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Abstract 

Cold-induced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase 

cascade and cAMP-response element-binding protein, leading to the induction of thermogenic 

gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of 

the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression 

of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the 

functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-

butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced 

both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was 

significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) 

adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA 

regions located at -3.7 and -2.0 kb of the transcription start site. The CL316,243-induced Ucp1 

expression in adipocytes and oxygen consumption in obese mice were partly compromised in 

the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in 

β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of 

Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.  
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INTRODUCTION 

The uncoupling of respiration and ATP synthesis contribute to non-shivering thermogenesis in 

adipose tissues during chronic cold exposure (1, 2). The respiratory chain in mitochondria 

accumulates protons (H+) in the intermembrane space that fall into ATP synthase to generate 

ATP. During cold exposure, the accumulated protons in the intermembrane space are dissipated 

by uncoupling protein 1 (Ucp1) and produce heat instead of ATP (3, 4). Thermogenic 

adipocytes expressing Ucp1 mainly found in brown adipose tissue (BAT) and subcutaneous 

white adipose tissue (WAT) is stimulated by β-adrenergic receptor (β3-AR) activation (2, 5-8).  

Cold stress induces the secretion of norepinephrine, leading to the activation of β3-ARs in 

adipose tissue (9, 10). β3-AR regulates whole-body thermogenesis in part through Ucp1 

stimulation in adipose tissue (11). BAT in Ucp1 knockout (KO) mice has been reported to be 

unresponsive to norepinephrine (12, 13), suggesting the importance of Ucp1 in β3-AR 

signaling-mediated thermogenesis. Stimulation of β3-ARs by agonists induces the Gs-

dependent activation of adenylate cyclase, increases intracellular cAMP levels, and activates 

protein kinase A (PKA) (10, 14). Activated PKA increases the transcription of various target 

genes through transcription factor cAMP-responsive element-binding protein (Creb). Creb 

binds to the promoter region of target genes containing the cAMP-responsive element (CRE) 

(15).  

Nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the anti-oxidant 

response, removes excess reactive oxygen species (ROS) by inducing antioxidant-related genes 

under oxidative stress conditions (16, 17). Nrf2 binds to the antioxidant response element (ARE) 

of the target genes to induce the transcription of cytoprotective antioxidation-related genes such 

as Heme Oxygenase-1 (Hmox1), NAD(P)H quinone oxidoreductase 1 (Nqo1), and glutamate-

cysteine ligase modifier subunit (Gclm), and glutathione reductase (16). Previous studies UN
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showed that Nrf2 interact with other signaling pathways including the arylhydrocarbon 

receptor, NF-κB, NFATc1, and p53 (18, 19). Thus, it is possible that Nrf2 acts cooperatively 

with intracellular signaling pathways responding to various cellular stresses.  

In this study, we examined the potential roles of Nrf2 in β3-AR-mediated Ucp1 expression in 

adipocytes. We showed that the β3-AR-induced Ucp1 expression and stimulated oxygen 

consumption was partly impaired in Nrf2 KO obese mice. These studies indicate the novel role 

of Nrf2 in β3-AR activation in adipocytes. 
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RESULTS 

 

β3-AR activation induces both Ucp1 and Hmox1 expression in adipocytes. 

To examine the possible interactions between Nrf2 and β3-AR signaling in adipocytes, we 

stimulated adipocytes with β3-AR agonists and measured the expression of Hmox1, the 

principal Nrf2 target gene in adipocytes. Strong Ucp1 mRNA induction was observed within 1 

h and reached maximal levels of ~50-fold at 3 h. Similarly, time-dependent increases in Hmox1 

mRNA levels were observed in C3H10T1/2 adipocytes (Fig 1A). Treatment of primary 

adipocytes isolated from inguinal white adipose tissue with CL316,243 also induced Ucp1 and 

Hmox1 expression (Fig. 1B). We also confirmed that the treatment of C3H10T1/2 adipocytes 

with another β-AR agonist isoproterenol stimulated Hmox1 and Ucp1 expression (Fig 1C). 

Adipocytes exposed to cool temperatures at 30 C similarly induced both Ucp1 and Hmox1 

expression (Fig. 1D). These data suggest an interaction between Nrf2 and β3-AR signaling in 

adipocytes.  

 

Nrf2 activation mimics β3-AR stimulated-Ucp1 expression in adipocytes. 

Given the Ucp1 and Hmox1 induction by β3-AR activation in adipocytes, we investigated 

whether Nrf2 activation would promote Ucp1 expression similar to that of β3-AR activators. 

We found that pharmacological Nrf2 activation by tert-butylhydroquinone (tBHQ) also 

stimulated Hmox1 and Ucp1 expression (Fig. 2A-2B).   

An increase in oxidative stress due to the generation of ROS leads to the activation of Nrf2 

(20). To determine whether ROS-induced Nrf2 activation affected Ucp1 and Hmox1 expression, 

we treated cells with glucose oxidase to generate ROS (21) and measured Hmox1 and Ucp1 

expression. Consistently, treatment with glucose oxidase increased Ucp1 and Hmox1 levels 

similar to those from tBHQ treatment (Fig. 2C-2D).  UN
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Because Nrf2 activation induced Ucp1 expression, we further investigated the effect of Nrf2 

on human Ucp1promoter activity. Toward this, we cloned the proximal 3.7 kb of the human 

Ucp1 promoter into the PGL-3 vector to obtain Ucp1 promoter-driven luciferase reporter 

constructs. Transient Nrf2 expression stimulated -3.7kb Ucp1 promoter driven luciferase 

activity, whereas Nrf2 did not promote luciferase activity in the -2.0 kb and -1.0 kb Ucp1 

proximal promoter (Fig. 2E). These data indicate that Nrf2 increases Ucp1 transcription and 

that this stimulatory effect required proximal promoter regions located at -3.7 and -2.0 kb of 

the transcription start site. 

 

Nrf2 is essential for the tBHQ (Nrf2 activator) induced Ucp1 expression in adipocytes. 

The effects of Nrf2 activation in adipocytes suggested that Nrf2 was essential for the effects of 

tBHQ on adipocytes. To test this, we treated the cells with N-acetylcysteine (NAC), a known 

ROS-scavenging chemical, to inhibit Nrf2 activity, and assessed its effects. Treatment with 

NAC has been shown to decrease Nrf2 activity (22). Consistently, NAC impaired the tBHQ -

induced expression of Ucp1 and Nrf2 target genes (Fig 3A).  

To further show the role of Nrf2 in Ucp1 induction, we treated primary adipocytes isolated 

from the inguinal fat pads of wild-type (Nrf2 WT) and Nrf2 knockout (Nrf2 KO) mice with 

tBHQ. Nrf2 activation strongly induced the Ucp1 and Nrf2 target gene expression of Hmox1, 

Nqo1, Srxn1, and Gclc in Nrf2 WT primary adipocytes. However, these effects were 

significantly impaired in the Nrf2 KO adipocytes (Fig. 3B). Together, these data show that Nrf2 

activation can induce Ucp1 expression in adipocytes.  

 

β3-AR induced oxygen consumption is partly dependent on Nrf2. 

The ability of β3-AR to increase Hmox1 and Ucp1 expression suggested that Nrf2 might be 

involved in β3-AR-induced Ucp1 expression in adipocytes. To investigate this possibility, we UN
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treated Nrf2 WT and Nrf2 KO adipocytes with CL316,243. β3-AR activation strongly induced 

the expression of Ucp1 and Nrf2 target genes in Nrf2 WT adipocytes. However, these effects 

were significantly blunted in Nrf2 KO adipocytes (Fig. 4A).  

To further assess the role of Nrf2 in β3-AR activation in mice, we measured the CL316,243-

induced O2 consumption rates of aged WT and Nrf2 KO female mice. CL316,243 treatment of 

14-month-old mice increased oxygen consumption by about 123% compared to the basal levels 

in WT mice, whereas CL316,243 exhibited 110% increases in Nrf2 KO aged female mice (Fig. 

4B). We also measured β3-AR-induced oxygen consumption in obese C57BL/6J male mice 

fed high-fat diet (HFD) for 16 weeks. The WT obese mice stimulated with CL316,243 showed 

increased rates of oxygen consumption up to 120% but its stimulatory effects were less (113%) 

in the Nrf2 KO obese mice (Fig. 4C). These findings suggest the role of Nrf2 in β3-AR-

mediated oxygen consumption. Increased metabolic activity by β3-AR stimulation increases 

body temperature. Thus, we further investigated rectal temperatures for 24 h in the Nrf2 WT 

and Nrf2 KO obese mice. Consistent with the oxygen consumption, the nighttime (at 4 A.M) 

rectal temperature in Nrf2 WT mice was significantly higher than that in the Nrf2 KO mice 

(Fig. 4D). Together, these data strongly suggest that Nrf2 was partly involved in the β3-AR-

Ucp1 axis in certain conditions and further suggest that adipose Nrf2 activation can be a 

regulator of the energy expenditure of obese or aged mice. 
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DISCUSSION 
 

In oxidative stress conditions, Nrf2 is activated to induce the expression of cytoprotective genes 

(16). It has become evident that Nrf2 is interconnected with other signaling pathways such as 

NF-κB and p53 (18). Furthermore, Nrf2 may also exert its effects through interactions with 

additional pathways such as the PKA/Creb signaling pathway. Nrf2 in fasting conditions 

becomes activated by the cAMP/PKA pathway and regulates its downstream target genes in 

hepatocytes (23). CREB signaling was also shown to increase Hmox1 in mouse adrenal cells 

and human umbilical vein endothelial cells (24-26). Therefore, these studies raise the 

possibility of crosstalk between Nrf2 and cAMP/PKA signaling in adipocytes.  

 

β3-AR stimulation induces cAMP mediated PKA activity and subsequent Creb phosphorylation, 

leading to transcriptional regulation of target genes containing cAMP-responsive element 

(CRE) (15). (10, 14). β3-AR can also relay the signaling through other cellular pathways 

including p38, PKC, and ERK1/2 in adipocytes (27) (28-30). Interestingly, adipocytes exposed 

to cool temperatures induce Ucp1 expression independent of the PKA/Creb pathway (31), 

indicating the existence of alternative or parallel pathways for β-AR mediated Ucp1 induction 

in adipocytes. Our data show that β3-AR stimulation induces Nrf2 activation and the Nrf2 can 

contribute to the increases of Ucp1 expression in adipocytes. Since the adrenergic signaling is 

often associated with increased production of ROS (32), it is also reasonable that the increased 

ROS levels by β3-AR activation can induce Nrf2 mediated gene expression including Ucp1 

and Nrf2 target genes in adipocytes. Therefore, the dissection on the β3-

AR/cAMP/PKA/CREB and the β3-AR/Nrf2 signaling cascades for functional relationships 

should be investigated in future.     
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We found that β3-AR stimulation increased the expression of conventional Nrf2 downstream 

target genes in an Nrf2-dependent manner. We also presented evidence that the degree of Ucp1 

induction by β3-AR agonists was partly blunted in the absence of Nrf2 expression in adipocytes. 

Additionally, the CL316,243-induced oxygen consumption was partly impaired in Nrf2 KO 

obese mice, indicating a role of Nrf2 in β3-AR-induced Ucp1 expression in adipocytes and 

energy expenditure in obese mice. Consistent with our findings, it has been reported that 

C3H10T1/2 undifferentiated mesenchymal stem cells and bone marrow cells expressed β2-AR 

and its activation by adrenaline protected cells from oxidative stress through the Nrf2-mediated 

induction of glutathione synthesis (33). It is thus possible that adrenergic stimulation-induced 

Nrf2 activation may not be β-AR subtype-specific.  

 

At present, it is not clear how the β3-AR signaling pathway regulates Nrf2 activity. Under basal 

conditions, the Nrf2-Keap1 complex present in the cytosol constantly degrades Nrf2. When 

Keap1 senses cellular oxidative and electrophilic stress, keap1 and Nrf2 complexes are 

disrupted, leading to the stabilization and activation of Nrf2. Oxidative/electrophilic stress 

results in kinase mediated phosphorylation on Nrf2 or Nrf2 negative regulators (i.e. Keap1 and 

Bach1) for increasing Nrf2 activities. Thus, it is tempting to speculate that β3-AR signaling-

induced kinase including PKA may affect Nrf2 or its negative regulators to stabilize Nrf2. 

Future studies are necessary to dissect the exact molecular connection between Nrf2 and β3-

AR signaling in adipocytes.  

 

In conclusion, we provide data for new insight into the role of Nrf2 in β3-AR-mediated effects 

and further suggest the utility of Nrf2-mediated thermogenic stimulation as a therapeutic 

approach for diet-induced obesity. 

       UN
CO

RR
EC

TE
D 

PR
O
O
F



Figures 

 

 

Fig. 1. β3-AR activation induces Ucp1 and Hmox1 expression in adipocytes. (A) Time-

dependent increases in Ucp1 and Hmox1 mRNA levels by treatment with CL316,243 (5 M) 

expressed as fold-increases relative to levels in dimethyl sulfoxide (DMSO)-treated 

C3H10T1/2 adipocytes. (B) Treatment of primary adipocytes isolated from inguinal adipose 

tissues with CL316,243 (5 M) for 6 h. (C) Treatment of C3H10T1/2 adipocytes with 

isoproterenol at 10 nM for 6 h. (D) Differentiated C3H10T1/2 adipocytes were exposed to 

37 °C or 30 °C and the expression of Ucp1 and Hmox1 was measured. The data represent means 

± s.e.m. and are representative of three independent experiments. Statistical significance was 

determined relative to controls using the Student’s t-test (*P < 0.05). 
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Fig. 2. Nrf2 activation increases Ucp1 expression in adipocytes. (A) tert-Butylhydroquinone 

(tBHQ) at 25 and 50 M increases Ucp1 and Hmox1 expression in C3H10T1/2 adipocytes. (B) 

Time-dependent increases in Ucp1 and Hmox1 mRNA levels by treatment with 50 M tBHQ 

expressed as fold-increases relative to the levels in DMSO-treated C3H10T1/2 adipocytes. (C) 

Treatment with glucose oxidase (2.5 U or 5 U/ml) increases Ucp1 and Hmox1 expression in 

C3H10T1/2 adipocytes. (D) Time-dependent increases in Ucp1 and Hmox1 mRNA levels by 5 

U/ml glucose oxidase expressed as fold-increases relative to levels in DMSO-treated 

C3H10T1/2 adipocytes. (E) Nrf2 activates the Ucp1 promoter in the reporter assay. 293FT cells 

were transiently transfected with Ucp1 promoter-luciferase with or without the Nrf2-

expressing vector. The proximal 3.7 kb, 2 kb, or 1 kb of the human Ucp1 promoter sequences 

were fused to express the Ucp1 promoter-driven luciferase reporter. The data represent 

averages +/- s.e.m. of triplicates and are expressed as fold-increases relative to empty vector-

transfected cells. Statistical significance was determined relative to controls using the Student’s 

t-test (*P < 0.05). 
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Fig. 3. Nrf2 is essential for tert-butylhydroquinone (tBHQ)-mediated Ucp1 induction in 

adipocytes. (A) C3H10T1/2 adipocytes were treated with tBHQ (50 M) and NAC (1mM) for 

12 h and the expression of Ucp1, Hmox1, and Nqo1 was measured. (B) Primary adipocytes 

isolated from the inguinal fat pads of Nrf2 wild-type (Nrf2 WT) and Nrf2 knockout mice (Nrf2 

KO) were treated with tBHQ (50M) for 12 h and the expression levels of Ucp1 and Nrf2 

target genes (Hmox1, Nqo1, Srxn1, and Gclc) were measured. The data represent means ± s.e.m. 

and are representative of three independent experiments. Statistical significance was 

determined relative to controls using the Student’s t-test (*P < 0.05). 
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Fig. 4. β3-AR-stimulated Ucp1 induction and oxygen consumption are partly dependent upon 

Nrf2. (A) Primary adipocytes isolated from the inguinal fat pads of Nrf2 WT and Nrf2 KO 

mice were treated with CL316,243 (5M) for 12 or 24 h and the expression levels of Ucp1 and 

Nrf2 target genes (Hmox1, Nqo1, Maff, Gclc, and Srxn1) were measured. (B) Fourteen-month-

old Nrf2 WT and Nrf2 KO female mice were stimulated with β3-AR agonist (CL316,243, 2 

mg/kg) and the O2 consumption rates were measured. (C) The O2 consumption rates of Nrf2 

WT and Nrf2 KO obese male mice fed high-fat diet for 16 weeks were measured. (D) Rectal 

temperature was measured for 24 h in WT and Nrf2 KO obese mice. The data represent mean 

± s.e.m. and statistically significant differences between WT and Nrf2 KO mice were 

determined by the Student’s t-test * P < 0.05).  
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MATERIALS AND METHODS 

Cell culture and expression analysis 

C3H10T1/2 cells and primary adipocytes were maintained and differentiated as previously 

reported (34). The adipocytes were treated with 5 µM CL316,243 (Sigma, St. Louis, MO, USA) 

or 10nM isoproterenol (Sigma) and total RNA was isolated for expression analysis. To measure 

gene expression levels, total RNA was isolated using TRIzol reagent (Invitrogen, Waltham, 

MA, USA) and reverse-transcribed using ReverTra Ace® qPCR RT Master Mix (Toyobo, 

Japan). Real-time PCR was performed using THUNDERBIRD® SYBR® qPCR Mix (Toyobo). 

PCR primers were described previously (34, 35). Expression was normalized to the level of 

ribosomal 36B4 protein as previously described.  

 

Animal studies 

All animal studies were carried out in accordance with the guidelines of the Animal Research 

Committee (SKKUIACUC2020-08-21-1) of Sungkyunkwan University. Seven weeks old male 

C57BL/6J mice were purchased from Central Lab Animal Inc (Seoul, KoreA). and housed in 

rooms at ambient temperature. The Nrf2 KO mice were previously described (35). Whole-body 

energy metabolism was measured using the Columbus Instruments Oxymax Lab Animal 

Monitoring System. The mice were placed in metabolic cages and acclimated in the metabolic 

chambers for one day before measuring O2 consumption. 

 

Statistical analysis 

The data are presented as the mean ± standard error of the mean (s.e.m). Comparisons between 

the control and experimental groups were analyzed using unpaired Student’s t-tests. Statistical 

analyses were performed using GraphPad Prism (GraphPad Software, Inc., La Jolla, CA, USA).  
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Fig. 4
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