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ABSTRACT 

Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also 

play important roles in axonal transport and signal transduction. Tau proteins are missorted, 

aggregated, and found as tau inclusions under many pathological conditions associated with 

neurodegenerative disorders, which are collectively known as tauopathies. In the adult human 

brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant 

splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is 

not restricted to these types of disorders as it is also present in patients with non-tau 

proteinopathies and RNAopathies. Tau mis-splicing results in isoform-specific impairments 

in normal physiological function and enhanced recruitment of excessive tau isoforms into the 

pathological process. A variety of factors are involved in the complex set of mechanisms 

underlying tau mis-splicing, but variation in the cis-element, methylation of the MAPT gene, 

genetic polymorphisms, the quantity and activity of spliceosomal proteins, and the patency of 

other RNA-binding proteins, are related to aberrant splicing. Currently, there is a lack of 

appropriate therapeutic strategies aimed at correcting the tau mis-splicing process in patients 

with neurodegenerative disorders. Thus, a more comprehensive understanding of the 

relationship between tau mis-splicing and neurodegenerative disorders will aid in the 

development of efficient therapeutic strategies for patients with a tauopathy or other, related 

neurodegenerative disorders. 
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INTRODUCTION 

Tau is a microtubule-associated protein that is abundant in the brain, particularly in neurons. 

This protein is primarily located in axons, where it binds to microtubules to stabilize these 

structures and support axonal transport (1). In pathological conditions, the tau protein 

commonly aggregates to form neurofibrillary tangles – as seen in Alzheimer’s disease (AD) –  

pick bodies in Pick’s disease (PiD), and tau inclusions, such as in corticobasal degeneration 

(CBD), progressive supranuclear palsy (PSP), argyrophilic grain disease (AGD), 

frontotemporal dementia (FTD), and myotonic dystrophy type 1 (DM1) (2-6). These 

disorders are collectively known as tauopathies due to their distinct tau pathologies, but the 

most advanced understanding of the mechanisms underlying tau pathology pertains to AD.  

 

Post-translational modifications, such as hyperphosphorylation, acetylation, and truncation 

result in tau proteins losing their binding affinity with the microtubule, which, in turn, allows 

them to become self-aggregated (7). Subsequently, the instability of the neuronal 

cytoskeleton due to a lack of bound tau proteins in conjunction with the toxicity of tau 

oligomers leads to neurodegeneration (8). Furthermore, this process can spread into adjacent 

or connected neurons via synaptic connections (9), which explains the characteristic 

progressive pattern of tau pathologies (6). Therefore, a majority of therapeutic strategies 

aimed at treating tauopathies target reductions in tau toxicity at the protein level via 

decreased phosphorylation, enhanced clearance, and inhibition of the aggregation of tau 

proteins (10).  

In contrast, therapies aimed at altering tau transcription are less common. Based on the 

alternative splicing of exons 2, 3, and/or 10 in the MAPT gene, tau proteins may be present in 
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six isoforms in the human brain (11). Furthermore, the appearance of tau isoforms differs 

according to age and brain region (11), which is important with respect to normal brain 

development and physiological function. Genetic studies investigating the mis-splicing of tau 

pre-mRNA have shown that it plays a role in the pathogenesis of PSP, CBD, PiD, AGD, and 

FTD (12, 13) but progress in terms of understanding this process remains limited and further 

investigation is required. Thus, the present paper aimed to review recent knowledge regarding 

tau RNA splicing and examine the role of this process in neurodegenerative disorders. 

 

TAU ALTERNATIVE SPLICING AND ISOFORM-SPECIFIC FUNCTIONS  

The tau protein is encoded from the MAPT gene, which is located at chromosome 17q21 (14). 

There are 16 exons in the MAPT gene and exons 2, 3, 4A, 6, 8, and 10 can be alternatively 

spliced (11). Exons 4A, 6, and 8 are not transcribed in the brain; thus, six isoforms are 

produced in the brain through different combinations of the splicing of exons 2, 3, and/or 10 

(Fig. 1). Exons 2 and 3 are translated into the N1 and N2 aspects of the N-terminal projection 

domain, respectively (15), which play important roles in signal transduction and membrane 

interactions (16, 17). The encoding region of exon 10 is the second aspect of the C-terminal 

microtubule-binding repeat domain, R2, and the resulting tau proteins become either 3R or 

4R tau, which differ in the number of repeats depending on the splicing of exon 10 (15). 

Because the microtubule-binding repeat domain of tau is its binding site to a microtubule (18), 

it is essential for the ability of the tau protein to maintain the stability, and regulate the 

dynamics, of microtubules (19), as well as to support axonal transport (1).  

 

The difference in the number of repeats determines the strength of the binding of the tau 

protein to microtubules; 4R tau binds to microtubules more tightly than 3R tau, which is 



UNCORRECTE
D P

ROOF

5 

 

better for stabilizing the microtubule (20), but the extra repeat makes it more likely that 4R 

tau will aggregate (21, 22). Additionally, the dynamics of both retrograde and anterograde 

axonal transport are higher for the 3R isoform than the 4R isoform (23). The tau isoform-

dependent differences in microtubule-binding capacity and axonal transport may explain the 

benefits of changes in tau isoforms during various developmental stages; 3R tau is the main 

isoform present in the fetal stage, during which the dynamic nature of the axon is an 

important requirement for synaptogenesis and establishing neural pathways (24). On the other 

hand, the overall ratio of 3R to 4R in the mature human brain is maintained at 1:1 (11) even 

though the relative amounts of these isoforms vary according to brain region and cell type. 

For example, granule cells in the hippocampus only express the 3R tau isoform (24, 25) and 

this difference is thought to provide the cells in this region with a particular resistance or 

susceptibility to specified tauopathies (25-27).  

 

Alternative splicing of the tau protein can also occur at exons 2 and 3 to produce the 0N, 1N, 

and 2N tau isoforms, which differ in the number of amino-terminal (N-terminal) inserts. 

Interestingly, exon 3 is spliced only when exon 2 is present (11, 13); thus, the 1N isoform is 

produced from a combination of exon 2+/exon3- but not from exon2-/exon 3+. The relative 

amounts of the N-terminal isoforms are regulated in the human adult brain such that the 2N 

isoform is the least expressed while the 1N isoform is the most abundant (28). This difference 

does not seem to have a direct impact on microtubule assembly (15) but it was recently 

suggested that the N-terminal projection domain plays an active role during the regulation of 

microtubule stabilization (29). When the tau protein is truncated at Gln124 in the N-terminal 

due to the deletion of repeat inserts, there is an increase in its binding affinity to the 

microtubule compared to the full-length tau protein (29).  
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The 1N isoform, which contains an N1 insert from exon 2, enhances the self-aggregating 

tendency of the tau protein (30) while the N2 insert from exon 3, which has an additional N-

terminal domain, attenuates the aggregation-promoting effects of the N1 insert (30). The N-

terminal repeat inserts interact with various molecules in the human brain that are involved in 

synaptic signaling, energy metabolism, and cytoskeletal function. When the interaction 

proteins were analyzed according to the individual N-terminal inserts using bioinformatics 

with biological process enrichment, the N2 insert was shown to interact with several 

molecules related to neurodegenerative disorders including 14-3-3 zeta, ApoA1, ApoE, 

synaptotagmin, and syntaxin 1B (31). These findings suggest that the N0, N1, and N2 

isoforms behave differently under different physiological and pathological conditions; thus, it 

is possible that the mis-splicing of exons 2 and 3 contributes to various tauopathies. However, 

direct evidence demonstrating this relationship is lacking and more intensive studies are 

needed to further elucidate this issue.  

 

MECHANISMS UNDERLYING THE SPLICING REGULATION OF THE TAU 

TRANSCRIPT 

The assembly of the spliceosome, which is a multi-protein complex to the cis-acting pre-

mRNA sequence, is an essential step in the splicing process (32). The cis-acting element is a 

short and diverse sequence that can be located in either the exon or intron; its influence 

differs depending on location and sequence. Based on their effects on splicing, cis-elements 

are classified as splicing enhancers, silencers, or modulators (32). The MAPT gene mutations 

that are close to, or within, the cis-acting elements result in FTD with Parkinsonism linked to 

chromosome 17 (FTDP-17) and other tauopathies associated with mis-splicing (12). Many 
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serine- and arginine-rich (SR) proteins possess a specific affinity for the cis-element of the 

MAPT gene and regulate the splicing of exon 10 (33) (Table 1). In addition to these proteins, 

several non-SR proteins also play a role in the splicing of exon 10. For example, RNA-

binding motif protein 4 (RBM4) (34), Tra2β (35), RNA helicase p68 (36), heterogeneous 

nuclear (hn) RNP E2 and E3 (37, 38), and CUG-binding protein (CELF) (39, 40) are known 

to be involved. The variants that depend on the cis-element and splicing factors likely act 

cooperatively to determine the efficacy and direction of the splicing of exon 10 in the MAPT 

gene.  

 

The regulation of alternative splicing processes is further complicated by variables arising 

from the altered expression and activity of splicing factors following modifications at the 

transcriptional, post-transcriptional, and post-translational levels. miRNA-132 is known to 

regulate the splicing of exon 10 via the inhibition of the expression of the PTBP2 protein, 

which is a splicing factor (41). Additionally, various kinases, including cyclic AMP-

dependent protein kinase (PKA) (42, 43), dual-specificity tyrosine-phosphorylated and 

regulated kinase 1A (DYRK1) (44-47), and GSK-3β (48), regulate the activities of splicing 

proteins via phosphorylation and, thereby, exon 10 splicing. This issue has been well 

described in a recent review article (33). From an epigenetic point of view, the regulation of 

splicing by DNA methylation may also be involved in this process (26). The speed of RNA 

polymerase II during the elongation and reposition of splicing factors to alternative exons by 

heterochromatin protein 1 (HP1) is controlled by DNA methylation (49). Considering that a 

CpG island is present in exon 9, it is the possible that DNA methylation plays a role in 

regulating the alternative splicing of the MAPT gene (26) but there is a lack of studies 

investigating this issue. 
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Relative to the processes associated with the splicing of exon 10, the regulatory mechanisms 

underlying the alternative splicing of exons 2 and 3 are less clear. Several spliceosomal 

proteins involved in exon 10 splicing also regulate exon 3 splicing. For example, SRSF1, 

SRSF2, SRSF3, SRSF9, SWAP, Tra2β, and Nova 1 decrease the inclusion of exon 3 while 

SRSF4 and SFSF6 enhance its inclusion (13). According to the linkage disequilibrium of 

nucleotide polymorphisms, the MAPT gene has two major haplotypes, H1 and H2, and the 

alternative splicing processes exhibit different patterns depending on haplotype. The H2 

haplotype of the MAPT gene tends to include the exon 3 (27, 50). Furthermore, the 

transcriptional efficacy and DNA methylation patterns of the H1 and H2 haplotypes, which 

are described in detail below, also differ. In conjunction, the differential roles of the 

haplotypes are thought to contribute to haplotype-dependent tauopathies (51, 52).  

 

TAU MIS-SPLICING AND NEURODEGENERATIVE DISORDERS 

Genetic mutations in the MAPT gene 

Genetic mutations in the MAPT gene can result in PSP, CBD, PiD, and FTDP-17. These 

pathogenic mutations of the MAPT gene are primarily located within exons 9–13 (Fig. 2) but 

are not limited to point missense and deletional mutations in exons. In fact, silent, and even 

intronic, mutations can induce a tauopathy (12). The boundary of exon10/intron 10 includes 

an RNA sequence that forms a stem-loop due to self-complementary bindings at the stem and 

this region is a hot spot for MAPT gene mutations. Most of the pathogenic intronic mutations 

are clustered in the stem-loop where mutations induce the mis-splicing of exon 10 by 

decreasing stem-loop stability, which in turn increases the inclusion of exon 10. Subsequently, 

the altered RNA structure enhances the accessibility of the spliceosome to this region and 

results in mis-splicing (36, 53). Ultimately, these intronic mutations clinically manifest as 
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FTD in most cases, via increases in either the 3R or 4R tau isoform; IVS9-10 G>T, IVS10+3 

G>A, IVS10+11 T>C, IVS10+12 C>T, IVS10+13 A>G, IVS10+14 C>T, IVS10+15 A>C, 

and IVS10+16 C>T tend to increase 4R tau (53-58) while IVS9-15 T>C, IVS10+4 A>C, and 

IVS10+19 C>G inhibit the inclusion of exon 10 and increase 3R tau (59, 60). L284L (CTT to 

CTC), N296N (AAT to AAC), and S305S (AGT to AGC) are silent point mutations that result 

in tauopathy, FTD, or PSP (61-63). Their location is close to the exon 10/intron 10 interface 

and increases the 4R tau isoform by enhancing the inclusion of exon 10. The mechanisms 

underlying the neurodegeneration caused by perturbations of the 3R-4R tau balance remain 

elusive but the isoform-dependent differences in the propensity for aggregation are thought to 

behave pathologically when the 3R:4R balance is disordered (64).  

 

Changes in the tau protein sequence due to exonic missense and deletion mutations do not 

always cause alterations in the ratio of the 3R and 4R tau isoforms. Instead, amino acid 

substitutions alter the tau structure into pathological forms (65). Interestingly, despite the fact 

that exon 10 is not mis-spliced, distinctive isoform-specific pathologies have been noted. 

R5H (66), R5L (67), I260V (68), P301L (57), G303V (69), and K317N (70) result in an 

increased propensity for aggregation and filament formation of 4R tau proteins without 

altering the 3R:4R tau ratio. The dominance of 4R tau isoform-specific pathologies in the 

absence of mis-splicing suggests that the 4R tau isoform is susceptible to becoming 

pathological following a mutation of the MAPT gene.  

It is rare that pathogenic MAPT gene mutations will lead to the mis-splicing of exons 2 and 3. 

The E342V mutation in exon 12 causes an increased splicing of exon 10, but the reduced 

inclusion of exons 2 and 3 (71), and the tau inclusions in the R5L mutation of exon 1, 

primarily consist of 4R tau with either no insert or the N1 insert (0N4R or 1N4R) (67). The 



UNCORRECTE
D P

ROOF

10 

 

possible role of an altered number of N-terminal inserts in tauopathies can be considered 

based on the biological effects of N-terminal inserts in modifying tau aggregation and 

signaling pathways (16, 17, 30, 31). However, further studies are needed to clarify this issue. 

 

Without genetic mutations in the MAPT gene 

Isoform-specific tau pathologies are also observed in the absence of MAPT gene mutations in 

sporadic cases of PSP, CBD, PiD, AGD (4R tau), PiB (3R tau), and FTD (mixture of 3R 

and/or 4R tau). Overt tau mis-splicing can occur in these sporadic cases (72) and it has been 

suggested that the preference of haplotype for specified splicing is the mechanism underlying 

the alterations in alternative splicing (12). The H1 haplotype, particularly the H1c sub-

haplotype, is thought to increase the risk of PSP and CBD by increasing exon 10 splicing (73-

76). However, a recent study that included a large sample size of brains found opposite 

results for the H1 haplotype but a protective influence of the H2 haplotype against PSP, CBD, 

and PD via increases in exon 3 (27), as has been previously suggested (50). Various 

combinations of haplotype-dependent genetic variations are known to modulate DNA 

methylation (77), transcription, and mRNA splicing (75, 78). Thus, the complicated 

interactions of these factors are thought to cooperatively determine the direction of tau exon 

splicing.  

 

Differences in the expression and activity of spliceosomal proteins result in aberrant splicing 

and contribute to the manifestation of a tauopathy. In PSP patients, increases in SRSF2 and 

Tra2β in the locus coeruleus are associated with increases in the 4R tau isoform (79). And the 

decreases of miRNA-132 thereby increase of PTBP2 was shown to enhance 4R tau pathology 

in the PSP brain (41). The pathogenic role of tau mis-splicing in AD is controversial and has 
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been previously reviewed (12), but recent reports have raised the possibility that its 

contribution to AD is due to increased DYRK2 activity in the brain, which continuously 

increases 3R tau expression and tau pathology (44).   

 

Recent, accumulating evidence suggests the there is a discriminative relationship between tau 

isoforms and neurodegenerative disorders, which means that certain tau isoforms are more 

vulnerable to specific pathogenic factors and explains why there are isoform-specific 

pathologies and regional selectivity in tauopathies (27, 80). The relative ratio of tau isoforms 

varies across cell types and brain regions (27, 80) and specified cells and/or regions that 

contain greater amounts of specified tau isoforms tend to be more easily affected by 

corresponding disorders (7, 81). For example, the quantity of the 4R tau isoform is higher in 

the globus pallidum, which may explain why this region is particularly affected by the 

pathological processes of PSP (81). Likewise, granule cells in the hippocampus exclusively 

express 3R tau isoforms and the 3R tau-positive pick body is most abundant in PiD patients 

(25). 

 

Tau mRNA mis-splicing may develop as a co-phenomenon of widespread RNA dysregulation 

during neurodegenerative processes. As a prime example, 4R tau aggregates have been 

identified in the striatum and cortex of Huntington’s disease (HD) patients (82) while 0N3R 

tau inclusions are found in DM1 patients (83, 84). DM1 and HD are caused by CTG repeats 

in the DMPK gene (85) and CAG repeats in the HTT gene (86), respectively. In these 

disorders, tau mRNA mis-splicing is due to impairments in normal alternative splicing that 

occur subsequent to the sequestration of splicing factors by the abnormally expanded CUG 

transcripts (82, 87). Tau mis-splicing in conjunction with isoform-specific tau pathologies is 
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thought to induce pathogenic cognitive deficits and behavioral changes (82, 84). The toxic 

aggregates of fused in sarcoma (FUS) and TAR DNA-binding protein (TDP-43) in the 

cytoplasm are observed in patients with amyotrophic lateral sclerosis (ALS) and FTD (88, 

89). Furthermore, there are mutations in the corresponding genes, FUS and TARDBP, 

respectively, in familial ALS and FTD (90, 91), which demonstrates the pathogenic roles of 

FUS and TDP-43 in neurodegenerative disorders. FUS and TDP-43 are nuclear proteins 

involved in RNA processes such as transcription and the splicing of multiple genes (92, 93). 

In pathological conditions, the inclusion of FUS and TDP-43 as RNA processing proteins 

results in impaired physiological processes. The altered splicing of exons 3 and 10 in tau pre-

mRNA has been observed in FUS-related proteinopathies (94) and it is thought that decreases 

in the propensity of FUS to directly bind to tau pre-mRNA alters the regulation of the 

splicing of exons 3 and 10 (94). In contrast, the TDP-43 proteinopathy does not impair tau 

pre-mRNA alternative splicing (95) despite the extensive RNA mis-processing exerted by the 

aggregation of TDP-43 proteins, which hinders its normal function as an RNA binding 

protein (96). Thus, the perturbation of tau pre-mRNA processing by neurodegenerative 

disorders is determined by the types of proteinopathies and RNAopathies. Future 

investigations will provide a clearer understanding of the relationship between tau mis-

splicing and individual neurodegenerative disorders.  

 

CONCLUSIONS 

The pathogenic contributions of tau mis-splicing are likely highly correlated with the 

manifestation of neurodegenerative disorders via tauopathies as well as non-tau 

proteinopathies. This type of mis-splicing leads to an imbalance of tau isoforms that impairs 

isoform-specific, normal physiological function and enhances vulnerability to pathological 



UNCORRECTE
D P

ROOF

13 

 

processes. Current understanding of the relationship between tau mis-splicing and 

neurodegenerative disorders is originated from cases of MAPT gene mutations, which 

widened existing knowledge about the mechanisms underlying tau splicing. Several trials 

corrected exon 10 mis-splicing in MAPT gene mutations using small molecules (97), 

modified antisense oligonucleotides (98), or spliceosome-mediated RNA trans-splicing (99) 

but none of these studies progressed to clinical trials.  

 

A variety of complex factors are involved in the regulation of the alternative splicing of tau. 

Differences in the integrity of the cis-element, methylation of the MAPT gene, genetic 

polymorphisms, quantity and activity of spliceosomal proteins, and patency of other RNA 

binding proteins appear to cooperatively impact alternative tau splicing. In sporadic cases of 

tauopathy that present with tau-isoform specific pathologies, these variables operate together 

to influence tau mis-splicing; thus, therapeutic strategies should be much more delicately 

designed. Current understanding of tau mis-splicing remains limited, especially in terms of its 

pathological role in non-tau proteinopathies, RNAopathies, and sporadic cases. Further 

studies should be performed to develop efficient therapeutic strategies for the treatment of 

these disorders. 
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Figure 1. Tau protein isoforms in the human brain. Six tau isoforms are present in the human 

brain through different combinations of the splicing of exons 2, 3, and/or 10. The aspects of 

the N-terminal projection domain, N1 (green) and N2 (blue), are produced from exons 2 and 

3, respectively. Exon 10 encodes the second aspect of the microtubule-binding repeat domain, 

R2 (red). Depending on the presence of the R2 domain, tau proteins become either 3R or 4R 

tau. 

 

Figure 2. Causative MAPT gene mutations associated with tauopathies. The differential 

impacts of the causative MAPT gene mutations on tau-isoform specific pathologies can be 

demonstrated in three ways: 1) tau mis-splicing that increases either 3R tau (green line or 

arrowhead) or 2) 4R tau isoforms (blue line) and 3) 4R tau isoform-distinct pathologies 

without mis-splicing (blue dotted line). 
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Table 1. Factors regulating the splicing of exon 10 of MAPT pre-mRNA. 

cis-elements Sequence Effect on E10  
SC35-like enhancer E10, TGCAGATA Inclusion 
Polypurine enhancer (PPE) E10, AAGAAGCTG Inclusion 
A/C-rich enhancer (ACE) E10, AGCAACGTCCAGTCC Inclusion 

Exonic splicing silencer (ESS) E10, 
TCAAAGGATAATATCAAA Exclusion 

Exonic splicing enhancer (ESE) E10, 
CACGTCCCGGGAGGCGGC Inclusion 

Intronic splicing silencer (ISS) I10, tcacacgt Exclusion 
Intronic splicing modulator 
(ISM) I10, cccatgcg  

SR proteins   Effect on E10  
SRSF1: ASF, SF2, SRp30a   Inclusion 
SRSF2: SC35, PR264, SRp30b   Inclusion 
SRSF3: SRp20   Exclusion 
SRSF4: SRp75   Exclusion 
SRSF6: SRp55, B52   Exclusion 
SRSF7: SRSF3 9G8   Exclusion 
SRSF9: SRp30c   Inclusion 
SRSF11: P54, SRp54   Exclusion 
Other RNA binding proteins   Effect on E10  

RBM4  Inclusion 
Tra2β  Inclusion 
DDX5 (RNA helicase p68)   Inclusion 
hnRNPE2 and hnRNPE3   Inclusion 
hnRNPG  Exclusion 
SWAP  Exclusion 
CELF2  Exclusion 
CELF3, TNRC4  Inclusion 
PTBP2   Inclusion 
PSF  Exclusion 

miRNAs Target SF Effect on E10  
miR-9 PTBP1 Exclusion 
miR-124 PTBP1 Exclusion 
miR-132 PTBP2  Exclusion 

Kinases Target SF Effect on E10  
CLK2  Exclusion 
PKA  9G8 Inclusion 
PKA  SC35 Inclusion 
DYRK1 SC35 Exclusion 
DYRK1 9G8 *Inclusion 
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DYRK1 ASF Exclusion 
DYRK1 SRP55 Exclusion 
GSK-3β  SC35 Exclusion 

 

DYRK1, dual-specificity tyrosine-phosphorylated and regulated kinase 1A; E, exon; I, intron; 

PTBP2, polypyrimidine tract-binding protein 2; RBM4, RNA-biding motif protein 4; SF, 

splicing factors; PKA, cyclic AMP-dependent protein kinase; PSF, polypyrimidine tract 

binding protein associated splicing factor; SWAP, suppressor of white apricot protein 

*variable depending on cell type (45) 

Summarized from the literature (12, 13, 33-48). 
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