
BMB Reports - Manuscript Submission 

Manuscript Draft 

Manuscript Number: BMB-22-124 

Title: Function of gaseous hydrogen sulfide in liver disease 

Article Type: Mini Review 

Keywords: Hydrogen sulfide; Metabolism; CSE; Liver fibrosis; CBS 

Corresponding Author: Seung-Soon Im 

Authors: Jae-Ho Lee1, Seung-Soon Im1,* 

Institution: 1Department of Physiology, Keimyung University School of 

Medicine, Daegu 42601, Republic of Korea, 

UN
CO

RR
EC

TE
D 

PR
OO

F



- 1 - 

 

Manuscript Type: Mini Review 

 

Title: Function of gaseous hydrogen sulfide in liver fibrosis 

 

Author's name: Jae-Ho Lee1, Seung-Soon Im1,* 

 

Affiliation: 1Department of Physiology, Keimyung University School of Medicine, Daegu 

42601, Republic of Korea. 

 

Keywords: Hydrogen sulfide, Metabolism, CBS, CSE, MPST, Liver fibrosis 

 

*Corresponding Author's Information:  

Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeol-daero, 

Dalseo-gu, 42601 Daegu, Republic of Korea. Tel: +82-53-258-7423; Fax: +82-53-258-7412; 

E-mail: ssim73@kmu.ac.kr 

 

UN
CO

RR
EC

TE
D 

PR
OO

F



- 2 - 

 

ABSTRACT 

Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological 

functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione 

β-synthase (CBS), cystathione γ-lyase (CSE) and 3-mercaptopyruvate sulfur transferase 

(MPST). These enzymes are broadly expressed in liver tissue and regulates liver function by 

working on a variety of molecular targets. As an important regulator of liver function, H2S is 

critically involved in the pathogenesis of various liver diseases, such as non-alcoholic 

steatohepatitis (NASH), liver fibrosis and liver cancer. Targeting H2S-generating enzymes may 

be a therapeutic strategy for controlling liver diseases. This review described the function of 

H2S in liver disease and summarized recent characterized role of H2S in several cellular process 

of the liver. 
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INTRODUCTION 

Hydrogen sulfide (H2S), well known as a poisonous gas with an unpleasant odour, is produced 

primarily during the breakdown of proteins in plants and animals (1-3). H2S is a signaling 

molecule that is actively synthesized within tissues and is involved in the regulation of vascular 

tone (4, 5), neuromodulation (6, 7), cell protection (8-10), inflammation (11, 12), and apoptosis 

(13, 14). Recently, new data on H2S metabolism and function in animals and humans have been 

collected under the influence of various endogenous and exogenous factors, including drugs 

(15, 16). 

The liver is one of the most important organs to produce and remove H2S (17). Endogenous 

H2S is involved in the pathogenesis of many liver diseases and affects processes, such as 

hepatic lipid and glucose metabolism, oxidative stress, mitochondrial bioenergetics, fibrosis, 

cirrhosis, hepatoprotection, and deregulation of hepatotoxicity (18, 19). In addition, 

endogenous or exogenous H2S may play an important role in the development of liver tumors 

(20, 21). The synthesis and clearance of H2S in the liver is mainly governed by hepatocytes 

(17). It is a major source of extracellular matrix (ECM) in hepatic fibrosis and hepatocellular 

carcinoma (HCC) (22). This review focuses on the major and alternative H2S metabolism and 

its regulation in the liver. 

 

Understanding of H2S metabolism 

H2S is a colorless, flammable gas with a characteristic odor of rotten eggs. It occurs naturally 

in volcanic gases, natural gas, and some well water, and is also produced when bacteria 

decompose organic matter in the absence of oxygen (23). H2S is toxic to humans and can result 

in death from acute exposure to large amounts of H2S (>500 ppm) (24). H2S was considered 

both a toxic molecule and an environmental hazard until discovered to be endogenously UN
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produced (1). The production of H2S by three enzymes like cystathionine β-synthetase (CBS), 

cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfur transferase (MPST) (25-28) has 

been widely studied (Fig. 1). Endogenous H2S is produced by enzymatic activity and is also 

released from intracellular sulfur stores (29). In most organ, CBS and CSE are mainly 

responsible for H2S production (29). They manage individually from L-cysteine to produce 

H2S, L-serine and ammonium (30). Although found throughout the body, the discovery of CBS 

in the brain has led to consensus that it is a major H2S-generating enzyme that affects nerve 

signaling (31). However, CBS has been identified in tissues throughout the body and is thought 

to regulate overall H2S production (32). Located primarily in mitochondria, MPST 

enzymatically generates H2S from -ketoglutarate and L-cysteine through metabolic 

interactions with cysteine aminotransferase (33). CBS, CSE and MPST are mainly expressed 

in the liver and kidney (34). CBS and CSE metabolize cysteine and/or homocysteine to release 

H2S (35), while MPST metabolizes cysteine and 3-mercaptopyruvic acid (3-MP) produced by 

the action of cysteine aminotransferase (CAT) on α-ketoglutaric acid (36, 37). MPST requires 

a cofactor to decrease the persulfate intermediate formed between the MPST cysteine residue 

and the sulfide provided by 3-MP (36). Recent data have found that thioredoxin and 

dihydrolipoic acid (DHLA) are endogenous reduction cofactors which promote H2S release 

from MPST (38).  

H2S is an endogenous signaling molecule in mammals (39). Accumulating evidence suggests 

that H2S plays an important role in liver physiology and pathophysiology (40-42). 

Dysregulation of endogenous H2S is associated with symptoms of diabetes and cirrhosis (43, 

44). Blood levels of H2S in patients with type 2 diabetes mellitus are lower than in controls 

(45). Application of H2S also shows effects on mitochondrial function, antioxidant stress, 

apoptosis, inflammation, angiogenesis, and blood pressure (46). UN
CO

RR
EC

TE
D 

PR
OO

F



- 5 - 

 

 

Function of H2S in the liver 

The liver plays an important role in mammalian physiology with respect to energy homeostasis 

(47). Besides, the liver is also a major detoxification tissue, and can metabolize and neutralize 

harmful substances, drugs, environmental toxins, and endotoxins (48, 49). Endogenous 

formation of H2S is impaired in non-alcoholic steatohepatitis (NASH) mice, and H2S treatment 

can prevent NASH in mice, perhaps by reducing oxidative stress and suppressing inflammation 

(40). Administration of sodium hydrogen sulfide (NaHS) as a H2S donor in rodents protects 

against ischemic reperfusion, acetaminophen or carbon tetrachloride (CCl4)-induced liver 

damage (50). 

The liver is uniquely positioned to be exposed to high levels of H2S; however, how the liver 

responds to elevated hydrogen sulfide levels is unclear. Liver H2S levels were previously 

reported within the low nanomolar to middle micromolar range (17 nM ~ 144 µM) (51). 

Reactive oxygen species (ROS), a by-product of normal aerobic cell metabolism, are important 

signaling molecules in many cell functions such as immune response, apoptosis and cell 

survival (52-54). Recent studies have shown that treatment with relatively low concentrations 

of H2S donors such as NaHS, Na2S or GYY4137 (50 mg/kg) may decrease ROS levels and 

cytochrome P450 2E1 activity and increase glutathione levels and antioxidant enzymes (50, 

55). These results indicate that relatively low levels of H2S can protect against oxidative stress 

in the liver. Mitochondria is bilayer organelles whose shape supports them function in many 

cellular processes (56). The main role of mitochondria is to regulate the production of energetic 

molecules like adenosine triphosphate (57). During the metabolism of glucose, lipids, and 

proteins in the liver (58), 3-MP, the substrate for the MPST, stimulates mitochondrial H2S 

production and enhances liver mitochondrial electron transport at low concentrations (59, 60). UN
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In addition, low levels of H2S induces a significant increase in hepatic mitochondrial function 

(61). Moreover, H2S acts on mitochondrial proteins via a posttranslational modification 

designated as sulfhydration or persulfidation (62, 63). Sulfhydration of the ATP Synthase F1 

Subunit Alpha (ATP5A1) at Cys244 and 294 was reported to increase its activity (64). 

Sulfhydration of ATP5A1 was upregulated in response to burn injury and decreased in mice 

lacking CSE implicating a role for CSE-derived H2S in the process (64). These results indicate 

that endogenous H2S regulates physiologically in mitochondrial electron transport.  

The liver is important for the maintenance of blood glucose homeostasis by the uptake of 

glucose in the postprandial state and its conversion to triglycerides and glycogen, and the 

production of glucose in the post-absorption state by gluconeogenesis and glycogenosis (65, 

66). Deficiencies in the mechanism by which insulin and glucose regulate glycogen metabolism 

in the liver disrupt blood glucose homeostasis, leading to metabolic disorders such as diabetes 

and glycogen storage (67, 68). CSE activity has been shown to be low in the liver of type 1 

diabetic rats and in peripheral blood mononuclear cells of type 1 diabetic patients, indicating 

that H2S is involved in glucose regulation (69). Recent studies have shown that CSE knockout 

mice have a reduced rate of glycolysis. This can be reversed with NaHS management (70, 71). 

NAFLD is caused by the accumulation of lipids in the liver and may increase the risk of 

hepatocellular carcinoma and end-stage liver disease (72, 73). Many risk factors, such as 

diabetes, obesity, hyperlipidemia, and certain drug regimens are associated with the 

development of NAFLD (74). H2S has been shown to alleviate development of fatty liver in 

obese mice through its antioxidant capacity and promotion of lipid metabolism (40, 75). In a 

recent study, in NAFLD mouse model, the activation of sterol regulatory element binding 

protein-1c directly upregulates mir-216a transcription, which reduces CTH-H2S signaling and 

ULK1-stimulated autophagy, indicating that loss of sterol regulatory element binding protein-UN
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1c prevents the development of hepatic steatosis through activation of H2S-mediated autophagy 

flux in a high fat diets-induced NAFLD model (76, 77). Recent study has shown that 

administration of NaHS reduces the accumulation of lipids such as total cholesterol and 

triglycerides through down-regulation of fatty acid synthase and up-regulation of carnitine 

palmitoyl transferase-1 in the liver of high-fat diet (HFD)-induced obese mice (40). 

Collectively, H2S may alleviate liver cell damage in various ways in the pathogenesis of liver 

disease (Fig 1). 

 

Role of H2S in liver fibrosis 

Several studies have been reported on the use of H2S in hypoxic injury (78, 79), most of which 

show beneficial effects of H2S treatment in models of cardiac arrest (80), lung (81), intestinal 

(82), renal (83), and cardiac ischemia (84). Fibrogenesis formation in chronic liver disease can 

disrupt liver functional units and blood flow, leading to cirrhosis of the liver and even life-

threatening clinical outcomes (85, 86). In the pathological process of hepatic fibrosis, it is 

widely known that activated hepatic stellate cells (HSC) are fundamental to the overproduction 

of ECM in the stroma (87). Recent evidence suggests that inactivation of HSC is an essential 

mechanism by which H2S inhibits liver fibrosis (88). However, current report shows that the 

generation of H2S is increased during HSC activation, and that exogenous H2S promotes HSC 

proliferation and induces the expression of HSC fibrosis makers (89). Furthermore, conflicting 

results have also been reported depending on the concentration or type of H2S donor used. 

Based on the H2S release rate, H2S release donors are classified as either fast (NaHS; Na2S) or 

slow (GYY4137; ADT-OH) release donors, often giving contrasting results (90, 91). For 

example, some studies have reported pro-inflammatory and anti-apoptotic properties of H2S, 

and shown that H2S increases mitochondrial bioenergetics and promotes cell proliferation (64, UN
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92, 93). Therefore, there is still a large gap in our understanding of the actual impact of H2S on 

HSC and liver fibrosis.  

The CCl4-induced hepatic fibrosis model tends to suppress protein expression of both CSE and 

H2S content (94). Suggestion for a protective function for H2S in liver fibrosis is supported by 

the understanding that CBS deficiency accelerates fibrosis associated with hepatic steatosis 

(95). Similarly, gene knockout of CSE exacerbates liver fibrosis by triggering an inflammatory 

response and decreasing H2S production, indicating a potential role of the H2S system in liver 

fibrosis (96). Supplementation of NaHS ameliorates hepatic fibrosis in CCl4-treated mice (50). 

Likewise, CCl4-treated mice, GYY4137, increased nuclear factor erythroid 2–related factor 2 

signaling pathway, improved liver function, reduced liver fibrosis, decreased hepatic oxidative 

stress (97). Exercise significantly enhances H2S level and increases levels of CBS, CSE and 

MPST in HFD-fed mice (98). 

H2S reduces the intracellular redox environment and reduces damage from oxidative stress (99). 

Given the important role of oxidative stress in the development of fibrosis, it is reasonable to 

suspect that the endogenous H2S-producing enzyme pathway suppresses the development of 

fibrosis by its antioxidant activity (100). Extrinsic H2S inhibits Fe-NTA-induced elevated 

intracellular ROS levels and HSC cell proliferation (94), weakens CCl4-induced increase of 

liver MDA levels, reduces liver GSH levels, and collagen in liver tissue. It is associated with 

inhibition of phosphorylated p38 mitogen-activated protein kinase and activation of the 

phospho-AKT signaling pathway (101). 

Inflammation has been reported to be in the early stages of the onset of fibrosis, causing cell 

apoptosis, fibroblast proliferation, and ECM deposition, ultimately leading to irreversible 

fibrous damage (102). Treatment with H2S significantly reduces the infiltration of 

inflammatory cells, inducible nitrogen monoxide synthase, tumor necrosis factor-, It down-UN
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regulates pro-inflammatory cytokines such as interleukin (IL)-6, and inhibits IL-8, and the 

progression of fibrosis (18, 103-105). Although CCl4-induced liver cirrhosis rats showed 

significantly higher levels of serum inflammation-inducing cytokines. Co-administration of 

NaHS resulted in a significant reduction in these cytokines, along with the alleviated collagen 

fibers of the liver (50). 

Recent studies have shown that organ fibrosis is associated with a decrease in autophagy (106, 

107). Autophagy is involved in a complex regulatory pathway in hepatic fibrosis, and its 

fibrosis-promoting effect depends on the activation of hepatic stellate cells but has antifibrotic 

properties through indirect hepatic protection and anti-inflammatory properties (108). Given 

the important role of autophagy in the pathogenesis of fibrosis and the regulatory function of 

H2S for autophagy and fibrosis, extrinsic or endogenous H2S is mediated by targeting by 

autophagy or autophagy-related signaling pathways (21, 109). It is rational and interesting to 

assume that it may inhibit the development of fibrosis. Overall, these observations suggest that 

an endogenous H2S system or H2S-releasing donor can be developed to treat liver fibrosis via 

a variety of signaling pathways (Fig. 2). 

 

CONCLUSION 

This review summarizes and describes the recent literature on the role of H2S in several liver 

diseases. Defect in endogenous H2S production is associated with NASH and liver fibrosis. 

And because H2S may serve as a double-edged sword in such liver disorder, additional studies 

need to resolve these discrepancies in the future. In addition, although endogenous H2S 

production or low exogenous H2S may lead to the development of liver fibrosis, exposure to 

large amounts of H2S may exhibit anti-fibrosis properties. Therefore, targeting H2S-producing 

enzymes may be a promising strategy for managing liver disorders. UN
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FIGURE LEGENDS 

Figure 1. Various cellular functions of H2S in in the liver. Three major enzymes responsible 

for H2S production are CBS, CSE, and MPST. L-cysteine is the major substrate for H2S 

production. H2S–mediated signaling varieties from protein modification by sulfidation to 

affecting a broad range of physiological processes, including regulation of mitochondrial 

biogenesis, glucose metabolism, oxidative stress, inflammation, fatty acid oxidation and 

crosstalk with other signaling molecules. CBS: cystathionine -synthase; CSE: cystathionine 

-lyase; MPST: 3-mercaptopyruvate sulfur transferase. 

 

Figure 2. Endogenous and exogenous production of H2S in the liver and its effects on liver 

fibrosis. H2S plays a complex role in the development of fibrosis. Besides as a reducer to 

directly scavenge reactive oxygen species, exogeneous (NAHS, GYY4137) or endogenous H2S 

utilizes its inhibitory effect on fibrosis by anti-inflammation and suppression of fibroblasts 

activation. Many signaling pathways, such as TNF-, NF-κB, MAPKs, NRF2, SIRT1, SIRT3, 

GSH, TGF-1/SMAD, PI3K, AKT, and autophagy are involved in the process of antifibrosis 

of H2S. TNF-: tumor necrosis factor-alpha; NF-κB: nuclear factor-kappa B; mitogen-

activated protein kinase: MAPK; NRF2: nuclear factor erythroid 2–related factor 2; SIRT1: 

sirtuin 1; SIRT3: sirtuin 3; GSH: glutathione; TGF-1: transforming growth factor beta 1; 

SMAD: suppressor of mothers against decapentaplegic; PI3K: phosphoinositide 3-kinase. 
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