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ABSTRACT 25 

 26 

Human oral cavity contains a highly personalized microbiome that is essential to 27 

maintaining health but capable of causing oral and systemic diseases. Thus, an in-depth 28 

definition of “healthy oral microbiome” is critical to understanding variations in disease 29 

states from preclinical conditions and disease onset through progressive states of disease. 30 

With rapid advances in DNA sequencing and analytical technologies, population-based 31 

studies have documented the ranges and diversity of both taxonomic compositions and 32 

functional potentials observed in the oral microbiome in healthy individuals. Besides 33 

factors specific to the host, such as age and race/ethnicity, environmental factors also 34 

appear to contribute to the variability of the healthy oral microbiome. Here, we review 35 

bioinformatic techniques for metagenomic dataset, with some comments on their 36 

strengths and limitations. We also summarize our knowledge on the interpersonal and 37 

intrapersonal diversity of the oral microbiome, in the light of recent large-scale and 38 

longitudinal studies including Human Microbiome Project. 39 

 40 

 41 

 42 

 43 

 44 

 45 
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 47 

 48 



UNCORREC
TE

D P
ROOF

2 

 

INTRODUCTION 49 

 50 

The human microbiota (the collection of microbes that live on and inside us) consists of 51 

a wide range of microorganisms whose aggregate membership exceeds human somatic 52 

and germ cells by at least an order of magnitude (1,2). The collection of genes in the 53 

microbiota is called the human microbiome (2) but “microbiota” and “microbiome” are 54 

often used interchangeably (3). As one of the most clinically relevant microbial habitats, 55 

the human oral cavity is colonized by a personalized set of microorganisms, including 56 

bacteria, archaea, fungi, and viruses (4). During health, the oral microbiota lives in 57 

harmony with the host, as found at other body sites. The host is providing its 58 

microbiome with an environment, in which they can flourish and keep their host healthy 59 

(5). On the other hand, the oral microbiome is also considered a key source in the 60 

etiology of oral diseases, including dental caries and the periodontal diseases, as well as 61 

many systemic diseases such as diabetes and cardiovascular diseases (5,6). Because of 62 

its crucial role in oral and systemic health, the oral microbiome has become an essential 63 

part of microbiomics. 64 

An in-depth definition of healthy microbiome is indispensable step toward 65 

detecting significant variations both in disease states and in pre-clinical conditions as 66 

well as understanding disease onset and progression (7). The advent of next generation 67 

sequencing (NGS) or high-throughput sequencing has revolutionized the field of 68 

microbiome analysis, providing the tools necessary to address the issue (8). This led to 69 

the launch of the NIH's Human Microbiome Project (HMP), constructed as a large, 70 

genome-scale community research project (NIH HMP Working Group, 2009). This 71 

project enrolled over 200 healthy adults and collected samples from 15 to 18 body 72 
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habitats, including oral, stool, skin, nasal, and vaginal areas, over one to three visits (9). 73 

Besides two major scientific reports (9,10) several companion papers have analyzed 74 

HMP oral datasets (7, 11-13), revealing great variability of the oral microbiome among 75 

and within healthy individuals. Furthermore, other recent large-scale and longitudinal 76 

studies have expanded our view of the oral microbiome beyond that of the HMP. 77 

In this paper, we review bioinformatic techniques for metagenomic dataset 78 

including microbial community profiling, and highlight strengths and weaknesses of the 79 

experimental approaches. We also summarize important findings that lead to the current 80 

understanding of the ranges of healthy microbial diveristy. While viruses, fungi, archaea 81 

and protozoa form a part of a normal microbiome (4) the majority of the research is 82 

concentrated on the domain Bacteria. Therefore, we will focus exclusively on the oral 83 

bacteria in this review. 84 

 85 

BIOINFORMATIC ANALYSIS OF MICROBIOME SEQUENCE DATA 86 

 87 

Two distinct metagenomics approaches are commonly used: marker gene metagenomics 88 

and full shotgun metagenomics. Marker gene metagenomics is a fast and cost-effective 89 

way to obtain a taxonomic distribution profile. In this approach, specific regions of 90 

evolutionarily conserved marker genes are firstly amplified by PCR and subsequently 91 

sequenced (14). In the case of bacterial (and/or archaeal) community analysis, the target 92 

region usually contains the 16S ribosomal RNA (rRNA) gene (15), hence herein the 93 

approach is referred to as 16S rRNA profiling. Meanwhile full shotgun metagenomics, 94 

also referred as metagenomic whole genome sequencing (WGS), does not target a 95 

specific locus or marker genes, but instead involves breaking the isolated metagenomic 96 
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DNA into small pieces and subsequent sequencing the individual pieces (14). The 97 

sequenced small fragments (i.e., sequencing raw reads) can be used not only for 98 

taxonomy profiling (who is there?) as well as for functional profiling (what are they 99 

doing?) (14). In this section, we briefly describe the scheme of the techniques and the 100 

bioinformatic pipelines to analyze microbiome sequence data obtained from the both 101 

methods. 102 

 103 

16S rRNA profiling 104 

Ever since their introduction as markers for the bacterial phylogeny by Woese et al (16), 105 

the 16S rRNA gene has been considered the gold standard for phylogenetic studies of 106 

microbial communities and for assigning taxonomic names to bacteria (11). Bacterial 107 

16S rRNA genes generally contain nine hypervariable regions (V1-V9) that demonstrate 108 

considerable sequence diversity among different bacterial species (17). Numerous 109 

studies have assessed the 16S rRNA gene regions to choose most appropriate conserved 110 

regions that can be used generate amplicons using universal primers as well as most 111 

effective hypervariable regions to target (17-23): unfortunately, no single hypervariable 112 

region is able to distinguish among all bacteria and a bias can be introduced by primer 113 

specificity as well as efficiency. Basically, the 16S rRNA profiling can be summarized 114 

into three steps; (1) Preprocessing and denoising of raw reads, (2) Taxonomic 115 

assignment, and (3) Evaluation of microbial diversity. 116 

 117 

(1) Preprocessing and denoising of raw sequencing reads 118 

Although there are standard operations and protocols to generate the sequencing library 119 



UNCORREC
TE

D P
ROOF

5 

 

in NGS, stochastic errors in the biological processes for the library creation and/or 120 

incomplete chemical reactions in sequencing could affect the overall quality of the 121 

sequencing library and sequencing datasets. Therefore, raw sequencing reads generated 122 

from sequencing machine should be carefully checked for the successful downstream 123 

analysis in the preprocessing step. A number of computational tools have been used for 124 

the preprocessing: for example, FastQC 125 

(bioinformatics.babraham.ac.uk/projects/fastqc/) provides a quick quality check by 126 

running a modular set of analyses such as “per base sequence quality”, “per sequence 127 

quality score”, “sequence length distribution”, “adapter content”, etc.; FASTX-toolkit 128 

(http://hannonlab.cshl.edu/fastx_toolkit/) allows detecting and trimming the low quality 129 

region of the individual read (especially 3’-end of the reads); DUST is used to remove 130 

low-complexity regions in the sequencing read (24). Intrinsically, the NGS techniques 131 

can harbor various errors in the sequencing reads such as imprecise signals from longer 132 

homopolymer runs and chimera sequences. In the denoising step, those errors were 133 

identified and corrected for the accurate taxonomic assignments of the sequencing reads. 134 

Many popular software, such as QIIME (25) and mothur (26), have implemented the 135 

denoising algorithms. In particular, UCHIME is designed to detect chimeric sequences 136 

by comparing reference sequences to a database or by performing de novo classification 137 

(clustering) (27). Preprocessed and denoised raw sequencing reads are subsequently 138 

subject to taxonomic assignment process.  139 

 140 

(2) Taxonomic assignment 141 

As NGS allows investigators to detect and identify novel bacteria that have previously 142 
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gone undetected, assignment of 16S rRNA gene sequences from uncultured bacteria 143 

into a bacterial taxonomy is even more challenging. Two frequently used methods 144 

assign reads into bins based on either their similarity to reference sequences (i.e., 145 

phylotyping) or their similarity to other sequences in the community (i.e., operational 146 

taxonomic units [OTUs]) (28). First method relies upon aligning reads with the 147 

reference 16S rRNA database using sequence alignment algorithms, such as BLAST 148 

(29). Besides NCBI Genbank, a number of rRNA databases have been constructed and 149 

used for the taxonomic assignment (Table 1). Each database has own criteria for the 150 

curation of data from the original resources. For example, Human Oral Microbiome 151 

Database (HOMD) (30) and CORE (31) database have been constructed using 16S 152 

rRNA sequences exclusively from human oral bacteria. The other approach is to group 153 

16S rRNA sequencing reads into bins called OTUs with distance-based agglomerative 154 

clustering methods, such as CD-HIT (32) and UCLUST (33). Defining species by 97% 155 

identity in 16S rRNA gene sequence is a commonly used criterion, but these distinctions 156 

are still controversial (11,34).  157 

Current NGS platforms produce vastly greater numbers of reads than Sanger 158 

sequencing while the reads are relatively much shorter. Unfortunately, existing tools are 159 

generally not sufficient to provide species names or phylogenetic information for the 160 

millions of short sequence reads (11). For example, the most commonly used tool for 161 

assigning taxonomy, the Ribosomal Database Project (RDP) Classifier (35), does not 162 

assign taxonomic names below the genus level. (11,36). Moreover, RDP shows 163 

insufficient resolution for classifying the GN02 and Synergistetes, as revealed in our 164 

previous study (37). To complement analyses relying on limited taxonomic names, 16S 165 

rRNA sequences are usually grouped using the OTU approach described above. Huse et 166 
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al. (11) explored the HMP oral microbiota from over 200 individuals and identified 167 

between 857 and 4,216 OTUs (Table 2). In terms of community membership, oral 168 

communities were especially diverse, showing the highest estimate of total richness 169 

after the stool. Notably, richness as measured by the V1–V3 primers was consistently 170 

higher than richness measured by V3–V5 (11). In addition, some taxa (e.g. Lactobacilli 171 

OTUs) are resolved better with V1–V3 while others (e.g. Bifidobacteriaceae OTUs) 172 

with the V3–V5 (11). These differences may be due a mismatch of the primers for 173 

amplification or an inability to differentiate the taxon in that region of the rRNA gene 174 

(11). Therefore, as with all 16S rRNA sequencing projects, the specific richness and 175 

diversity results should be compared with other results using the same 16S rRNA region, 176 

and the presence of primer bias should not be discounted (11). Furthermore, platform-177 

dependent sequencing errors will also affect the taxonomic classification of reads, 178 

potentially leading to spurious OTUs and inflated measurements of diversity, thus 179 

making direct comparisons between studies difficult (12).  180 

 181 

(3) Evaluation of microbial diversity 182 

Diversity measurement is important for understanding community structure and 183 

dynamics. Two diversity measurements are frequently used to assess and compare 184 

microbial communities; alpha (or within-sample) diversity and beta (or between-185 

sample) diversity. Alpha diversity is usually characterized using the total number of 186 

organisms within a sample (richness, might be measured as the number of OTUs), the 187 

relative abundances of the organisms (evenness), or indices that combine these two 188 

dimensions. Beta diversity, on the other hand, is often characterized using the number 189 
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of species (or OTUs) shared between two communities. In particular, UniFrac, a robust 190 

method for comparing the differences between microbial communities between samples, 191 

measures the proportion of shared branch lengths on a phylogenetic tree between 192 

samples (3,38). Principal Coordinates Analysis (PCoA) can summarize and visualize the 193 

UniFrac distances between samples in a scatterplot where points (representing samples) 194 

that are more distant from one another are more dissimilar. 195 

 196 

Metagenomic WGS data analysis 197 

The 16S rRNA profiling is powerful, effective and straightforward techniques to study 198 

microbial communities, but it only provides the taxonomic composition. Meanwhile, 199 

metagenomic WGS data can provide not only taxonomy but also the biological 200 

functional profiles for the microbial communities. The principles of taxonomy profiling 201 

process employing WGS data is similar to those described above, hence, in this section, 202 

we will focus on the functional profiling of microbial community. The analysis pipeline 203 

can be divided into four stages, (1) Preprocessing, (2) Reconstruction of raw sequencing 204 

reads (assembly), (3) Gene prediction, and (4) Functional annotations. 205 

 206 

(1) Preprocessing 207 

Preprocessing is to assess the overall quality of WGS data and most steps are similar to 208 

those in 16S rRNA profiling. Additionally, raw metagenomic NGS reads associated with 209 

a host (e.g. human) should be checked for the host DNA contamination and the 210 

contaminated sequencing reads should be removed. Fast short read mapping tools such 211 
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as BWA (39) and Bowtie 2 (40) are used to detect the contaminated sequencing reads by 212 

aligning raw sequencing reads against host genome (e.g. human genome). 213 

 214 

(2) Reconstruction of raw sequencing reads (assembly) 215 

The metagenomic WGS technique generates raw sequencing reads from the whole 216 

microbial genomes in the microbial community. Thus, to identify the specific genomes 217 

and/or complete protein coding genes in the genomes accurately, it is helpful to 218 

reconstruct the microbial genomes from raw sequencing reads. However, obtaining 219 

complete genomes has been challenging not only because of highly repetitive DNA 220 

sequences abundant in a broad range of species (from bacteria to mammals) but also 221 

because of short reads and high data volumes produced by NGS technology. Therefore, 222 

an assembly of shorter reads into genomic contigs and orientation of these into scaffolds 223 

is often performed. Most of the metagenomic WGS read assembly tools are designed 224 

and implemented based on the graph theory algorithm, de Bruijn graph. Initially, the 225 

method fragments all sequencing reads into k-mers and then, the generated k-mers can 226 

be used as the edges in the de Bruijn graph. The nodes of (k-1)-mer prefix and suffix are 227 

linked by the edges of k-mers for the graph. Finally, the assembler identifies Eulerian 228 

paths that go across all edges just once in the graph (41). Velvet (42), ABySS (41) and 229 

SOAPdenovo (44) use the de Bruijn graph to assemble whole metagenomes from raw 230 

sequencing reads. In HMP, the raw sequencing reads from 749 metagenomic samples 231 

were successfully used to assembly of contigs using an optimized SOAPdenovo 232 

protocol (8). Recently, more sophisticated algorithms have been developed and applied 233 

to the next-generation assemblers such as Meta-IDBA (45), MetaVelvet-SL (46) and 234 
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IDBA-UD (47). 235 

 236 

(3) Gene prediction 237 

The next stage of the analysis pipeline is to identify genes in the reads or assembled 238 

contigs and/or scaffolds. The prediction of genes in metagenomic contents is still a 239 

fairly difficult problem, although several gene prediction algorithms have been 240 

successfully employed for prokaryotic genomes. To predict genes in metagenomic study, 241 

especially for de novo genes, several computational methods have been developed, 242 

including MetaGeneMark (48), MetaProdigal (49), Glimmer-MG (50), and 243 

FragGeneScan (51). Notably, the performance of gene-predicting tools varies 244 

considerably: for example, in a comparison of five widely used ab initio gene-calling 245 

algorithms including FragGeneScan and MetaGeneMark, FragGeneScan is rather 246 

accurate for predicting reading frames on short raw reads (75–1000 bp) while other 247 

tools, such as MetaGeneMark, are better suited for higher-quality sequences such as 248 

assembled contigs (52). Moreover, it has been reported that combining various 249 

programs' predictions can improve the accuracy of prediction and annotation of 250 

metagenomic reads (53). Accordingly, researchers should carefully decide what tools to 251 

use in their metagenomic study, potentially impacting the results and conclusion. 252 

 253 

(4) Functional annotations 254 

After gene prediction, the identified genes are functionally annotated by comparing the 255 
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known genes in the functional annotation databases such as PFAM (54), IMG/M (55), 256 

COG (56) and MetaRef (57). Further analysis of the relationship between the 257 

microbiome and the host phenotype is performed using metabolic pathway information 258 

database, i.e., KEGG (58), eggNOG (59) and MinPath (60). In the part of HMP, 259 

Abubucker et al. devised HMP Unified Metabolic Analysis Network (HUMAnN) to 260 

construct metabolic networks of the microbial communities (61). In this study, raw 261 

sequencing reads were searched against a protein sequence databases and HUMAnN 262 

recovers the abundances of individual orthologues gene families and pathway. More 263 

specifically, MBLASTX, KEGG orthology and MinPath have been used to assign genes 264 

and available pathways. Recently, several metagenomic analysis pipeline software, such 265 

as MG-RAST (62) and IMG/MER (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi) has 266 

been developed. The pipelines provide the functional annotation modules in their fully 267 

automated pipeline web-server and thus, researchers can easily perform functional 268 

annotation tasks using their own data in the web (15). 269 

 270 

COMPOSITION AND DIVERSITY OF ORAL MICROBIOME 271 

 272 

The HMP assessed oral microbiome composition of seven intra oral sites (buccal 273 

mucosa, hard palate, keratinized gingiva, saliva, sub- and supra gingival plaque, and 274 

tongue dorsum) and two oropharyngeal sites (throat and palatine tonsils) from 182~206 275 

healthy subjects (18 to 40 years old) and found 185-322 genera, belonging to 13-19 276 

bacterial phyla (13). Dominating phyla were Firmicutes, Bacteroidetes, Proteobacteria, 277 

Fusobacteria and Actinobacteria, accounting for over 95% of the entire oral 278 
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microbiome. An individual sample from a single site of a single subject contained 23-50 279 

genera from 6-9 phyla (13). Among all body habitats, the oral habitats have the highest 280 

alpha diversity showing the highest OTU level richness after the stool (Table 2), while 281 

the skin and vaginal microbiota show lower alpha diversity (11,13). In comparisons 282 

between samples from the same habitat among subjects (beta diversity), oral sites have 283 

the lowest beta diversities, which means that members of the population shared 284 

relatively similar organisms in oral sites than in other body sites (10). However, HMP 285 

oral datasets also emphasize the highly variable nature across individuals, especially at 286 

the sub-genus level: even OTUs present in nearly every subject, or that dominate in 287 

some samples, showed orders of magnitude variation in relative abundance (11). In the 288 

following sections we discuss in more detail about the specific factors that contribute to 289 

the variability of the healthy oral microbiome. 290 

 291 

Different oral biogeographic niches 292 

The oral cavity is a moist environment which is kept at a relatively constant temperature 293 

(34 to 36°C) and a pH close to neutrality in most areas and thus supports the growth of a 294 

wide variety of microorganisms (63). The oral cavity is composed of diverse habitats 295 

with different anatomical structures and physicochemical factors: the oral mucosa 296 

covers the cheek, tongue, gingiva, palate, and floor of the mouth and allows rapid 297 

elimination of adhering bacteria due to a continuous desquamation of its surface 298 

epithelial cells (63). On the other hand, papillary surface of the tongue provides sites of 299 

colonization that are protected from mechanical removal. The hard surfaces of teeth 300 

offer many different sites for colonization by bacteria below (subgingival) and above 301 

(supragingival) the gingival margin. The gingival crevice, the area between the 302 
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junctional epithelium of the gingiva and teeth, provides a unique colonization site that 303 

include both hard and soft tissues (63). The epithelium may be keratinized (palate) or 304 

nonkeratinized (gingival crevice). Hence, the oral cavity is not considered a uniform 305 

environment. 306 

HMP revealed a substantial divergence in the species richness and evenness among 307 

different oral habitats as well as identified microorganisms with specific niche 308 

preferences. Hard palate showed the lowest estimate of total richness, while the gingival 309 

plaque showed the high estimate of total richness (11) (Table 2). Oral sites, particularly 310 

saliva, have the highest evenness while buccal mucosa and keratinized gingiva have 311 

lower alpha diversity than the other oral sites (10,13). Each oral habitat in almost every 312 

subject was characterized by one or a few signature taxa making up the plurality of the 313 

community with highly variable relative abundance both among individuals and oral 314 

habitats. Most oral habitats are dominated by Streptococcus, but these are followed in 315 

abundance by Haemophilus in the buccal mucosa, Actinomyces in the supragingival 316 

plaque, and Prevotella in the subgingival plaque (10,13). There is overlap of species 317 

detected in almost all oral sites, such as certain species of Streptococcus (OTUs #2, 5 318 

and 6), Gemella (OTUs #7 and 8), Granulicatella (OTU #13), Fusobacterium (OTUs #9 319 

and 27), and Veillonella (OTUs #4 and 7) (11). However, several abundant genera had 320 

multiple OTUs with distinct preferences for often only one or two of the nine oral sites, 321 

such as Bacteroides, Prevotella, Corynebacterium, Fusobacterium, Pasteurella, and 322 

Neisseria (11). For example, Corynebacterium matruchotii (OTU #15) was present 323 

almost exclusively in the supragingival plaque, while Corynebacterium argentoratense 324 

(OTU #188) mostly in saliva and to a lesser extent on the hard palate (11). It may be due 325 

to the shedding of the epithelial cells and the shear forces from chewing in the buccal 326 
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fold and the hard palate (64). In an analysis of oral samples collected from the elderly 327 

(range 73–93), Lautropia mirabilis was significantly associated with the supragingival 328 

plaque while Treponema socranskii was found only in the subgingival plaque (65), 329 

which may be explained by the low oxidation-reduction potential of subgingival plaque. 330 

In the oropharynx, the distribution of Firmicutes, Proteobacteria, and Bacteroidetes was 331 

similar to that in saliva, but more Proteobacteria than in the mouth (66).  332 

 333 

Influence of geography, climate and ethnicity 334 

Although the HMP generated an incredible volume of data, the resulting 16S rRNA 335 

datasets are composed of samples from medical students in the USA and host 336 

information is nearly prohibitive to access, which lead to removal of the potential to 337 

observe any systematic patterns and regional or ethnic differences (67). A population-338 

scale study of 120 healthy individuals from 12 worldwide locations found a significant 339 

association between variation in the saliva microbiome and the distance of each location 340 

from the equator (68). Notably, the saliva microbiome of Batwa Pygmies, a former 341 

hunter-gatherer group from Africa, was found to be much more diverse than the saliva 342 

microbiome of two agricultural African groups, most likely because of their different 343 

lifestyle and diet (69). Another study of 3 human groups from different geographic and 344 

climatic areas (76 native Alaskans, 10 Germans and 66 Africans) showed the 345 

distinctiveness of the saliva microbiome, the reasons of which (e.g. differential 346 

lifestyles including diet and/or host genetics and physiology including the immune 347 

system) remain to be elucidated (70). Alpha diversity was highest for the German group 348 

and lowest for the African group, while the opposite was true for beta diversity. It is 349 

intriguing to speculate that higher population density of Germany may provide more 350 
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opportunities for bacteria to be spread among individuals (71). 351 

Ethnicity is likely to exert a selection pressure on the oral microbiome: Mason et al. 352 

(71), analyzed dental plaque and saliva samples collected from 192 subjects belonging 353 

to four ethnic affiliations (non-Hispanic blacks, non-Hispanic whites, Chinese, and 354 

Latinos) and found obvious ethnicity-specific clustering of microbial communities, 355 

expanding prior observations (72-74). This selection pressure seems genetic rather than 356 

environmental, since the two ethnicities that shared a common food, nutritional and 357 

lifestyle heritage (Caucasians and African Americans) demonstrated significant 358 

microbial divergence (71). It is known that not only innate immune responses to 359 

infectious agents but also tooth morphologies vary according to ethnic affiliation (75-360 

78). Hence, it is possible that ethnicity plays a role in bacterial selection by defining the 361 

environment for bacterial colonization (71). 362 

 363 

Vertical and horizontal transmission 364 

Vertical transmission from mother to child starts at birth (79). Depending on the 365 

delivery mode (vaginal or Caesarian), infants acquire bacterial communities resembling 366 

their own mother's vaginal microbiota or similar to those found on the skin surface (80). 367 

A study of healthy three-month-old infants delivered vaginally (25 infants) and born by 368 

C-section (38 infants) found differences in the infant’s oral microbiota due to mode of 369 

delivery, with vaginally delivered infants having a higher taxonomic diversity (81). The 370 

method of feeding (breast-feeding or infant formula) also affects the infant’s 371 

microbiome as well: oral lactobacilli with antimicrobial properties were found in breast-372 

fed infants but not found in formula-fed infants (82,83). Horizontal transmission of oral 373 

microbiota among siblings and other individuals sharing the same environment also 374 
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contributes to oral microbiome diversity. In a study of 264 saliva samples collected from 375 

107 individuals including 45 twin pairs, at up to three time-points during 10-year 376 

spanning adolescence, twins resembled each other more closely than the whole 377 

population at all time-points, but became less similar to each other when they aged and 378 

no longer cohabited (84). 379 

 380 

Temporal variation 381 

Studies looking at the temporal variation of the oral microbiome have found conflicting 382 

results: in a longitudinal study of five adults at three time-points (from 5 to 29 days), 383 

salivary microbial community appeared to be stable at different time points (85). HMP 384 

consortium (10) and Zhou et al. (13) reported that, among 22 HMP habitats of human 385 

body, the oral habitat has the most stable microbiota, showing the highest community 386 

similarity between two visits (mean time interval between visits is 212 days) while the 387 

skin and vaginal microbiota are less stable. In contrast, a reanalysis of the HMP datasets 388 

by a method for quantifying the difference between two cohorts revealed that the 389 

relative abundances of core OTUs in individual sample showed significantly greater 390 

changes from 1st to 2nd visit at oral and stool body regions compared with vaginal body 391 

region (12). More recently, a longitudinal study of 85 adults weekly over 3 months 392 

showed high levels of temporal variability in both diversity and community structure in 393 

tongue microbiome, as in other body habitats studied (86). Furthermore, this study 394 

found that both the composition of an individual’s microbiome and their degree of 395 

temporal variability shows a personalized feature. Collectively, although intrapersonal 396 

variation over time is lower than interpersonal variation, intrapersonal temporal 397 

dynamics are need to be considered when attempting to link changes in microbiome 398 
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structure to changes in health status (86). 399 

 400 

Age-related changes 401 

Along with a variety of physiological changes which accompany the aging process, 402 

microbial habitats also greatly change in the oral cavity: the eruption of primary teeth 403 

and replacement of the primary dentition with permanent dentition may lead to shifts in 404 

microbial community composition at different phases in people's lives (87). Edentulous 405 

infants have been found to have lower diversity than their mothers or primary care 406 

givers in the oral microbial composition (88). In the deciduous dentition, a higher 407 

proportion of Proteobacteria (Gammaproteobacteria, Moraxellaceae) was found than 408 

that of Bacteroidetes. With increasing age, Bacteroidetes (mainly genus Prevotella), 409 

Veillonellaceae family, Spirochaetes, and candidate divisionTM7 increased (89). 410 

Several organisms, including members of the genera Veillonella, Actinomyces and 411 

Streptococcus, were reported to have age-specific abundance profiles during 412 

adolescence (84). Xu et al., (87) analyzed of the oral (saliva, supragingiva and mucosa) 413 

microbiome across a wide age range (3 days–76 years), in which only a very small 414 

overlap of shared OTU was observed. In this study, a distinct temporal shift was 415 

observed in the relative abundance of most genera. The average relative abundance of 416 

the dominant bacterial phyla, Actinobacteria, Bacteroides, Firmicutes, Fusobacteria, 417 

Proteobacteria, Spirochetes and candidate division TM7 varied by age/dentition stage 418 

(87).  419 

 420 

CONCLUDING REMARKS 421 

The tremendous diversity of oral microbiome has only begun to be realized and a 422 
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number of challenges, such as the vast uncultivated species and the lack of reference 423 

genomes, currently remain (90). Until recently, about half of all known bacterial phyla 424 

were identified only from their 16S rRNA gene sequences (91). In fact, the bacteria that 425 

can be grown in the laboratory are only a portion of the total diversity that exists in the 426 

oral cavity (92). One method to address this challenge is single-cell genomics, which is 427 

a powerful tool for accessing genetic information from uncultivated microorganisms 428 

(93). Future work combining metagenomics and single cell genomics, as well as 429 

advances in each separate method, should help to overcome these issues, providing new 430 

insights into uncultivated lineages (94). 431 

Rapidly developing sequencing methods and analytical techniques are enhancing 432 

our ability to understand the human microbiome, leading to the concept of a ‘personal 433 

microbiome’. The focus now shifts from characterizing oral microbiota to functional 434 

studies encompassing genomics, transcriptomics, and metabolomics of both host and 435 

microbes. Future investigations will inevitably be personal omics profiling in order to 436 

probe the temporal patterns associated with both molecular changes and related 437 

physiological health and disease. This knowledge is vital for the development of 438 

efficacious prevention and treatment protocols for oral diseases and, ultimately, 439 

contributes to the development of personalized medicine and personalized dental 440 

medicine. 441 
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Table 1. A list of 16S ribosomal RNA database 698 

Name 16S rRNA coverage 

 

Database URL (reference) 

CORE Human Oral Bacteria http://microbiome.osu.edu/ (32) 

RDP Archaea and Bacteria https://rdp.cme.msu.edu/ (33) 

Human Oral 
Microbiolome Database 

Human Oral Bacteria http://www.homd.org/index.php (65) 

EzTaxon-e Archaea and Bacteria http://www.ezbiocloud.net/eztaxon (95) 

SILVA Archaea and Bacteria https://www.arb-silva.de/ (96) 

Greengenes Archaea and Bacteria http://greengenes.secondgenome.com/ (97) 

 699 

 700 

Table 2. Counts of patients included, OTUs and estimated richness (number of species) 701 

found for both the V1–V3 and the V3–V5 regions (11).  702 

Body Site 
V1-V3   V3-V5  

Patients OTUs 
a Estimated 
richness   Patients OTUs 

a Estimated 
richness 

Buccal mucosa 114 2025 6635  198 898 4650 

Hard palate 112 1741 3793  190 912 3125 

Keratinized gingiva 117 1545 4387  206 857 3352 

Palatine Tonsils 119 3683 10023  204 1633 9020 

Saliva 99 2341 6546  181 1399 6801 

Subgingival plaque 119 4216 14410  204 1672 11501 

Supragingival plaque 121 3851 11154  205 1587 8254 

Throat 110 2343 5601  192 1136 4154 

Tongue dorsum 119 3651 7910  205 1503 7947 

b Posterior fornix 59 428 1151  95 400 1466 

b Stool 118 6050 23665  209 5391 33627 
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a Upper and lower confidence limits are not included in this table. 703 

b Example of extraoral sites. The stool samples have the highest estimate of total 704 

richness, followed by the oral sites, particularly the plaque and tonsils. The skin sites, 705 

such as posterior fornix, have the lowest estimated richness. 706 


