased mitochondrial biogenesis and skeletal muscle 

mass. Many other in-vitro studies have shown the effects of cisplatin treatment on levels of 

proteins related to mitochondrial biogenesis and indicated that mitochondrial dysfunction in 

cisplatin administration is associated with cisplatin toxicity (13) and muscle atrophy (19). 

Therefore, it is necessary to directly analyze mitochondrial function in skeletal muscles fol-

lowing cisplatin administration. 

In addition to mitochondrial function, autophagy is a major metabolic regulator that pro-

tects against the side effects of chemotherapy involving cisplatin-administration (20). Autoph-

agy in skeletal muscles is associated with muscle fiber regeneration (21) and modulates various 

molecular signaling pathways, as a chemosensitizer, in cisplatin-administered cancer cells (22). 

In a cisplatin-induced cachexia model, cisplatin-administration in fast-twitch skeletal muscle 

(e.g., gastrocnemius) increased cell-autophagy markers (LC3 II, p62, and Beclin 1) by down-

regulating AKT and FOXO3a (6); LC3 II specially affects the autophagosome residual protein 

and mitochondrial function (23-25). However, most studies that analyzed autophagy in cancer 

cells were performed in vitro. Although cisplatin is associated with a severe side effect, i.e., 

muscle atrophy, very few studies have investigated the effects of varying doses of cisplatin on 

skeletal muscles. 

The purpose of this study was to investigate the effects of different doses of cisplatin, 

including 0.1 mg/kg BW of cisplatin, 0.5 mg/kg BW of cisplatin, and a control (CON; saline), 

on mitochondrial function and autophagy-related protein levels in skeletal muscles. Based on 

the study results, we conclude that high doses of cisplatin (0.5 mg/ kg BW) decreased mito-

chondrial function and downregulated the levels of key modular autophagy-related LC3 II pro-

teins (compared to CON and 0.1 mg/kg BW cisplatin).  
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RESULTS  

Effect of cisplatin reduces BW and gastrocnemius muscle tissue weight  

The BW varied significantly between the groups (F (1.64, 14.73) = 63.58, p < 0.001) and 

based on time (F (1.86, 16.74) = 38.09, p < 0.001). The variation in BW with time was signif-

icantly different among the groups (F (1.46, 9.46) = 183.7, p < 0.001). From the baseline up to 

14 days, the BW changes differed for the three groups; after 14 days of cisplatin administration, 

the group administered 0.5 mg/kg BW showed a significant reduction in BW (Figure 1a). The 

tissue weight (g) of the gastrocnemius (GAS) skeletal muscle was also significantly different 

among the three groups (F = 43.98, p < 0.001). The BW of the 0.5 mg group (n = 9, 2.20 ± 

0.13) was significantly lower than that of the CON (n = 8, 3.42 ± 0.08, F = 11.91, p < 0.001) 

and 0.1 mg groups (n =5, 3.40 ± 0.07, F = 10.21, p < 0.001) (Fig. 1C). Moreover, the normali-

zation of GAS muscle tissue based on BW did not reveal a significant difference (F = 0.17, p 

= 0.84) between the CON (n = 6, 1.04 ± 0.02), 0.1 mg (n = 4, 1.04 ± 0.02), and 0.5 mg (n = 6, 

1.03 ± 0.01) groups (Fig. 1D). 

Effect of cisplatin on mitochondrial function in skeletal muscle  

As shown in Figure 2A-D, the levels of all mitochondrial functions namely glutamate (GM) 

(Fig. 2A, F = 3.80, p < 0.05), adenosine di-phosphate (ADP) (Fig. 2B, F = 18.99, p < 0.001), 

and succinate (SUCC) (Fig. 2C, F = 9.93, p < 0.01), and the respiratory control ratio RCR (Fig. 

2D, F = 7.08, p < 0.01) significantly differed among the CON, 0.1 mg, and 0.5 mg groups. The 

mitochondria in the GAS skeletal muscle showed significantly reduced ADP levels (Fig. 2B) 

in the 0.5 mg group (n = 8, 4.42 ± 1.05) compared to those in the CON (n = 8, 28.01 ± 3.11, p 

< 0.001) and 0.1 mg groups (n = 5, 15.84 ± 4.76, p < 0.05). As shown in Figure 2A, the GM 

levels were significantly decreased only in the 0.5 mg group (n = 7, 2.27 ± 0.59, p < 0.05) than UN
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in the CON (n = 8, 5.95 ± 1.01) group. The SUCC levels (Fig. 2C) were also lower in the 0.5 

mg group (n = 8, 11.06 ± 2.45, p < 0.001) than in the CON group (n = 8, 44.82 ± 7.27). The 

RCR level (Fig. 2D) in the 0.5 mg group (n = 7, 2.23 ± 0.24) was the lowest among the three 

groups (CON (n = 8, 5.10 ± 0.39, p < 0.01) and 0.1 mg (n = 5, 4.94 ± 1.27, p < 0.05) groups). 

Effect of cisplatin on autophagy-related proteins in skeletal muscle  

Injection of cisplatin (< 0.1 mg/kg BW) in the GAS muscle did not cause changes in the 

levels of autophagy-related proteins, while 0.5 mg/kg BW cisplatin injection significantly ac-

tivated the conversion of LC3II to LC3I (Fig. 3E, F(2, 21) = 37.63, p < 0.001), increasing the 

LC3II/LC3I ratio (Fig. 3B, F(2, 21) = 14.01, p < 0.001). The expression of Beclin 1 (Fig. 3C, 

F(2, 18) = 25.98, p < 0.001) and BNIP3 (Fig. 3D, F(2.20) = 42.13, p < 0.001) increased signif-

icantly in the 0.5 mg group, but there was no change in Beclin 1 expression in the 0.1 mg group. 

The p62 content did not change with cisplatin administration (Fig. 3F, F(2,21) = 0.73, p = 0.49). 

Correlation between RCR and autophagy-related proteins in skeletal muscle 

As seen in Figure 4, significant correlations were observed between RCR (ADP/GM) and 

LC3 II/GAPDH (Fig. 4A, r = ˗0.61, 95 % CI = ˗0.83, ˗0.22, p < 0.01), the LC3 II/I ratio (Fig. 

4B r = ˗0.57, 95 % CI = ˗0.81 ˗ 0.15, p < 0.05), Beclin 1/GAPDH (Fig. 4D, r = ˗0.83, 95 % CI 

= ˗0.94 ˗0.59, p < 0.001), and BNIP3/GAPDH (Fig. 4E, r = ˗0.55, 95 % CI = ˗0.80 ˗0.12, p < 

0.05). However, the correlation between RCR and p62 was not significant (Fig. 4C, r = ˗.21, 

95 % CI = ̠ 60 ̠ 0.26, p > 0.05). The strong correlation of Beclin1 and LC3II with RCR indicated 

that high levels of RCR resulted in lower levels of autophagy-related proteins. 
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DISCUSSION 

In this study, differences in skeletal muscle tissue weight, BW, mitochondrial function, 

and autophagy-related protein levels in GAS skeletal muscles among the CON, 0.1 mg, and 

0.5 mg groups were analyzed. The results showed that the skeletal muscle tissue weight, BW, 

and mitochondrial function (GM, ADP, SUCC, and RCR) were reduced in the 0.5 mg cisplatin 

group. In addition, the levels of autophagy-related proteins (Beclin 1, BNIP3, and LC3II) in 

skeletal muscles were increased in the 0.5 mg group. These results indicate that the administra-

tion of 0.5 mg/kg BW of cisplatin decreased the muscle weight, BW, and mitochondrial func-

tion and increased the levels of autophagy-related proteins. 

Cisplatin administration is associated with severe skeletal muscle dysfunction (4). Among 

the various forms of cisplatin-induced muscle dysfunction, the most relevant is muscle mass 

loss (5). This study found that the reduction in BW and muscle tissue weight was higher in the 

0.5 mg group than in the CON and 0.1 mg groups (Fig. 1B and C). In addition, the normaliza-

tion of skeletal muscle tissue based on BW did not reveal any significant differences among 

the three groups, indicating that the administration of higher cisplatin doses (up to 0.5 mg) 

results in muscle atrophy (Figure 1D). These findings may indicate a specific molecular mech-

anism, i.e., cisplatin-induced muscle atrophy may be specifically related to the transcript-level 

expression of muscle atrophy F-box (MAFbx), muscle RING fiber-1 (MuRF1), and Atrogin-1 

(3, 6). Muscle mass is also regulated through the IGF-1/PI3K/AKT/mTOR pathway, prevent-

ing muscle atrophy (26). However, in this study, we did not analyze the specific muscle atrophy 

levels associated with cisplatin administration, and further studies are needed to elucidate the 

influence of these factors at different cisplatin concentrations. 
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Mitochondria are dynamic organelles whose function and morphology is altered through 

fission and fusion (27). Mitochondrial dysfunction following cisplatin administration resulted 

in damaged mtDNA, which decreased mitochondrial biogenesis and activity (28). Our results 

revealed a decrease in GM, ADP, SUCC, and RCR levels in the 0.5 mg group (Fig. 2). In 

addition, the RCR, an indicator of oxidative phosphorylation, dramatically decreased in the 0.5 

mg group. It may be inferred that treatment of wild type cells with cisplatin resulted in de-

creased RCR (15). These results indicated that at high concentrations, cisplatin induced a lower 

capacity for oxidation and ATP turnover and increased the proton peak in mitochondria (4, 15, 

29). Moreover, our findings showed that cisplatin-induced toxicity can result in metabolic dys-

function (30) and production of mitochondrial reactive oxygen species (ROS). The lowest 

SUCC levels in the 0.5 mg group in this study were related to skeletal muscle apoptosis (31). 

Considering our results as a whole, it can be inferred that high doses of cisplatin can cause 

mitochondrial dysfunction, including decreased RCR levels, leading to ROS production and 

skeletal muscle cell apoptosis. 

The highest levels of autophagy-related proteins, such as LC3 II, Beclin 1, and BNIP3, 

and LC3 II/I ratio were observed in the 0.5 mg group (Fig. 3). Autophagy is a major metabolic 

regulator of resistance to chemotherapy (20). Inhibition of autophagy increases cisplatin-in-

duced apoptotic cell death (32). Our findings are similar to those of previous studies that ob-

served mitochondrial dysfunction (Fig. 2) and upregulation of Beclin 1 and LC3 II (Fig. 3C 

and E) in cisplatin-induced cachexia of the skeletal muscle (18). In addition, a previous study 

indicated that C2C12 muscle cells treated with 50 µM cisplatin for 24 h exhibited upregulated 

expression of Beclin 1, BNIP3, and muscle atrophy-related atrogin-1 (33). These results are 

consistent with our findings, which showed that cisplatin (0.5 mg) increased muscle atrophy 
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and the expression of autophagy-related proteins (Fig. 1) in the skeletal muscle. effect of cis-

platin administration and muscle atrophy and mitochondrial dysfunction is mediated through 

AKT phosphorylation that results in dephosphorylation of FOXO3a, which then migrates to 

the nucleus to activate the transcription of autophagy-specific genes (e.g., LC3 II and Beclin1) 

and causes muscle atrophy (Murf 1 and BNIP3) (4, 34, 35). Overall, our findings support the 

results of previous studies that show that administration of high doses of cisplatin can cause an 

increase in the levels of autophagy-related proteins (LC3 II, Beclin 1, and BNIP3) as well as 

muscle atrophy. However, our study did not consider a cancer cachexia animal model, and 

further studies are required to analyze mitochondrial function, skeletal muscle morphology, 

and autophagy response in such a model. 

Mitochondrial function, especially RCR(ADP/GM), is associated with autophagy-related 

proteins (Fig. 4). Mitochondrial function is affected by autophagy in various metabolic diseases 

(36). An acute kidney injury model administered with cisplatin showed that an increased level 

of LC3 II was associated with mitochondrial dysfunction in the context of increased ROS levels 

and decreased levels of Drp1, Opa1, ATP5a, Sirt3, and Ndufs4 (37). Our findings supported 

these results, which showed an increase in the RCR, indicating that mitochondrial function 

influenced the reduced levels of autophagy-related proteins, including LC3 II, Beclin 1, and 

BNIP3, and the LC3 II/I ratio in cisplatin-administered skeletal muscle. The results suggest 

that activation of extracellular signal-regulated kinase by cisplatin decreased the LC3 II levels 

(38). However, we did not quantify the mitochondrial protein levels; therefore, further studies 

are required to analyze mitochondrial protein levels and function by comparing autophagy-

related functions. 
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This study revealed that administration of cisplatin in rat models affected the skeletal 

muscle weight, BW, mitochondrial function, and autophagy-related protein levels in skeletal 

muscles. The highest dose of cisplatin (i.e., 0.5 mg/kg BW) induced remarkedly deleterious 

effects, with a decreased muscle mass and mitochondrial dysfunction and increased levels of 

autophagy-related proteins. These results suggest that cisplatin administration for cancer 

treatment may be safer and more beneficial when used in combination with additional agents 

that reduce mitochondrial dysfunction and autophagy pathway activity to prevent skeletal 

muscle dysfunction, thereby providing further insights to develop novel therapeutic approaches. 

MATERIALS AND METHODS 

Materials and methods are available in the supplemental materials. 
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FIGURE LEGENDS 

Figure 1. Experimental procedure; body weight (BW, g), GAS skeletal muscle tissue 

weight (GAS, g), and GAS normalized by BW among CON (n = 10), 0.1 mg (n = 6), 

and 0.5 mg (n =10) groups. (A) Experimental procedure. (B) Changes in BW over 15-

days (time) for each group. (C) Differences in GAS of CON (n = 8) and 0.1 mg (n = 5) 

groups as compared to the 0.5 mg (n = 9) group. (D) Levels of normalization of GAS by 

BW in CON (n = 6), 0.1 mg (n = 4) and 0.5 mg (n = 7) groups. Values were determined 

by densitometric quantification and are shown as the mean ± standard error of the mean 

(SEM). Outliers in each group were excluded. CON, saline control; 0.1 mg, 0.1 mg/kg BW 

of cisplatin administered in skeletal muscle; 0.5 mg, 0.5 mg/kg BW of cisplatin adminis-

tered in skeletal muscle. Statistical methods used were one and two-way repeated ANOVA 

with the factor time for BW and one-way ANOVA with Tukey’s post-hoc test for GAS 

and normalization of GAS and BW analyses. Units are arbitrary. ***p < 0.001 vs Time and 

Group in (B) ***p < 0.001 vs CON and ###p < 0.001 vs 0.1 mg in (C). 

Figure 2. Effect of cisplatin on mitochondrial function in skeletal muscle. (A) GM levels. 

(B) ADP levels. (C) SUCC levels. (D) RCR levels. Values were determined by densitometric 

quantification and are shown as the mean ± standard error of the mean (SEM). Outliers in each 

group were excluded. CON, saline control; 0.1 mg, 0.1 mg/kg BW of cisplatin; and 0.5 mg, 0.5 

mg/kg BW of cisplatin, administered in skeletal muscle. Statistical analysis was performed 

using one-way ANOVA with Tukey’s post-hoc test. BW, body weight. Units are arbitrary. *p 

< 0.05, **p < 0.01, ***p < 0.001 vs CON and #p < 0.05 vs 0.1 mg. 
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Figure 3. Effect of cisplatin on autophagy-related proteins in skeletal muscle. (A) 

Representative images of western blots. (B) LC3II/I ratio. (C) Beclin1/GADPH. (D) 

BNIP3/GADPH. (E) LC3II/GADPH (F) p62/GADPDH. Values were determined by den-

sitometric quantification and are shown as the mean ± standard error of the mean (SEM). 

BW, body weight; GAS, gastrocnemius; CON, saline control (n = 10), 0.1 mg, 0.1 mg/kg 

BW of cisplatin (n = 6), and 0.5 mg, 0.5 mg/kg BW of cisplatin (n = 8), administered in 

skeletal muscle. Statistical analysis was performed using one-way ANOVA with Tukey’s 

post-hoc test. Units are arbitrary. ***p < 0.001 vs CON and ##p < 0.01, ###p < 0.001 vs 0.1 

mg. 

Figure 4. Correlation between mitochondrial function RCR and the expression of 

autophagy-related proteins in the GAS skeletal muscle. Correlation of RCR with (A) 

LC3II/GAPDH, (B) LC3II/I ratio, (C) p62/GAPDH, (D) Beclin 1/GADPH, and (E) 

BNIP3/GADPH. Values were determined by densitometric quantification and are shown 

as the mean ± standard error of the mean (SEM). Extreme outliers were excluded. Statis-

tical analysis was performed using Pearson’s correlation coefficient (R).  
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MATERIAL AND METHODS 

Experimental design 

 Seven-week-old male Wistar rats were sourced from the Orient Bio Company 

(Seongnam-si, Gyeonggi-do, Korea). The animals were preserved at a temperature of 20 ± 

2.5 °C under a 12-hour light-dark cycle with free access to food and water. The animals were 

adapted for one week prior to the start of the study. After one week, the rats were assigned to 

three groups (hereafter referred to as CON group, 0.1 mg group, and 0.5 mg group), which 

were administered a saline placebo (CON, n = 10), 0.1 mg/kg BW of cisplatin (n = 6), and 0.5 

mg/kg BW of cisplatin (n = 8), respectively, via intraperitoneal injection once daily for 14 days. 

After 14 days, the rats were euthanized, weighed, and the gastrocnemius muscle was collected. 

All experimental procedures were approved by the Institutional Animal USE and Care 

Committee of Inje University (NO: 2018-013). Figure 1A illustrates the experimental 

procedure. 

Tissue preparation 

White gastrocnemius (GAS, type IIb fiber) muscles were collected within 24 hours after 

death. All muscle tissues were isolated and washed with phosphate-buffered saline. After 

washing, all muscle tissues were dried, weighed, and stored in ˗80 ℃ until analysis. 

Measurement of mitochondrial function  

Mitochondrial function analysis included measurement of adenosine di-phosphate (ADP), 

glutamate (GM), succinate (SUCC), and the respiratory control ratio (RCR: ADP/GM). The 

GAS muscles were separated in ice cold buffer composed of 7.23 mM K2EGTA, 2.77 mM Ca 

K2EGTA, 20 mM imidazole, 0.5 mM DTT, 20 mM taurine, 5.7 mM ATP, 14.3 mM UN
CO
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phosphocreatine, 6.56 mM MgCl2-6H2O, and 50 mM 2-(N-morpholino) ethane sulfonic acid. 

The separated myofibers were subjected to mitochondrial permeabilization using saponin. 

Following permeabilization for 30 min at 4 °C, the myofibers were washed for at least 15 min 

before mitochondrial function analysis. 

Western blot 

Total protein was extracted from the GAS muscle tissue using RIPA buffer (ThermoFisher 

Scientific #89900, Waltham, MA, USA), supplemented with a phosphatase inhibitor cocktail 

(Sigma-Aldrich #490685001, St. Louis, MO, USA) and a protease inhibitor cocktail (Roche 

#4693159001, Basel, Swizerland). Proteins were separated using 10–16% trisglycine sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then transferred to 

nitrocellulose (NC) membranes via iBlot 2 transfer stacks (Invitrogen #IB23002, Carlsbad, CA, 

USA). We used the following primary antibodies: LC3 II and I (Sigma-Aldrich #L7543, St. 

Louis, MO, USA), p62 (Sigma-Aldrich #126M4796V, St. Louis, MO, USA), BNIP3 (Cell 

Signaling Technology Inc. #3769, Danvers, MA, USA), and Beclin 1 (Cell Signaling 

Technology #3738, Danvers, MA, USA). 

The membranes were probed overnight with primary antibodies diluted to 1:1000 with 

Tris-buffered saline containing Tween 20 (TBST) (Biosesang #HT2007, Seongnam-si, 

Gyeonggi-do, Korea) and 5% skim milk at 4 °C. Then, the membranes were incubated with a 

peroxidase-conjugated secondary anti-rabbit antibody (Cell Signaling Technology Inc. #7074, 

Danvers, MA, USA), and protein bands were detected using Immobilon Western 

Chemiluminescent HRP Substrate (MilliporeSigma #WBKLS0500, Burlington, MA, USA). 

The band densities were normalized using glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH; Cell Signaling Technology Inc. #2118, Danvers, MA, USA) as an internal control. UN
CO
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Statistical Analysis 

All data are presented as the mean ± standard error of the mean (SEM). Statistical analyses 

were performed using Prim 9.1.2 (GraphPad, San Diego, CA, USA). A normality test was 

performed among the three experimental groups using the Kolmogorov-Smirnov test (p > 0.05). 

One-way analysis of variance (ANOVA) with Tukey’s post-hoc test was used for the analysis. 

In addition, the BW (g) was analyzed using two-way repeated measures ANOVA with time 

factors and Tukey’s Honest Significant Difference (HSD) test for post-hoc analysis. Pearson 

correlation coefficients (r) between RCR and autophagy-related proteins (LC3 II, LC3II/I ratio, 

p62, Beclin 1, and BNIP3) were calculated. p < 0.05 was considered significant. 
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