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ABSTRACT 

 A well-controlled inflammatory response is crucial for the recovery from injury and 

maintenance of tissue homeostasis. The anti-inflammatory response of 2-

methoxycinnamaldehyde (2-MCA), a natural compound derived from cinnamon, has been 

studied; however, the underlying mechanism on macrophage has not been fully elucidated. In 

this study, LPS-stimulated production of TNF-α and NO was reduced by 2-MCA in 

macrophages. 2-MCA significantly activated the NRF2 pathway, and expression levels of 

autophagy-associated proteins in macrophages, including LC3 and P62, were enhanced via 

NRF2 activation regardless of LPS treatment, suggesting the occurrence of 2-MCA-mediated 

autophagy. Moreover, evaluation of autophagy flux using luciferase-conjugated LC3 revealed 

that incremental LC3 and P62 levels are coupled to enhanced autophagy flux. Finally, 

reduced expression levels of TNF-α and NOS2 by 2-MCA were reversed by autophagy 

inhibitors, such as bafilomycin A1 and NH4Cl, in LPS-stimulated macrophages. In conclusion, 

2-MCA enhances autophagy flux in macrophages via NRF2 activation and consequently 

reduces LPS-induced inflammation. 
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INTRODUCTION 

 Inflammation is an essential response of the body against infection, tissue injury, and 

cellular stress (1). Among the innate immune cells, macrophages are rapidly recruited and 

mediate inflammatory responses in infectious diseases (2). Macrophages accomplish the 

initial microbial defense via tumor necrosis factor-α (TNF-α) and nitric oxide (NO) 

production (3, 4). A well-controlled inflammatory response, including adequate TNF-α and 

NO secretion, helps manage pathogenic microbial infection. However, excessive production 

of these molecules may lead to septic shock. Therefore, the control of inflammation is an 

important therapeutic target in infectious diseases. 

 The genus Cinnamomum include evergreen trees of about 250 species distributed 

worldwide. Notably, 2-methoxycinnamaldehyde (2-MCA) is a compound commonly 

identified in cinnamon (5); its anti-inflammatory, antioxidant, anti-osteoclastogenesis, anti-

angiogenesis, and anti-aggregation activities have been studied in various types of cells, 

including macrophages, endothelial cells, tumor cells, and platelets (6-10). Particularly, it 

potentiates anti-inflammatory and antioxidant effects in macrophages. However, there is still 

no clear investigation regarding its mechanism of action. 

 Nuclear factor erythroid 2-related factor 2 (NRF2) regulates antioxidant gene 

expression to protect against oxidative damage induced by injury and inflammation (11). For 

its antioxidant response, NRF2 binds to antioxidant response elements (AREs) in gene 

promoter regions to produce various enzymes, such as heme oxygenase-1 (HO-1), NADH 

quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD1) (12). Normally, NRF2 

in the cytoplasm binds with Kelch-like ECH-associated protein 1 (KEAP1), which performs 

the ubiquitination and proteolysis of NRF2 (13). On the other hand, autophagosome cargo 

protein P62/SEQUESTOSOME1 (P62/SQSTM1) acts on KEAP1 at the same binding site as 

NRF2-KEAP1 to competitively inhibit their interaction, consequently protecting NRF2 from UN
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its degradation (14). Upon stabilization, NRF2 increases the expression level of P62, which 

interacts with KEAP1 more frequently and further accelerates the activation of free NRF2 

(15). Moreover, accumulated P62 and LC3 bind to each other to trigger the autophagosome 

formation on its membrane (16).  

 In this study, we demonstrated that the 2-MCA-induced anti-inflammatory effect in 

macrophages is mediated via NRF2 activation. Furthermore, NRF2-mediated autophagy 

enhancement could modulate excessive inflammation by diminishing TNF-α and NO 

production. 

 

RESULTS 

2-MCA reduces TNF-α and NO secretion in macrophages 

 We searched several natural compounds in PubMed by using the following 

keywords: natural compound, inflammation, phytochemical, and TNF-α. Based on the results, 

six compounds were selected: β-caryophyllene, hydroxycitric acid, ruscogenin A, maslinic 

acid, β-myrcene, and 2-MCA (Fig. S1). To confirm the anti-inflammatory effect of each 

compound in macrophages, we first examined TNF-α production together with the cell 

viability in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone-marrow 

macrophages (BMMs). In RAW264.7 cells, two compounds, maslinic acid and 2-MCA, 

significantly reduced TNF-α production (Fig. S2). However, only 2-MCA successfully 

reduced TNF-α production without significant cell death in LPS-exposed BMMs (Fig. S3). 

Then, we further examined the concentration-dependent cytotoxicity of 2-MCA in both cells. 

In all tested conditions, 2-MCA did not affect cell viability (Fig. 1A). Next, concentration-

dependent TNF-α and NO secretion levels were measured to ensure the anti-inflammatory 

effect of 2-MCA. Consistently, 2-MCA inhibited TNF-α and NO secretion in a concentration-

dependent manner in LPS-stimulated macrophages, especially from concentrations of 12.5 to UN
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100 μM (Fig. 1B and 1C). As a result, we selected the 50-μM concentration to investigate the 

anti-inflammatory mechanism of 2-MCA. 

 

2-MCA maintains LPS-induced MAPK, NF-kB, and AP-1 pathways 

 Next, we evaluated whether 2-MCA primarily affects the well-known LPS-related 

signaling pathway, including the MAPK, NF-κB, and AP1 pathways. In the MAPK signaling 

pathway, phosphorylation levels of p38, ERK, and JNK were increased by LPS in both 

RAW264.7 cells and BMMs; all of them were unchanged by 4-h pretreatment of 2-MCA (Fig. 

2A and 2B). Similarly, LPS-initiated degradation of IκB and induction of c-Jun and c-Fos in 

NF-κB and AP-1 signaling, respectively, were also unaffected by 4-h pretreatment of 2-MCA 

in macrophages (Fig. 2C and 2D). These data suggest that LPS-induced conventional 

pathways were not the primary targets in anti-inflammation by 2-MCA. 

 

2-MCA activates NRF2/HO-1 signaling axis in LPS-stimulated macrophages 

 A previous study revealed that the NRF2/HO-1 pathway was activated in vascular 

endothelial cells by 2-MCA (17). Thus, we investigated whether 2-MCA would also activate 

the NRF2/HO-1 pathway in macrophages. We found that 2-MCA activated the NRF2/HO-1 

axis, regardless of LPS stimulation (Fig. S4 and S5A). Interestingly, activated NRF2 by 2-

MCA further increased ATF3 expression level in LPS-stimulated conditions (Fig. 3A and 3B). 

In addition, 2-MCA further increased the expression level of HO-1, which was slightly 

increased by LPS stimulation. On the other hand, LPS-induced NOS2 expression level was 

significantly decreased by 2-MCA (Fig. 3C and 3D). 

 Recently, autophagy-associated genes, such as P62, LC3A/B, and ATG5, have been 

identified as targets of NRF2 (18, 19). Thus, we further investigated whether such genes 

could be increased by 2-MCA. We found that the mRNA expression levels of Sqstm1 and UN
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Map1lc3a, which encode P62 and LC3A, respectively, were sufficiently increased by 2-

MCA; results were also similar with ARE activity (Fig. S5). Since P62 and LC3, important 

proteins for autophagy, are known to be transcribed by both NRF2 and TFEB, we examined 

whether 2-MCA could activate TFEB-dependent transcription in macrophages. Thus, mRNA 

expression levels of TFEB-target genes, Tfeb and Lamp2, were evaluated; no obvious 

enhancement by 2-MCA was observed (Fig S6A and S6B). Moreover, TFEB activity analysis 

using 5xCLEAR (Coordinated Lysosomal Expression and Regulation) reporter, which 

contained five repeats of TFEB-responsive elements (20), showed that rapamycin 

successfully increased TFEB activity; in contrast, 2-MCA did not demonstrate similar results 

(Fig. S6C). 

 Therefore, these data suggest that 2-MCA increases NRF2 activity followed by 

increasing the expression levels of canonical genes, such as ATF3 and HO-1, and autophagy-

associated genes, such as P62 and LC3A. 

 

Elevated autophagy flux by 2-MCA reduces pro-inflammation in LPS-stimulated 

macrophages 

 Based on the enhanced expression of autophagy-associated genes, including P62 and 

LC3A, we evaluated whether their incremental expression could accompany the changes in 

autophagy flux. Thus, we adopted the luciferase-conjugated LC3 reporter (21). We found that 

the luciferase-LC3 reporter successfully chased autophagy flux by reporting inverse 

correlated luminescence signals with changes in autophagy flux; results revealed reduced 

signals by Earle’s balanced salt solution (EBSS) and enhanced signals by bafilomycin A1 

(BafA1), which accelerate and diminish during autophagy flux, respectively (Fig. S7). Thus, 

we evaluated 2-MCA-dependent autophagy flux in LPS-stimulated RAW264.7 cells. 

Interestingly, LPS diminished autophagy flux, whereas 2-MCA completely enhanced UN
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autophagy flux to levels of the absence of LPS (Fig. 4A).  

 We investigated whether this increase in autophagy flux was correlated with the anti-

inflammatory effect of 2-MCA. We evaluated the mRNA expression levels of Tnf and Nos2 

in RAW264.7 cells, which affect TNF-α and NO secretion. As a result, LPS highly elevated 

Tnf and Nos2 mRNA expression levels, whereas these were significantly diminished by 2-

MCA. In addition, BafA1, an autophagy inhibitor that impedes V-ATPase, deteriorated the 2-

MCA-induced anti-inflammatory effects to levels of the LPS-only stimulation (Fig. 4B). 

Moreover, another well-established autophagy inhibitor, NH4Cl, which prevents lysosomal 

acidification, also reversed the anti-inflammatory functions of 2-MCA in RAW264.7 cells 

(Fig. 4C). Therefore, these data suggest that 2-MCA potentiates anti-inflammation via NRF2-

mediated enhancement in autophagy flux. Thus, incremental autophagy flux could be 

strategically used to deal with excessive inflammation. 

 

DISCUSSION 

 The function of inflammation is to eliminate the initial etiologic cause and repair 

damaged tissue. This inflammatory response is initiated and amplified by secretory factors, 

such as TNF-α and NO, released by various immune cells, including macrophages. Therefore, 

regulating these factors is important to limit the excessive inflammatory response (22, 23). 

Infection is the entry of pathogenic microorganisms into the body, whether through wounded 

skin, airways, or other entry points. LPS, an endotoxin which constitutes the outer membrane 

of bacteria, mediates infectious diseases by triggering an innate immune response within the 

body (24). In macrophages, LPS activates MAPK, NF-κB, and AP1-related pathways to 

secrete NO and pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1 (25-27). Secreted 

NO promotes the recruitment of circulating immune cells by dilating blood vessels (28). 

Inflammatory responses by TNF-α and IL-1 mediate recruitment, activation, and adhesion of UN
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circulating phagocytes to remove pathogenic microorganisms (29, 30). However, the 

uncontrolled hyperinflammatory reaction by cytokine storms and high NO secretions causes 

high fever, chills, and low blood pressure, which could lead to septic shock (31, 32). 

Therefore, the appropriate control of inflammation is crucial for treating infectious diseases. 

 In this regard, we measured the levels of TNF-α and NO, representative factors 

mediating cytokine storm and low blood pressure, to evaluate the inflammatory response in 

macrophages. Among the investigated natural compounds expected to regulate 

hyperinflammation, only 2-MCA significantly reduced TNF-α and NO levels without obvious 

cytotoxicity. Thus, we deeply investigated how 2-MCA reduces TNF-α and NO levels in 

macrophages. Our results illustrated that 2-MCA significantly reduced TNF-α and NO levels 

in macrophages primarily via NRF2 pathway with unaltered conventional LPS-mediated 

signaling, including MAPK, NF-kB, and AP-1 pathways. Although 2-MCA did not alter the 

conventional LPS-mediated signaling in a short duration of 4-h pretreatment, the substantial 

changes due to the secondary effect of NRF2 activation in a longer duration cannot be ruled 

out. Moreover, autophagy-related genes, such as P62 and LC3A/B, contain AREs in their 

promoter regions, which induce transcription upon NRF2 stabilization (18, 19). Stabilized 

NRF2 increases the expression level of P62, which interacts with KEAP1 more frequently 

and thus further accelerates the activation of free NRF2 (15). Therefore, we confirmed the 

activation of AREs in response to NRF2 as well as the increased expression levels of P62 and 

LC3A by 2-MCA. However, 2-MCA did not affect other autophagy-associated genes 

containing TFEB promoter regions, such as TFEB or LAMP2. 

 In the current study, evaluation of autophagy flux using endogenous LC3 proteins 

was problematic owing to their increased expression levels (Fig. S8). In this case, it is helpful 

to measure autophagy flux using exogenous LC3, which shows a constant expression level. 

Previous reports were based on Renilla luciferase-conjugated LC3 (33). On the other hand, UN
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we adopted the firefly luciferase, which is more applicable for luminescence in vivo (34). 

Despite the usage of a different luciferase, our system also reported cellular autophagy flux. 

Thus, we found that LPS reduces autophagy flux and that 2-MCA successfully ameliorated 

this process to levels of the absence of LPS. Accordingly, enhanced autophagy suppresses 

LPS-induced inflammation (35). In addition, autophagy acceleration ameliorated the damage 

caused by sepsis (36). Together with our current results, autophagy is suspected to reduce 

inflammation in infectious diseases. 

 In conclusion, NRF2-associated autophagy flux by 2-MCA successfully reduced 

macrophage-mediated inflammation. Therefore, NRF2 activation may treat acute infectious 

diseases by reducing oxidative stress and inducing autophagy flux. 

 

MATERIALS AND METHODS 

Cell culture 

 RAW264.7 cells (Korean Cell Line Bank, Seoul, Korea) were cultured in Dulbecco's 

Modified Eagle Medium (DMEM; Gibco, Thermo Fisher Scientific, Waltham, MA) at 37 °C 

containing 5% CO2, with 10% heat-inactivated fetal bovine serum (FBS; Gibco) and 1% 

penicillin–streptomycin (Gibco). BMMs were isolated from femurs of mice and cultured in 

DMEM/F12 medium (GenDEPOT, Barker, TX) at 37 °C containing 5% CO2, supplemented 

with 10% FBS, 20% L929-conditioned medium, 1× GlutaMAX (Gibco), and 1% 

penicillin/streptomycin. 

 

Measurement of TNF-α secretion 

 To evaluate the effect of 2-MCA, RAW264.7 cells and BMMs were cultured in 96-

well plates at 1 × 104 and 2 × 104 cells/well for 12 h. Then, the plates were pre-treated with 

serially diluted 2-MCA. After a 4-h culture, media was added with or without LPS (1 μg/mL). UN
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After a 24-h incubation period, the cultured supernatant was collected. The amount of 

secreted TNF-α was measured using Mouse TNF-α ELISA MAX kit (BioLegend, San Diego, 

CA) according to the manufacturer’s instructions. 

 

NO assay 

 To evaluate the effect of 2-MCA, RAW264.7 cells and BMMs were plated into 60-

mm dishes at 5 × 105 and 1 × 106 cells/dish for 12 h and were then pre-treated with serially 

diluted 2-MCA. After a 4-h culture, media was added with or without LPS (final 

concentration, 1 μg/mL). After a 24-h incubation period, the cultured supernatant was 

collected. Cells were then removed via centrifugation at 500 g for 3 min. Then, 100 μL of the 

cultured supernatant was mixed with 100 μL of Griess reagent (1:1 mixture of 1% 

sulfanilamide in 30% acetate and 0.1% N-1-naphthyl ethylenediamine dihydrochloride in 

60% acetate) at room temperature for 10 min. The absorbance of the incubated samples was 

measured at 540 nm using a microplate reader. A standard curve drawn with known 

concentrations of sodium nitrite was applied to calculate the concentration of nitrite, which is 

the stable end-product. 

 

Luminescence-based autophagy flux analysis 

 RAW264.7 cells stably expressing luciferase-conjugated LC3 (Fig. S9) were seeded 

into a white, 96-well plate at 2 × 104 cells/well for 12 h and were then pre-treated with 

serially diluted 2-MCA. After a 4-h culture, media was added with or without LPS (1 μg/mL) 

and BafA1 (40 nM). After an 8-h incubation period, the medium was changed to phenol red-

free DMEM, which contained D-luciferin (100 μg/mL). Upon further incubation at 37 °C for 

15 min, luminescence was measured using a microplate reader (Tecan Spark, Tecan, 

Switzerland). UN
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Statistical analysis 

 The results are expressed as mean ± standard deviation (SD). Statistical analysis was 

performed using an unpaired Student’s t-test or a one-way analysis of variance with Tukey’s 

post-hoc test using GraphPad Prism software (GraphPad Software, La Jolla, CA). The 

minimum significance level was set at P = 0.05; at least three independent replications were 

performed for each experiment. 
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FIGURE LEGENDS 

 

Fig. 1. Anti-inflammatory effects of 2-MCA in LPS-stimulated macrophages. (A) 

RAW264.7 cells (left) and BMMs (right) were incubated with 2-MCA as indicated for 24 h. 

The absorbance produced by MTS was measured at 490 nm. The relative cell viability is 

shown as the mean ± SD (n = 3, with triplicates in each experiment). (B) RAW264.7 cells 

(left) and BMMs (right) were pre-incubated with 2-MCA as indicated for 4 h, followed by 

incubation with or without LPS (1 μg/mL) for 24 h. The secreted TNF-α in the culture media 

was analyzed by ELISA; *P < 0.05, **P < 0.01. (C) RAW264.7 (left) and BMMs (right) 

were incubated with 2-MCA as indicated for 4 h, followed by incubation with or without LPS 

(1 μg/mL) for 24 h. The released NO was evaluated by Griess Reagent-based analysis; *P < 

0.05, **P < 0.01, ***P < 0.001. 

 

Fig. 2. Effect of 2-MCA on activation of MAPK, NF-kB, and AP-1 pathways in 

RAW264.7 and BMMs. (A, B) RAW264.7 cells (A) and BMMs (B) were pre-treated with or 

without 2-MCA (50 μM) for 4 h. After LPS (1 μg/mL) treatment within the indicated time, 

the phosphorylation levels p38, p44/42, and JNK were analyzed using immunoblot assay. (C, 

D) RAW264.7 cells (C) and BMMs (D) were pre-treated with or without 2-MCA (50 μM) for 

4 h. After LPS (1 μg/mL) treatment within the indicated time, the phosphorylation levels of 

IKKα, IKKβ, and p65, degradation of IκBα, and expression levels of c-Jun and c-Fos were 

analyzed using immunoblot assay. 

 

Fig. 3. Effect of 2-MCA on the expression of NRF2 and ATF3 in RAW264.7. (A) 

RAW264.7 cells were pre-treated with or without 2-MCA (50 μM) for 4 h. After LPS (1 

μg/mL) treatment within the indicated time, the kinetic expression levels of NRF2 and ATF3 UN
CO
RR
EC
TE
D 
PR
O
O
F



15 / 17 

were analyzed using immunoblot assay. (B) RAW264.7 cells were pre-treated with or without 

2-MCA (50 μM) for 4 h. After LPS (1 μg/mL) treatment within the indicated time, cells were 

fractionated into cytosol/membrane and nucleus fractions. The nucleus translocations of p65, 

NRF2, and ATF3 were assessed. (C) RAW264.7 cells, whether pre-treated with or without 2-

MCA (50 μM) for 4 h, were stimulated with LPS (1 μg/mL) as indicated. The expression 

levels of NRF2, ATF3, HO-1, and NOS2 were evaluated using immunoblot assay. (D) 

RAW264.7 cells, whether pre-incubated with or without 2-MCA as indicated for 4 h, were 

stimulated with LPS (1 μg/mL) for 4 h. The expression levels of NRF2, ATF3, HO-1, and 

NOS2 were assessed using immunoblot assay. 

 

Fig. 4. Effects of 2-MCA on Inducing Autophagy Flux in RAW264.7 (A) RAW264.7 cells 

containing luciferase-LC3 were pre-treated with or without 2-MCA (50 μM) for 4 h. After 

LPS (1 μg/mL) or BafA1 (40 nM) treatment for 8 h, autophagy flux was measured using 

luciferase assay. (B, C) RAW264.7 cells were pre-treated with or without 2-MCA (50 μM) for 

4 h. After LPS (1 μg/mL), BafA1 (40 nM), or NH4Cl (10 mM) treatment for 8 h, the 

expression levels of Tnf and Nos2 were analyzed using qRT-PCR assay. The results from 

three independent experiments are presented as means ± SD. *P < 0.05, **P < 0.01 and ***P 

< 0.001. 
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SUPPLEMENTARY METHODS 

 

Reagents and antibodies 

 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) was supplied by Promega (Madison, WI). All reagents, including D-

luciferin, 2-MCA, and LPS, were purchased from Sigma-Aldrich (St. Louis, MO) unless 

indicated otherwise. The antibodies used in the study are shown in Table S1. 

 

Mice 

 Male C57BL/6 mice (6-week-old, 20–24 g) were purchased from Orient Bio Inc. 

(Seongnam, Korea). Mice were provided a standard diet with drinking water before the 

experiment. All mice were housed in laboratory cage rack systems maintained at a constant 

temperature (22 ± 1 °C). The rooms were maintained under a 12 h dark/light cycle. All 

experimental procedures followed the Guidelines for the Care and Use of Laboratory Animals 

of the National Institutes of Health of Korea and were approved by the Institutional Animal 

Care and Use Committee of Pusan National University (protocol PNU-2019-2235, approved 

on March 24, 2019). 

 

Cell viability assay 

 RAW264.7 cells and BMMs were seeded into 96-well plates at 1 × 104 and 2 × 104 

cells/well, respectively. After a 12 h incubation period, serially diluted 2-MCA was treated for 

24 h. Cell viability was measured by MTS reduction. The culture medium was changed to an UN
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D 
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O
F



MTS-containing medium and incubated for 1 h prior to MTS reduction by viable cell 

dehydrogenases. The soluble formazan product of MTS was measured at 490 nm. 

 

Immunoblot analysis 

 Proteins were extracted using cell lysis buffer containing 50 mM Tris-Cl (pH 7.4), 300 

mM NaCl, 5 mM EDTA, 0.02% (w/v) sodium azide, 1% (w/v) Triton X-100, 10 mM 

iodoacetamide, 1 mM phenylmethanesulfonyl fluoride, 2 μg/mL leupeptin, and an inhibitor 

cocktail of protease and phosphatase (Calbiochem, Billerica, MA). Lysates were separated with 

SDS-PAGE and transferred to a nitrocellulose membrane (GE Healthcare Life Sciences, 

Pittsburgh, PA). The transferred membrane was probed with specific antibodies. The images 

were acquired using an LAS4000 machine (GE Healthcare Life Sciences). The antibodies used 

in the study are shown in Table S1. 

 

RNA isolation and qRT-PCR 

 Total RNA was isolated from RAW264.7 cells using a GeneJET RNA Purification Kit 

(ThermoFisher Scientific). Equal amounts of total RNA (1 μg) from each sample were then 

subjected to reverse transcription using oligo-dT primers with M-MLV reverse transcriptase 

(ThermoFisher Scientific). Quantitative real-time PCR was performed through the 

StepOnePlus Real-Time PCR system (Applied Biosystems, Foster City, CA) using the 

RealHelix qPCR kit (NanoHelix, Seoul, Korea). Relative mRNA levels were normalized using 

18S rRNA. The primers used in the study are shown in Table S2. 
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Promoter activity analysis 

RAW264.7 cells containing a fluorescent promoter activity reporter (Fig. S9) were seeded into 

a 6–well plate at 5 × 105 cells/well for 12 h and treated with 2-MCA (50 μM) or rapamycin (1 

μM), as indicated. Promoter activity was measured by qRT-PCR using the mCherry/mCerulean 

ratio. The TRE sequences are presented in Table S3. 

  

UN
CO
RR
EC
TE
D 
PR
O
O
F



SUPPLEMENTARY FIGURES 

 

 

 

Figure S1. The structure of compounds derived from natural products used in this study. 
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Figure S2. Screening of natural compounds in RAW264.7. RAW264.7 cells were incubated 

with (A) β-caryophyllene, (B) hydroxycitric acid, (C) ruscogenin A, (D) maslinic acid, (E) β-

myrcene, and (F) 2-MCA as indicated for 24 h. The absorbance produced by MTS was 

measured at 492 nm (left). To analyze TNF-α secretion, RAW264.7 cells were pre-incubated 

with β-caryophyllene, hydroxycitric acid, ruscogenin A, maslinic acid, β-myrcene, and 2-MCA 

as indicated for 4 h, followed by incubation with or without LPS (1 μg/mL) for 24 h. The 

secreted TNF-α level in culture media was analyzed using ELISA (right). 
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Figure S3. Screening natural compounds in BMMs. BMMs were incubated with (A) β-

caryophyllene, (B) hydroxycitric acid, (C) ruscogenin A, (D) maslinic acid, (E) β-myrcene, and 

(F) 2-MCA as indicated for 24 h. The absorbance induced by MTS was measured at 492 nm 

(left). To analyze TNF-α secretion, BMMs were pre-incubated with β-caryophyllene, 

hydroxycitric acid, ruscogenin A, maslinic acid, β-myrcene, and 2-MCA as indicated for 4 h, 

followed by incubation with or without LPS (1 μg/mL) for 24 h. The secreted TNF-α level in 

culture media was analyzed using ELISA (right). 
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Figure S4. 2-MCA induced the activation of the Nrf2/HO-1 axis in RAW264.7. RAW264.7 

cells were treated with 2-MCA (50 μM) for the indicated time. The kinetic expression levels of 

Nrf2 and HO-1 were analyzed using immunoblot assays. 
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Figure S5. NRF2-dependent gene expression by 2-MCA. (A) RAW264.7 cells containing 

fluorescent ARE activity reporter were treated with 2-MCA (50 μM) for the indicated time. 

Activation of the ARE promoter regions was analyzed using qRT-PCR assay. (B–D) 

RAW264.7 cells were treated with 2-MCA (50 μM) for the indicated time. The expression 

levels of Sqstm 1, Map1lc3a and Map1lc3b were analyzed using qRT-PCR assay. The results 

from three independent experiments are presented as mean ± SD. *P < 0.05, **P < 0.01 and 

***P < 0.001. 
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Figure S6. TFEB-dependent gene expression by 2-MCA. (A, B) RAW264.7 cells were 

treated with 2-MCA (50 μM) for the indicated time. The expression levels of Tfeb, and Lamp2 

were analyzed using qRT-PCR assay. (C) RAW264.7 cells containing fluorescent 5xCLEAR 

activity reporter were treated with 2-MCA (50 μM) and rapamycin (1 μM) for the indicated 

time. Activation of the 5xCLEAR was analyzed using qRT-PCR assay. The results from three 

independent experiments are presented as mean ± SD. *P<0.05, **P<0.01 and ***P<0.001.  

. 
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Figure S7. RAW264.7 cells expressing luciferase conjugates LC3 were treated with EBSS and 

BafA1 (40 nM) for the indicated time. Autophagy flux was measured using luminescence. The 

results from three independent experiments are presented as means ± SD. *P < 0.05, **P < 

0.01 and ***P < 0.001.  
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Figure S8. 2-MCA induced autophagy flux in RAW264.7. RAW264.7 cells were pre-treated 

with or without 2-MCA (50 μM) for 4 h. After LPS (1 μg/mL), BafA1 (40 nM), and EBSS 

treatment as indicated for 8 h, the kinetic expression levels of HO-1, P62, and LC3 were 

analyzed using immunoblot assay. 
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Figure S9. Schematic illustration of retroviral vectors. 
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SUPPLEMENTARY TABLES 

 

Table S1. Antibodies used. 

Antigen Company Catalog Number Dilution Ratio 

NOS2 BD Bioscience 610328 1:1000  

MYC Santa Cruz sc-42 1:1000  

GAPDH Santa Cruz sc-365062 1:1000  

c-JUN Santa Cruz sc-74543 1:1000  

c-FOS Santa Cruz sc-271243 1:1000  

ATF3 Santa Cruz sc-518032 1:1000  

Lamin A Santa Cruz sc-71481 1:1000  

β-actin Santa Cruz sc-8432 1:1000  

p38 Cell Signaling #9212 1:1000  

p-p38 (Thr180/Tyr182) Cell Signaling #9211 1:1000 

p44/42 Cell Signaling #9102 1:1000  

p-p44/42 (Thr202/Tyr204) Cell Signaling #9101 1:1000  

JNK Cell Signaling #9252 1:1000  

p-JNK (Thr183/Tyr185) Cell Signaling #9251 1:1000  

IKKα Cell Signaling #2682 1:1000  

IKKβ Cell Signaling #8943 1:1000  

p-IKKα/β (Ser176/Ser180) Cell Signaling #2697 1:1000 

IκBα Cell Signaling #9242 1:1000  

p65 Cell Signaling #6956 1:1000 

p-p65 (Ser536) Cell Signaling #3031 1:1000  

Nrf2 Cell Signaling #20733 1:1000 

LC3 A/B Cell Signaling #12741 1:1000 

HO-1 Enzo Life Sciences ADI-SPA-895 1:1000 

Anti-mouse IgG Invitrogen #RJ240410 1:4000 

Anti-rabbit IgG Invitrogen #SA245916 1:4000 
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Table S2. Sequence of primers for qRT-PCR. 

Gene Forward (5′ → 3′) Reverse (5′ → 3′) 

Tnf ATCCGCGACGTGGAACTG ACCGCCTGGAGTTCTGGAA 

Nos2 GGCAGCCTGTGAGACCTTTG TGCATTGGAAGTGAAGCGTTT 

Sqstm1 AGGATGGGGACTTGGTTGC TCACAGATCACATTGGGGTGC 

Map1lc3a GACCGCTGTAAGGAGGTGC CTTGACCAACTCGCTCATGTTA 

Map1lc3b GATAATCAGACGGCGCTTGC ACTTCGGAGATGGGAGTGGA 

Tfeb GGCGCCTGGAGATGACTAAC ACTGGGCAACTCTTGCTTCA 

Lamp2 AGGAGCCGTTCAGTCCAATG GTGTGTCGCCTTGTCAGGTA 

mCerulean CCCGACAACCACTACCTGAG TTGTACAGCTCGTCCATGCC 

mCherry ACCTACAAGGCCAAGAAGCC GGTGTAGTCCTCGTTGTGGG 

18S rRNA GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 
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Table S3. TRE Sequence cloned in pMX-FPR. 

TRE Name Element Sequence Repeats 

5xCLEAR GTCACGTGAC 5 

ARE TCACAGTGACTCAGCAAAATT 3 
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