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Abstract 

Olfactory neuropathology has shown to be a cause of olfactory loss in Alzheimer’s disease (AD). 

Olfactory dysfunction is also associated with memory and cognitive dysfunction and has been 

considered an incidental finding of AD-dementia. Here we review neuropathological research on 

the olfactory system in AD considering both structural and functional evidence. Experimental and 

clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, 

amyloid-β production and neuroinflammation have shown to be related to underlying causes of 

impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest 

the evidence of ongoing neurodegeneration. The aim of this review is to examine olfactory 

pathology findings essential to identifying mechanisms of olfactory dysfunction in the development 

of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods 

and causes of early pathogenesis in the olfactory system. 
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Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and one of the most 

prevalent forms of dementia (1). Major symptoms are known to include memory loss and cognitive 

dysfunction. Several comorbidities in AD often coexist or are prominent, such as depression, 

circadian rhythm or sleep disturbances, and sensory-perceptual problems (2-4). Among other AD 

symptoms, olfactory dysfunction is seen not only as a highly prevalent symptom in AD (5) but also 

as an early diagnostic biomarker (6). That is, olfactory dysfunction is present in the early stages of 

AD and in probable AD patients who have mild cognitive impairment (MCI) (7). Therefore, olfactory 

deficits in AD have received increasing attention over the past few years in fundamental to clinical 

research. Because the representative pathologic hallmarks of AD are amyloid plaques and 

neurofibrillary tangles as well as brain atrophy (8), characterization of such pathological alterations 

in the olfactory system have been explored in an attempt to identify early stages of AD.  

In brief, the olfactory system transmits chemical signals from the sensory epithelium and bulb 

to the olfactory cortex, following a serial synaptic interface (9-11). The olfactory bulb is the 

convergence of the peripheral olfactory system and the central subcortical systems that interconnect 

the olfactory sensory neuronal axons and the mitral cell dendrites. When studying olfactory 

dysfunction in AD, recent research efforts have implicated cortical olfactory regions (12, 13). 

Although several studies have reported clear pathogenesis in the olfactory sensory neurons (OSN) as 

well as olfactory bulbs (OB) in both rodent and human subjects (14, 15), little is revealed about the 

roles of the olfactory epithelium (OE) and the OB in AD progression. 

Herein, we review literature on olfactory dysfunction in AD in order to examine how anatomical 

and physiological characteristics are disrupted in OSNs and OB and how that contributes to olfactory 

dysfunction in AD. In agreement with a recent review (16), we suggest a mechanism of olfactory 

impairment involving OE and OB neurodegeneration. Pathophysiologic findings are mainly from 

human studies, whereas cellular, molecular, and mechanistic evidences come mostly from rodent 

research. The significance of the peripheral olfactory (including the OE and a part of OB) 

degeneration in smell dysfunction in AD is then discussed. 

Methods 

A systematic search using PubMed for pathophysiologic findings underlying olfactory 

dysfunction in AD describing in rodent and human studies was conducted. The search was conducted 

within English literature published up to March 2021 using the following search terms: “Alzheimer's 

disease”, “olfactory dysfunction”, “Alzheimer’s pathology”, “olfactory system”. Keywords were 

used independently and in various combinations. Research articles and reviews obtained were mainly 

published within the previous five years. Additional articles were added following a cross-reference 

search within review and original articles. 
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The neuropathology of Alzheimer’s disease 

AD is progressive and incurable neurodegenerative disease that can be characterized 

neuropathologically by protein accumulation including amyloid plaques and neurofibrillary tangles 

(17). Amyloid plaques are composed of misfolded amyloid-β (Aβ) proteins and are first found in the 

basal temporal cortex and orbitofrontal cortex, then progress to the neocortex, basal ganglia, 

hippocampal formation and the amygdala as AD progresses (17). Neurofibrillary tangles made of tau 

inclusions appearing in the locus coeruleus and entorhinal cortex, then spread to the neocortex and 

hippocampal formation throughout the brain (18). As a result of the increasing distribution of the 

protein aggregates, AD patients show brain atrophy as a pathological feature with severe memory and 

cognitive impairment as clinical symptoms (19). 

Current clinical trials are assessing the ability of various interventions to reduce cognitive deficits 

and progressive neural impairment of patients with AD (20). Because neuronal injury is currently 

irreversible, identifying appropriate diagnostics, interventions, and treatment methods for AD is 

essential. Epidemiological studies indicate that olfactory dysfunction can predict cognitive decline (21) 

and Murphy (2019) reported that olfactory impairment has the potential to serve as an early indicator of 

AD (2).  

Olfactory dysfunction in Alzheimer’s disease 

Anatomical and physiological alterations of the olfactory system in AD have been studied using 

various approaches (Tables 1 and 2). In AD patients, olfactory dysfunction usually appears as a 

reduced smelling ability known as hyposmia (22). Unlike congenital anosmia, olfactory deficits in 

AD patients appear during preclinical stages of the disease before the manifestation of cardinal AD 

symptoms. Specifically, decreased olfactory abilities have been shown in MCI and is proportional to 

cognitive impairment in amnestic MCI (aMCI) (6). Dysfunction of odor discrimination has therefore 

been suggested as a predictive behavioral measure for AD (22). For this reason, a particular “Odorant 

Item Specific Olfactory Identification” test has been proposed where certain odors are found to 

differentiate AD from general aging (23). 

Because deficits in olfactory performance associated with impaired memory and cognitive function, 

deficits in olfaction in AD can be interpreted a consequence of a decline in perceptual processing and 

episodic memory (24). However, olfactory impairment also predicted cognitive deficits in non-

demented adult population (25). Nonetheless, the AD pathogenesis in the olfactory system (see details 

“Neuropathology of the olfactory system in AD”) supports the premise that olfactory deficits occur and 

progress prior to severe cognitive and memory decline in AD progression. Thus, attempts to 

characterize the early stages of AD have highlighted the interest in the olfactory system to reveal 

olfactory dysfunction pathophysiology in AD. 
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Peripheral olfactory system 

The processing of odor signals in mammals is initiated in the OE with OSNs being the primary 

neuron in the OE (Fig. 1). The somata of OSNs are organized in orderly layers based on maturity ranging 

from basal cells to matured-neurons (26). Once an odorant, i.e., a gaseous molecule, or any airborne 

substances reaches the OE and binds to the odorant receptors located in the OSNs, the OSNs transduce 

the odor information to electrical signals that trigger neurotransmitter release in the OBs (10) (Fig. 1). 

Subsequently, those neuronal signals are transmitted to the olfactory cortex through the olfactory tract 

and tubercles (10). Mucus secreted by Bowman’s glands protect the OE's structure and maintains its 

homeostasis (27).  

 

Synaptic interface between peripheral and central components 

Synaptic connectivity between the OSNs and central olfactory neurons in the OB glomeruli is 

essential for the initial olfactory processing of detection, identification, and discrimination of the odors 

(28). Thus, early synaptic dysfunction in the OSNs could lead to impaired olfactory information 

processing at higher levels thereby causing olfactory deficits. The structure of the OB shows a conserved 

laminar organization across species (29), Basically, the glomerulus, a neuropil structure of intertwining 

axons of OSNs, dendrites of periglomerular cells, and dendrites of mitral/tufted cells is the focus of 

initial processing of olfactory information (30). The glomeruli are considered the first recipient of 

sensory inputs as they host the first synapse in the olfactory system In the glomerular network, which is 

well described in rodents, axons from OSNs expressing the same odorant receptor converge into 

approximately two of the 1,800 glomeruli in each OB (31, 32). The periglomerular cells are 

dopaminergic/GABAergic neurons that form an inhibitory feedback loop with the OSNs (33). 

 

Central olfactory system 

The olfactory system is anatomically distinctive and the projections are highly organized. The 

primary olfactory cortex includes the anterior olfactory nucleus, the olfactory tubercle, the piriform 

cortex, the entorhinal cortex, and the amygdala including orbitofrontal regions and the neural signals 

projecting to the secondary olfactory cortex in the orbitofrontal cortex (34) (Fig. 1). The afferent input 

from the OB is transmitted to the primary olfactory cortex through the olfactory tubercles composed of 

axons of mitral/tuft cells and GABAergic interneurons (35). These cells are differentiated from 

progenitor cells that have migrated from the subventricular zone (35). This track forms the first cranial 

nerve in the central nervous system (36).  

Neuropathology of the olfactory system in AD 

Olfaction can be compromised not only by a severe memory and cognitive disruption, but also 

by damaged olfactory pathways caused by injury or chronic exposure to toxic substances triggering 

AD pathogenesis. In this context, the olfactory system can be seen as a distinctly damaged site 

independent of the limbic system in terms of both AD pathologies and diagnostic opportunities. UN
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Clinical studies have reported forms of proteinopathy in the peripheral olfactory system in AD 

patients. For instance, Aβ and p-tau-immunoreactivity have been found in the OE of AD patients (14). 

Interestingly, the degree of immunoreactivity correlated with the semiquantitative ratings were 

recorded for brain amyloid and tau-immunohistochemical staining (14). High levels of Aβ detected 

in nasal secretions may indicate that such proteins originate from the epithelium and peripheral 

olfactory neurons (37). In the glomeruli of the OB, Aβ and hyperphosphorylated tau have been 

detected, exhibiting progressive expression as Braak stages of AD pathology increased (17), but no 

significant changes were observed within the olfactory tract (13). Based on these findings, it seems 

that the peripheral olfactory system could be behind the generation of the toxic misfolded proteins 

that affect OSNs. 

Moreover, both Aβ and tau have been observed in the cortical olfactory areas in AD patients, 

including both the olfactory peduncle and the anterior olfactory nucleus (12, 13), and the piriform 

cortex (38). The more recent study suggests that the olfactory system can be a hub to spread misfolded 

proteins to interconnected cortical areas and could seed the misfoldings of native proteins (12). In 

line with proteinopathy, patients with the apolipoprotein E4 (apoE4) allele, a well-known genetic 

factor linked with AD onset and a Aβ accumulation-triggering factor, are highly associated with 

olfactory deficits (39). 

Mechanisms of the olfactory pathophysiology in AD 

Amyloid precursor protein (APP) processing 

In a transgenic mouse model for AD, enzyme expression involved in AD pathogenesis indicates 

a mechanism that may underly olfactory pathology. Positive Aβ immunoreactivity was found within 

the glomerular layer in young mice (40) and was shown to increase across the inner OB cell layers as 

the disease progressed (41). Expression of β-secretase, one of the main enzymes involved in 

amyloidosis, was only observed in the glomerular layer of the OB even in C57BL/6 mouse, a common 

inbred strain of laboratory mouse, showing that the glomerulus layer is likely the main region in Aβ 

production among OB layers (42).  

A correlation between olfactory dysfunction and amyloid deposition was reported in APP/PS1 

mice (43). Transgenic mice with conventional overexpressing humanized APP (hAPP) exhibited cell-

autonomous apoptosis in either mature or immature OSNs and electron microscopy showed a 

decreased glomerular connectivity along with subcellular structural deficits (44). Furthermore, OSNs 

may play a role in independent APP processing. In one of the most well-characterized and widely 

used transgenic mouse models, the Tg2576 mouse model that overexpresses hAPP, the OE has been 

shown to exhibit higher expression level and activity of γ-secretase compared to other brain regions 

(45). Increased β-secretase levels in the olfactory glomerular layer have also been observed in Tg2576 

(40). 
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Apart from direct AD pathology, a number of environmental toxic factors can affect olfaction 

by causing damage to the OE, indicating that local toxicity is sufficient to impair smell. For instance, 

air-dust and nanoparticles have shown to damage OSNs directly causing oxidative stress and 

neuroinflammation similar to amyloid deposition (46). A variety of air pollutants trigger oxidative 

stress in the OE resulting in protein misfolding, mitochondrial dysfunction, and neuronal apoptosis. 

Furthermore, such factors recruit reactive microglia that can exacerbate inflammation by releasing 

pro-inflammatory cytokines such as TNF-a, IL-β, IFNγ (47). Interestingly, clinical studies have 

shown that one-fifth of diagnosed patients with AD have a history of allergy and chronic rhinitis that 

had required some sort of treatment (48).  

Such toxic factors not only cause neuronal damage directly but could also exacerbate ongoing 

pathological process such as neuroinflammation (49) leading to further olfactory disturbances.   

 

Spreading pathology along the neural circuit 

The OB receives serotonergic projections from brainstem raphe nuclei which could form a 

reciprocal pathway that receives down-top signals through the olfactory cortex as well as modulating 

OSNs’ synaptic activity (50). Given theories that emphasize the brainstem’s role in AD pathology, 

raphe-OB connections could play a key function in AD pathology (51) because raphe pathology 

happens at early AD stages (52) implying that the OB is also involved in an early stage from both 

anterograde and retrograde influences. According to several other studies, the OB could deliver 

misfolded proteins into the brain. As evidence, Aβ that was injected into the OB of C57BL/6 mice 

was also found in other brain regions such as frontal cortex (53). A prion-like spreading of toxic 

molecules has been suggested to occur in the non-cortical olfactory structures that could cause 

olfactory abnormalities (54). 

 

Physiology of spatially conserved map 

Physiological functions are closely related to progressive pathological alterations in the olfactory 

system and can induce smell dysfunction in the onset of AD. The spatially conserved map in the 

olfactory system may play a critical role in the manifestation and progression of olfactory impairment 

in AD.  

According to rodent studies, a physiologically conserved axis between the OE and OB can affect 

deteriorating or increasing AD pathogenesis and olfactory dysfunction. Naturally, the mammalian 

main olfactory system has a spatially-organized neuroregeneration and projection of OSNs. OSNs 

originate from progenitor cells located in the basal layer that proliferate (55) and mature by sending 

their axons to reach the OB. After development, OSNs can degenerate due to physical injury, cellular 

stress, aging, and AD related pathology. To maintain the structure of the OE, basal cells proliferate and 

differentiate into immature OSNs then to mature OSNs by rendering a synaptic interface with the mitral 

cellular dendrite in the OB. This process occurs throughout life and is called the replacement or turnover UN
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of OSNs (56). Odorant receptor genes in the OSNs determine axonal projections to dorsal and ventral 

(ectoturbinates and endoturbinates in the OE’s coronal plain) glomeruli in the OB (57) that show the 

topographic projection and subzonal organization (58, 59) (Fig. 2). OSN replacement is also regulated 

by a variety of physiological factors such as retinoic acid, a well-known cell differentiation promoter 

(60, 61). The two domains (endoturbinate-dorsal and ectoturbinate-ventral) summarize the zonal 

organization in the olfactory system and have different physiologies (Fig. 2). For example, when 

progenitor cells harvested from the dorsal OE were transplanted into the ventral region in mice, the 

transplant-derived neurons expressed a selective immunoreactive ventral marker OCAM (olfactory 

cell adhesion molecule) and lost a dorsal marker NQO1 (NADPH dehydrogenase) to match their new 

location (61). Additionally, Liberia et al (26) and Son et al (62) showed that OSNs in the ventral OE 

have a faster ratio of turnover (regeneration and degeneration) than those in the dorsal part suggesting 

repetitive OSN turnover triggers neuronal death of mature OSNs by driving excessive apoptosis, 

metabolic wastes, and neuroinflammation. Together, these events could result in further olfactory 

neuropathology promoting pathological processes such as APP expression and neuroinflammation. 

It has been further suggested that the overexpression of β-secretase could impair olfactory 

function by causing cell death in ventrally projecting OSNs (40). In line with this, mRNA of β-

secretase protein 1 (BACE1) was expressed in the ventral glomeruli of OB in C57BL/6 (42). In 

addition, oligomeric Aβs and β-secretase proteins were robustly expressed in the ventral parts of the 

glomeruli in Tg2576 (40). Calcium activity was decreased in the OSNs in ventral regions where 

oligomeric Aβ is highly overexpressed, and significantly damaged OSN turnover in the ventral OE 

than in the dorsal OE in 5xFAD with mutated human APP and presenilin 1 gene, a transgenic mouse 

model that can recapitulate AD-related early and aggressive phenotypes (62). Regarding 

neuroinflammation, Hasegawa-Ishii et al (63) reported intranasal administration of 

lipopolysaccharide induced an inflammatory response and synaptic loss in OSNs by triggering both 

microglia and astrocyte activation in the OB, and intriguingly, inflammatory monocyte 

immunoreactivity (Ly-6) was highly indicated in the ectoturbinate of the OE.  

Extrinsic stimulation can affect different physiologies of the spatially conserved map of the 

olfactory system. OSNs are exposed to inhaled air and are therefore vulnerable to environmental 

factors such as air pollutants that cause DNA damage and cellular stress (64) while the ectoturbinates 

in the OE have a curved structure that enhances contact with inhaled air (65). OSNs are also sensitive 

to changes in air pressure and air flow (26, 66). Structural and functional changes of the spatially 

conserved map can impact neuronal stability in the olfactory system, and initiate a vicious cycle that 

could cause further damage. Further studies are required to define neuronal damage and excessive 

immune responses involved in the ectoturbinates and the endoturbinates. 

The conserved map is strongly preserved across species (67, 68). Intriguingly, in a human 

postmortem study, the volume of ventral glomeruli was shown to be reduced in Parkinson’s disease 

patients’ OBs (69). However, many aspects remain to be explored in AD patients. UN
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Clinical implications of olfactory pathophysiology in AD 

The olfactory system has generated a great deal of interest in recent years as a novel tool for drug 

delivery and diagnosis in AD. Despite the advances in AD biomarker research, knowledge towards 

the applicability and accuracy of markers remains incomplete. An olfactory test for AD was 

developed by Richard L. Doty in 1984 (70), and has been applied in clinical research and diagnosis 

over the last 30 years. Olfactory dysfunction in AD exhibits specific features with clinical studies 

showing patients have difficulties identifying a specific subset of odorants (71). In particular, the 

peanut butter smell has been suggested as a reference test for AD patients require a closer distance to 

detect the smell of peanut butter compared to healthy controls (72). Partial hyposmia or specific 

anosmia is when one has an otherwise normal sense of smell but losses the ability to perceive one or 

more specific odors. A recent study using 5xFAD suggested the features and mechanism of the partial 

olfactory dysfunction demonstrating regionally specific Aβ accumulation influences partial olfactory 

dysfunction during early AD pathogenesis (62). These results suggest continued research on 

mechanisms within olfactory system pathophysiology can provide new light in early AD diagnoses. 

Olfactory pathology allows us to speculate that the impaired OE include altered cellular and 

molecular components. In this regards, nasal fluid from the OE may feasibly contain high-throughput 

biological material information that mirrors AD pathological changes in the olfactory system (37) 

that could be linked to the OE. The composition of oligomerized Aβ proteins in nasal discharge has 

also shown to be closely correlated with cognitive function during AD progression (73). Thus, nasal 

fluid biomarkers could prove to be a candidate sourcing tool in AD similar to cerebrospinal fluid and 

plasma biomarkers. Correspondingly, the olfactory system may provide a new platform for 

conducting preclinical and clinical studies to improve diagnostics in AD and better understand the 

mechanisms behind neurodegeneration in AD. 

Conclusion 

This review highlights the significance of olfactory pathophysiology and olfactory dysfunction 

in AD progression. The olfactory function can be impaired by the AD pathologies derived by 

amyloidogenic APP processing and neuroinflammation in the olfactory system. In particular, the 

physiological features of the spatially conserved map in the OE and OB play a complex role in 

ongoing olfactory neurodegeneration that induces abnormal olfaction within AD. This review 

suggests olfactory pathology and neurodegeneration itself can be seen as the main underlying cause 

of olfactory dysfunction rather than it being derived from higher cortical area deficits seen throughout 

AD. Taken together, AD is an incurable and irreversible disease, but AD-related olfactory dysfunction 

provides clues towards diagnostic methods and gives insight into onset mechanisms in AD 

pathogenesis. 
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AD: Alzheimer’s disease 

OE: olfactory epithelium 

OB: olfactory bulb 

OSN: olfactory sensory neuron 

MCI: mild cognitive impairment 

hAPP: humanized amyloid precursor protein  

aMCI: amnestic MCI  

Aβ: β-amyloid 

BACE1: β-secretase protein 1  

APP/PS1: humanized amyloid precursor protein/presenilin 1 mutated 
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Figure legends 

 

Figure 1.  

Scheme of the olfactory system. (Left) Scheme of olfactory sensory neuron projections. Olfactory 

sensory neurons transduce odor information via electrical signals that trigger neurotransmitter release 

in the olfactory bulb. Mucus secreted by Bowman’s glands protects the olfactory epithelium's 

structure and maintains homeostasis. (Right) Scheme of the olfactory system according to the process 

of olfaction. a. olfactory epithelium, b. olfactory bulb, c. olfactory peduncle, d. piriform cortex, e. 

amygdaloid complex, f. entorhinal cortex, g. hippocampal formation, h. thalamus. 

 

Figure 2.  

Scheme of spatially conserved map in the olfactory system. The zonal organization, endoturbinates-

dorsal glomerulus axis (blue), and ectoturbinates-ventral glomerulus axis (red). The two drawings in 

blue and red are representations of two olfactory sensory neurons with the colors emphasizing the 

regional topography of sensory inputs to the olfactory bulb. 
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Tables 

Table 1 Pathological alterations in the olfactory system of patients with Alzheimer’s disease (AD). 

Findings Methods Clinical stage 
Measured 5 AD 

pathology 
Refs. 

Reduced 1 OB volume and white matter of the 

olfactory tract 

2 MRI, 3 DTI 3T-MRI 4 aMCI 6 n/a  (74) 

β1-42, p-tau, and astrogliosis in the glomerular 

layer, anterior olfactory nucleus, olfactory 

tubercle 

7 IHC 
MCI, moderate-

AD, severe-AD 

β1-42, p-tau, 

astrogliosis 
(13) 

β-amyloid aggregates, PHF-tau, and α-synuclein 

in the anterior olfactory nucleus 
IHC n/a 

β-amyloid, 

12 PHF-tau, 

α-synuclein 

(12) 

β-amyloid, tau in the piriform cortex IHC AD β-amyloid, tau (38) 

Deficit in olfactory identification 
Olfactory identification test, 

DTI 3T-MRI 

aMCI, AD, MCI-

8 DLB, MCI-AD 
Lewy body (6, 74-76)  

Deficit in olfactory identification differentiated 

AD from aging 
Olfactory identification test 

aMCI, AD, 

healthy aging 
n/a (23) 

Reduced ability to identify a specific subset of 

smell 
Olfactory identification test AD n/a (71, 72) 

Impaired olfactory identification (proportional to 

cognitive impairment in aMCI) 
Olfactory identification test 

aMCI, 

non-aMCI 
n/a (22) 

Implication: damaged 9 OSNs and olfactory 

malfunction following exposure to air-pollutants 
Statistics, Epidemiology n/a n/a (77) 

One-fifth of allergic and chronic rhinitis patients 

develop AD 

Medical examination, IgE 

assay 

allergic diseases 

with AD 
Inflammation (48) 

β-amyloid aggregates, PHF-tau, and α-synuclein 

in the 10 OE 
IHC AD, 11 OND 

β-amyloid, 

12 PHF-tau, 

α-synuclein 

(14) 

β-amyloid in nasal secretions 
WB 

IME biosensor 
AD, OND β-amyloid (37) 

β-amyloid in nasal discharge (correlated with 

cognitive decline) 

LC/MS 

WB 

IME biosensor 

probable AD 

(mild, moderate 

AD) 

β-amyloid 

(Aβ*56, AβO) 
(73) 

apoE4 correlated with odor identification deficits 
Odor threshold test, 

Olfactory identification test 
n/a apoE4 (39) 

1 OB: olfactory bulb, 2 MRI: magnetic resonance imaging, 3 DTI-3T: 3.0 Tesla diffusion tensor imaging, 4 aMCI: amnestic mild 

cognitive impairment, 5 AD: Alzheimer’s disease, 6 n/a: non-applicable, 7 IHC: immunohistochemistry, 8 DLB: dementia with 

Lewy body, 9 OSN: olfactory sensory neuron, 10 OE: olfactory epithelium, 10 OND: other neurodegenerative disease, 11 PHF: paired 

helical filament.  
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Table 2 Pathological alterations in the olfactory system in mouse models of Alzheimer’s disease (AD). 

Findings Methods Strain (age) Refs. 

- Decreased 1 OE thickness 

- Increased populations of 2 TUNEL (+) cell 

- Decreased in number and length of dendritic spines 

- Deficit in olfactory behavior and β-amyloid deposition 

- Increased latency in finding buried food, reduced peanut 

butter preference 

3 IHC, TUNEL assay, 

4 EM 

5 Tg2576  

(6, 126 M) 

APP/PS1 (9M) 

(40, 43) 

- Distorted ultrastructure and subcellular components in the 

OE 

- Decreased mature 7 OSNs  

8 ELISA, IHC, 9 PCR, 

EM, 10 BrdU assay 

11 hAPP (312 w) (44, 78) 

- Earlier β-amyloid deposition in the olfactory system than 

brain region 
IHC, Thio-S staining 

Tg2576  

(3, 6, 16, 21M) 
(41) 

- Region specific APP processing  

- Restricted expression of β-secretase only in the olfactory 

glomerulus in the 13 OB 

14 WB, IHC, 15 ISH 
Tg2576 (10M), 16 

BACE null  
(40, 42) 

- Reduced response to odorants (only specific odorant) 

- Region specific calcium inactivation of OSN correlated 

with Region specific β-amyloid deposition 

- Deficits of turnover ratio of OE 

Odor detection test, 

Calcium imaging, 

IHC, TUNEL assay  

Tg6799 (3M) (62) 

- Damaged OSNs and olfactory malfunction following 

exposure to air-pollutant nanoparticles 

IHC, PCR, WB, 

nitrite assay 

C57BL6 (3M), 

Fischer 344 rats (12w) 
(46) 

- Aberrant OSNs projection to the glomeruli 
IHC, ISH, 17AAV 

modulation,  
Tg2576 (13, 24M) (15) 

- Higher expressions levels and activity of γ-secretase in the 

OE 

- β-amyloid (Aβ*56) accumulates more quickly in the OE 

IHC, TUNEL assay, 

EM 
Tg2576 (10M),  (45) 

- Correlation between deficit of olfactory habituation and 

spatial-temporal β-amyloid deposition 

- Deficit in odor investigation and habituation 

odor cross-habituation 

test 

Tg2576 (3, 6, 16, 

21M) 
(41) 

- Altered the OSN connectivity by inducing human β-

amyloid  

- Decreased response to aversive odor in induced human β-

amyloid condition 

IHC, 18 TMT assay, 

hidden food assay 

19 CORMAP mouse, 

Tg2576 (13, 24M) 
(15) 

- Injected β-amyloid in the OB transferring to other brain 

region 

β-amyloid injection, 

IHC, TUNEL, WB 
C57BL6 (7-8w) (53) 

1 OE: olfactory epithelium, 2 TUNEL (+): terminal deoxynucleotidyl transferase dUTP nick end labeling-positive. 3 IHC: 

immunohistochemistry, 4 EM: electric microscopy, 5 Tg: transgenic mouse, 6 M: months, 7 OSN: olfactory sensory neuron 8 ELISA: 

enzyme-linked immunosorbent assay 9 PCR: polymerase chain reaction, 10 BrdU: 5-bromodeo-2-deoxyuridine, 11 hAPP: human amyloid 

precursor protein, 12 w: weeks, 13 OB: olfactory bulb, 14 WB: western blot, 15 ISH: in situ hybridization, 16 BACE: β-site amyloid cleavage 

enzyme, 17 AAV: Adeno-associated virus, 18 TMT: 2,3,5-Trimethyl-3-thiazoline, 19 Conditional, Olfactory Sensory Neuron-Restricted 

Mosaic expression of APPsw and PLAP. UN
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