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ABSTRACT 

Over the last decades, research has focused on the role of pleckstrin homology (PH) domain 

leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via 

PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of 

illnesses, including various types of cancer, inflammatory response, insulin resistance, and 

diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, 

identification of novel substrates of PHLPPs unveils their role as a critical mediator in 

various cellular processes. Recently, researchers have explored the increasing complexity of 

signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic 

diseases were obtained. In this review, we discuss the current knowledge of PHLPPs on the 

well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, 

adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the 

context-dependent functions of PHLPPs can lead to a promising treatment strategy for several 

kinds of metabolic diseases. 
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INTRODUCTION 

The pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase (PHLPP) was 

discovered in the suprachiasmatic nucleus (SCN) of the hypothalamus of a rat as a protein 

whose mRNA expression levels oscillated in a circadian rhythm-dependent fashion and was 

therefore named as SCN circadian oscillatory protein (SCOP) to represent its behavior (1). 

Several years later, the ability of SCOP to act as a serine/threonine kinase Akt-specific 

phosphatase was identified (2). Years after the discovery of Akt-specific phosphatase, more 

evidence has been accumulated that PHLPP family has different substrates which possess 

different biology in managing the activity and stability of kinases with respect to cellular 

processes including cell growth, survival, or metabolism. This review provides an overview 

of PHLPPs by highlighting recent findings on their roles as novel regulators in cellular 

metabolism.    

 

 

PHLPP: GENE AND PROTEIN ORGANIZATION 

The PHLPP family of phosphatases composes of PHLPP1 (1205 amino acids), 

PHLPP1 (1717 amino acids, corresponding to SCOP), and PHLPP2 (1323 amino acids, also 

referred as PHLPPL). PHLPP1 and PHLPP1 are produced by two splice variants from the 

same gene located at chromosome 18q21.33, and have different sizes because of a 56 kDa N-

terminal extension (3), while the PHLPP2 gene resides at the chromosomal location 16q22.3 

(4).  

The PHLPP family composes the same domain including N-terminal domain, PH 

domain, leucine-rich repeat (LRR) region, protein phosphatase 2C (PP2C) phosphatase 

domain, and C-terminal postsynaptic density protein PSD95, Drosophila disc large tumor 
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suppressor DLG1, and zonula occludens-1 protein zo-1 (PDZ)-binding motif (2, 5) (Figure 

1). In addition, PHLPP1 and PHLPP2 comprises a Ras association domain (RA domain) 

preceding the PH domain, and PHLPP1 and PHLPP2 share 58% and 63% amino acid identify 

in the PP2C domain and PH domain, respectively (2). Despite the three isoforms namely 

PHLPP1, PHLPP1, and PHLPP2 have similar domain structures, they have a certain 

degree of substrate specificity. Additionally, although the PHLPP isoforms are ubiquitously 

expressed, their levels vary within different tissues and are broadly associated with its 

scaffolding proteins in the cytoplasm, nucleus, plasma membrane and mitochondria (6-10). 

The substrates of the PHLPP isoforms will be discussed briefly in the following section. 

 

 

PHLPP SUBSTRATES AND SIGNALING NETWORK  

Akt 

PHLPP was identified in a rational research for a phosphatase that dephosphorylated Akt (2). 

Three Akt isoforms in mammals, Akt1, Akt2, and Akt3, require phosphorylation at the 

hydrophobic motif (Ser473) and activation loop (Thr308) to acquire full catalytic activity, 

which further characterize the downstream substrates of Akt (11). PHLPPs specifically 

regulate dephosphorylation on the hydrophobic motif of Akt in cells, resulting in decreased 

activity of Akt (2). Interestingly, isoforms of PHLPPs have substrate specificity in regulating 

three Akt isoforms. Genetic depletion study elucidated that PHLPP1 regulated the Akt2 and 

Akt3 phosphorylation, while PHLPP2 affected the Akt1 and Akt2 phosphorylation (4). 

Specificity of PHLPPs in regulation of Akt isoforms could rewire the differential regulation 

of specific Akt substrates. For example, the PHLPP1-Akt2 pathway acts on both HDM2 and 

glycogen synthase 3 (GSK3) to prevent p53 degradation, whereas the PHLPP2-Akt1 plays 
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the activity of p27 to inhibit cell cycle progression (3, 4). Both isoforms dephosphorylate 

Akt2, modulating the GSK3 and tuberous sclerosis complex 2 (TSC2) phosphorylation to 

restrain cell survival. (4). As the Akt signaling contributes to the expanding repertoire of 

metabolic regulation, especially in the insulin-responsive tissues, we will further discuss its 

tissue-specific function in disease contexts in the following section.   

 

PKC 

Further study demonstrated that both PHLPP1 and PHLPP2 modulate dephosphorylation of 

the hydrophobic motif site Ser660 on PKC II (3, 12), which is one of the stable and priming 

phosphorylation occurring during initial translation, maintaining the protein in a stable, 

autoinhibited state (13). PKC is unique among the PHLPP1 hydrophobic motif substrates as 

that phosphate stabilizes the kinase, while dephosphorylation of other substrates, such as Akt 

and S6K1, attenuates catalytic activities without affecting their stability (2, 14). Thus, total 

PKC expression levels are negatively correlated with PHLPP1 expression, showing that PKC 

in tumor is phosphorylated and dephosphorylated PKC is degraded (15). Whereas PKC is 

reframed as having a tumor suppressive function (16, 17), development of novel approaches 

to block the dampening of PKC by PHLPP1 may open a new therapeutic strategy for cancer 

progression.  

 

Mst1 

Both PHLPP1 and PHLPP2 manifest their tumor-suppressing roles to induce apoptosis 

irrespective of the well-known targets of PHLPPs. A member of the STE kinase family, 

mammalian sterile 20-like kinase 1 (Mst1), is dephosphorylated on the Thr387 inhibitory site, 

which in turn activates Mst1 and its downstream targets p38 and JNK to impose apoptosis. 
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Similar to Thr387 that is found to be phosphorylated by Akt, the PHLPP-Akt-Mst1 axis 

constitutes an inhibitory triangle that regulates apoptosis and proliferation, probably in a cell 

type-dependent fashion (18). 

 

S6K1 

Ribosomal protein S6 Kinase 1 (S6K1) is a closely related cousin of Akt and PKC in the 

AGC kinase family. The S6K1 activation is governed by signaling inputs from growth factor, 

nutrient, and energy balance directed by downstream of mechanistic target of rapamycin 

(mTOR), a phosphoinositide 3-kinase-like serine/threonine protein kinases (19, 20). S6K1 

activation positively directs protein translation by phosphorylating several downstream 

components, which is required for protein translation initiation, as S6K1 acts as one of the 

major substrates of mTOR (21). The study suggested that PHLPP-mediated S6K1 

dephosphorylation is independent of its ability to induce Akt dephosphorylation. PHLPP 

negatively contributes to regulation of both protein translation and cell growth via managing 

the S6K1 activity directly (14). 

 

RAF1 

Hyperactivation of the RAS-RAF signaling in various cancer types is associated with 

metastasis and poor survival of patients. Both PHLPPs dephosphorylate RAF1 at Ser338, 

which is downstream of EGFR and Ras (22), inhibiting its kinase activity in vitro. The 

knockdown of PHLPP1 or PHLPP2 increases the invasiveness of colorectal cancer (CRC) 

cells by inducing duration of RAF-MEK-ERK signaling, epithelial-mesenchymal transition 

(EMT), which expands properties of tumor progression (23). 
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Myc is an oncogenic driver of many types of cancer, including human prostate cancer (PC) 

and classic genetically engineered mice (GEMs) of the disease (24, 25). Recent study showed 

that PHLPP2 induces direct dephosphorylation on the Thr58 site of Myc, leading to an 

increased in its stability (26). Interestingly, the recurrent mutation on T58A was found in 

patient with Burkitt’s lymphoma to cause increased transformation both in vitro and in vivo 

(27, 28). The T58A mutant is constitutively dephosphorylated, which constantly mimic 

PHLPP2 activity. Therefore, PHLPP2 can be an unexpected, druggable target on PC and its 

progression driven by myc.  

 

HSL 

Hormone-sensitive lipase (HSL) is a critical enzyme in mobilizing fatty acids from stored 

triacylglycerols (TAGs) (29). Its activity is regulated by phosphorylation of at least four 

serine. In rat HSL, the Ser563, Ser569 and Ser660 were phosphorylated by protein kinase A 

(PKA). It is reported that Ser659 and Ser660 are the activity regulating sites in vitro. 

However, the precise molecular events of PKA-mediated activation and dephosphorylation 

were not yet to be determined. Recent study showed that PHLPP2 directly dephosphorylates 

HSL on Ser563 and Ser660, which leads to a decreased HSL activity and alters its 

localization in cytoplasm or at the peripheries of the lipid droplets (30). The PHLPP2-HSL 

axis is further associated with systemic lipid and glucose homeostasis as well as hepatic lipid 

accumulation as discussed in the following section. 

 

 

PHLPPs: IMPLICATIONS IN METABOLIC DISEASES 

Since PHLPPs are a negative regulator of key processes and signaling pathways, they have 

critical roles in several pathologies. The most well-known examples of their roles are in UN
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cancer progression, as PHLPPs have been identified as tumor suppressors in many types of 

cancers (31-34). Since maintaining balanced levels of PHLPP expression is critical for 

preventing cancer progression, the loss of PHLPP increases cell proliferation, migration, 

metastasis, and cell motility by activating Akt phosphorylation in the diverse cancer cells, 

such as pancreatic cancer, colon cancer, prostate cancer, leukemia and glioblastoma, breast 

cancer and melanoma (8, 26, 35-37). On the other hand, an overexpression of PHLPP leads to 

inhibition of tumor formation and increases apoptotic cell death decreasing Akt 

phosphorylation on Ser473 in pancreatic, lung, colon and breast cancer cells (5). Apart from 

the progression of cancer, growing evidences revealed promising functions of PHLPPs in 

metabolic diseases, as dysregulation of Akt pathway is related with obesity, insulin resistance, 

and type 2 diabetes. In addition, identification of novel substrates is associated with cellular 

metabolic disturbances, emphasizing the significance of PHLPPs in the progression of 

metabolic diseases, highlighting recent findings on their functions in metabolic regulation. 

 

PHLPPs and regulation of hepatic lipids 

With the increased prevalence of obesity and its metabolic consequences, nonalcoholic fatty 

liver disease (NAFLD), defined by excess liver fat, is becoming the most common chronic 

liver disease (38-40). Although the molecular mechanisms underlying hepatic lipid 

homeostasis in NAFLD are not clearly defined, an increase in de novo lipogenesis (DNL), a 

process to synthesize new fatty acids from acetyl coenzyme A (acetyl-CoA), could contribute 

to the development of NAFLD (41, 42). Obesity-associated insulin resistance and 

compensatory hyperinsulinemia increases DNL, exacerbating hepatic lipid accumulation in 

NAFLD (43). Identification of molecular regulator of DNL associated with insulin resistance 

and hyperinsulinemia is expanding to develop novel therapeutics to improve public health 

problems including obesity-induced type 2 diabetes and NAFLD. One of the promising UN
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targets of DNL is the mTOR that comprises of the catalytic core of two distinct protein 

complexes namely mTOR complex 1 (mTORC1) and 2 (mTORC2) (44-46). Previous studies 

suggested that mTORC1-independent Raptor (free Raptor) stabilizes PHLPP2, but not 

PHLPP1, to reduce signaling through Akt (47, 48). In aged or obese mice, hepatic PHLPP2 

levels were lower with decreased free Raptor levels, resulting to prolonged Akt signaling. 

This allows increased Akt-mediated DNL, that exacerbates NAFLD. These data explain how 

insulin-mediated Akt action is permissive for increased DNL in obesity-induced insulin 

resistance.  

A recent study suggested more defined mechanisms underlying PHLPP2 degradation 

in obesity-induced fatty liver. PHLPP2 is rapidly phosphorylated by glucagon/PKA signaling 

to trigger PHLPP2 degradation. However, its phosphorylation is necessary but not sufficient 

to induced its degradation. The authors further suggested that obesity-mediated increased 

potassium channel tetramerization domain containing 17 (KCTD17) in hepatocytes is critical 

to link PHLPP2 phosphorylation with proteasomal degradation, which elevated Akt signaling 

and hepatic lipid accumulation (49). Therefore, normalized PHLPP2 levels in the context of 

NAFLD could provide therapeutic benefits. 

 

PHLPPs, regulation of insulin resistance and pancreatic beta cell dysfunction 

Pancreatic beta cell failure, which is characterized by the impaired insulin action or the 

intrinsic susceptibility of the beta cell to functional exhaustion, is critical to develop insulin 

resistance and type 2 diabetes (50). While the impaired insulin action in peripheral tissues 

remains constant as diabetes progresses, beta cell function worsens continuously with disease 

progression, resulting from the persisting exposure to damaging factors, such as high glucose 

concentrations (glucotoxicity), increased levels of circulating free fatty acid (lipotoxicity), 

and chronic inflammation (51-53), which therefore necessitates further studies in beta cell UN
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failure. Since Akt contributes to the regulation of beta cell homeostasis (54), modulation of 

Akt should be actively sought to restore a healthy beta cell. The observations showed that the 

altered pancreatic beta cell homeostasis upon the chronic high glucose exposure is 

accompanied by an increased PHLPP1 and PHLPP2 expression both at mRNA and protein 

levels with a consequent reduction of the phosphorylation levels of Akt. Further knockdown 

of PHLPPs is able to curtail a pro-survival profile in INS-1 cells chronically exposed to high 

glucose concentrations as well as increased Akt phosphorylation and mTOR activation (55). 

These findings trigger the need for further studies in order to identify pharmacological 

PHLPPs modulators, raising the possibility of new treatments for beta cell dysfunction.  

 

PHLPPs, insulin resistance, and lipolysis on adipose tissue 

Obesity and type 2 diabetes are closely associated with increased adiposity, and insulin 

resistance is a fundamental characteristic of both diseases (56). As stated above, PHLPPs’ 

substrates specificity on Akt isoforms raised the intriguing possibility of tissue-specific 

functions of PHLPP family in the context of insulin-responsive or nonresponsive tissues. A 

report highlighted that the protein levels of PHLPP1 are greatly induced in adipose tissue of 

morbidly obese participants as compared to non-obese participants and are negatively 

associated to Ser473 phosphorylation of Akt (57). Interestingly, increased level of PHLPP1 is 

positively associated with body mass index (BMI), fasting insulin levels and homeostatic 

model assessment for insulin resistance (HOMA-IR). However, it is observed that PHLPP1 is 

not further induced in obese participants with impaired fasting glucose or type 2 diabetes (57), 

showing that enhanced PHLPP1 levels may be related with a state of insulin resistance and 

compensatory hyperinsulinemia, but not with hyperglycemia.  

 The function of adipose PHLPP2 in normal or obese states is not well documented. A 

recent discovery sheds light on a unique role of PHLPP2 in obese adipocytes. The authors UN
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revealed that adipocyte PHLPP2 levels are higher in obese mice than in lean animals (30). 

Interestingly, a decrease in adipocyte PHLPP2 increases adipose lipolysis due to prolonged 

hormone-sensitive lipase (HSL) phosphorylation, which allows to improve glucose 

homeostasis, increase peroxisome proliferator-activated receptor alpha (PPAR)-dependent 

adiponectin secretion, and hepatic fatty acid oxidation to alleviate obesity-induced fatty liver. 

These findings suggested that blocking excess PHLPP2 in adipocyte may be a therapeutic 

strategy to improve obesity-induced metabolic comorbidities.  

 Accumulated evidences showed an association of PHLPP2 with insulin resistance 

and glucose intolerance (57-61). However, mechanisms underlying increased adipose 

PHLPP2 expression in patients associated with obesity or diabetes are far less understood. A 

recent report suggested that hepatic miR-130a-3p targets PHLPP2 to retard 

dephosphorylation of Akt to change self-stability, which in turn reduced PHLPP2 to activate 

Akt signaling in adipose cells (62). These data supported new molecular mechanisms by 

which the crosstalk between liver and adipose tissues improve glucose metabolism, further 

providing therapeutic options for insulin resistance.  

 

PHLPPs and insulin action on skeletal muscle 

Skeletal muscle is also a sub-optimal response of peripheral tissues in insulin resistance to the 

insulin action (63). Several studies speculated the relevance of PHLPPs during pathogenesis 

of insulin resistant in skeletal muscle. A study showed that PHLPP1 levels were greater in 

primary myoblasts derived from 9 obese type 2 diabetes patients than in cells taken from lean 

healthy participants (64). Furthermore, it has confirmed by showing higher PHLPP1 level in 

skeletal muscle biopsies from 12 obese insulin-resistant individuals (57). Although it is 

evident that elevated levels of PHLPPs, probably PHLPP1, might be associated with 

hampering insulin resistance in skeletal muscle, the mechanisms underlying increased UN
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PHLPP1 in insulin-resistant skeletal muscle are not clear. Over-nutrition provokes low-grade 

chronic inflammation, dyslipidemia, and dysbiosis incrementally affecting in endoplasmic 

reticulum (ER) stress, a physiologically changed condition of the ER (65). A study showed 

that ER stress enhanced the PHLPP1 expression as well as its ERK1/2-mediated 

phosphorylation. Additionally, the study identified that PHLPP1 is associated with and 

dephosphorylated AMPK, a key mediator in insulin-independent glucose utilization (66), 

supporting that PHLPP1 as a novel therapeutic option for the management of ER stress-

mediated insulin resistance and type 2 diabetes.   

 

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

Years after the discovery of Akt-specific phosphatases, there was growing evidence 

demonstrating that PHLPPs have several substrates and the majority are engaged in the 

control of cellular growth and survival (67). Recent accumulated evidences suggested 

PHLPPs as critical players in the regulation of metabolism, which unveiled their different 

expressions and novel substrates in a tissue-specific or disease-specific manner. Studies 

concerning PHLPPs in metabolic diseases are being studied to identify their substrates and 

upstream regulators. It would be greatly impressive to ascertain various new targets and 

mechanisms underlying functions in different pathophysiologies in the tissue-specific or 

disease-specific context. For now, it is clear that PHLPPs perform multifaceted and complex 

functions in metabolic diseases (Figure 2). Collectively, our understanding of PHLPP 

regulation in normal and pathophysiological conditions will uncouple the development of 

desirable therapeutic options to ameliorate specific metabolic diseases in which PHLPPs are 

involved. 
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FIGURE LEGENDS 

Figure 1. Domain architecture of PHLPP isoforms 

PHLPP family retains the Ras association domain (RA), pleckstrin homology (PH) domain, 

leucine rich repeat region (LRR), PP2C domain and PDZ binding motif. Black arrow head 

denotes the splice site for PHLPP1.   

 

Figure 2. The roles of PHLPPs in the regulation of tissue metabolism in 

pathophysiological state  

(A) PHLPP2 suppresses de novo lipogenesis in the liver via interfering with prolonged Akt 

activation. Aging or obesity reduces the level of PHLPP2, resulting in the sustenance of the 

Akt signaling and hepatic steatosis. (B) In the pancreas, both PHLPP1 and PHLPP2 regulate 

pancreatic beta cell survival and proliferation. Insulin resistance drives pancreatic beta cell 

failure partially by upregulation of both PHLPP1 and PHLPP2 in response to high glucose 

exposure, which favors progression toward type 2 diabetes. (C) In adipose tissue, PHLPP1 or 

PHLPP2 controls insulin action and lipolysis. Obesity promotes PHLPP2 levels, which 

dephosphorylates HSL and causes glucose and lipid dysregulation. (D) In skeletal muscle, 

PHLPP1 plays crucial role in regulating insulin action. High circulating nutrient or ER stress 

potentiates increased PHLPP1 expression, contributing to insulin resistance. 
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