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Estrogens are the key hormones regulating the development and function of reproductive organs in all 

vertebrates. Recent evidence indicates that estrogens play important roles in the immune system, cancer 

development, and other critical biological processes  related to human well-being [1-4]. Obviously, the 

gonads (ovary and testis) are the primary sites of estrogen synthesis, but estrogens synthesized in extra-

gonadal sites play an equally important role in controlling biological activities [5-7]. Understanding non-

gonadal sites of estrogen synthesis and function is crucial and will lead to therapeutic interventions 

targeting estrogen signaling in disease prevention and treatment. Developing a rationale targeting strategy 

remains challenging because knowledge of extra-gonadal biosynthesis of estrogens, and the mechanism by 

which estrogen activity is exerted, is very limited. In this review, we will summarize recent discoveries of 

extra-gonadal sites of estrogen biosynthesis and their local functions and discuss the significance of the 

most recent novel discovery of intestinal estrogen biosynthesis.  

 

Introduction. Estrogens are a class of steroid hormones that regulate the development and function of 

male and female reproductive organs. In the ovary, estrogen synthesis begins in theca cells with androgen 

synthesis and ends with conversion of androgens to estrogens in granulosa cells by the enzyme aromatase. 

In the male gonad, estrogens are synthesized in the Leydig cells, Sertoli cells, and mature spermatocytes 

[8]. Like other steroid hormones, estrogens enter passively into the cells and bind to the estrogen receptors, 

which then regulate the transcription of downstream estrogen-responsive genes. Among the number of 

different forms of estrogens, 17β-estradiol (estradiol) is the most common and potent form of estrogen in 

mammals. Estradiol is also produced in a number of extra-gonadal organs, including the adrenal glands, 

brain, adipose tissue, skin, pancreas [5-7], and other sites yet to be identified. The discoveries of extra-

gonadal sites of estradiol synthesis greatly expands our knowledge of the novel roles of estrogens beyond 

the reproductive system.   

 

Extra-gonadal sites of estrogen synthesis and its local roles. The first discovery of extra-gonadal 

estrogen synthesis was made in 1974 by Hemsell and his colleagues when they made an unexpected 

observation that androgens were converted to estrogens in adipose tissue [9]. Since then, a number of other 

extra-gonadal sites of estrogen synthesis have been discovered. Adipose tissues are considered to be the 

major source of circulating estrogen after the gonads in both men and women, and the contribution made 

by the adipose tissues to the total circulating estrogens increases with advancing age [9]. The chemical 

structure and biological activity of the estrogens synthesized in the extra-gonadal sites are not different 

from those that are produced by the gonads. However, there are unique features that make the extra-

gonadal estrogen synthesis differ from the gonadal synthesis. A major difference is in the biochemical 

pathway of estrogen synthesis. The tissues and cells of the extra-gonadal sites of estrogen synthesis are 
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to estrogens, a critical and rate-limiting step mediated by Cyp19 aromatase. Hence, extra-gonadal estrogen 

synthesis is dependent on an external source of C19 precursors [7] and the level of aromatase expression. 

Because C19 steroids can be supplied to a local tissue via circulation and are converted to estrogens in any 

tissue where aromatase is expressed, the presence of aromatase expression in a local tissue confirms extra-

gonadal estrogen synthesis. Table 1 lists the peripheral tissues that express aromatase and are therefore 

able to convert C19 precursors to estrogens. These extra-gonadally synthesized estrogens are thought to act 

and be metabolized locally, which limits their systemic effects [10]. Another unique feature of extra-

gonadal estrogen synthesis is that while the total amount of estrogen synthesized in each tissue may be 

small, the local tissue concentrations of estrogens could be high enough to exert biological impact locally. 

The functional roles of estrogens are mediated mostly by estrogen receptors that are nuclear receptor 

transcription factors. Therefore, a tissue that expresses one or more estrogen receptors is considered to be a 

target of estrogenic regulation. Table 2 lists key organs and tissues that express estrogen receptors.  
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Sites Evidence of 17β-estradiol synthesis References 

Cyp19 mRNA Cyp19 protein 17β-estradiol  

Brain Astrocyte (rat, mouse, human), 
Hippocampus and hypothalamus 
(rat, mouse, monkey, human) 

Astrocyte (mouse), GnRH (rat), 
Dentate gyrus/ pyramidal cell (rat, 
mouse, human, monkey), 
Interneurons(human), Granular cell 
(human, monkey), Purkinje cell 
(human, mouse), Ependymal and 
subependymal cell (human). 

Astrocyte (rat, 
monkey). 

[11-20] 

Fat Stromal cell (human), Adipocyte 
(human) 

Stromal cell (human), Adipocyte, 
mesenchymal cell (human) 

 [17-20] 

Bone Osteoblast (human) Osteoblast (human) Osteoblast (human) [21-23] 

Liver HepG2 hepatoma and 
hepatocellular carcinoma 
(human), Hepatocyte (porcine). 

HepG2 hepatoma and hepatocellular 
carcinoma (human) 

HepG2 hepatoma and 
hepatocellular 
carcinoma (human) 

[24-26] 

Adrenal 
gland 

Adrenocortical cell (human, 
porcine, rat) 

Adrenocortical cell (human) Adrenocortical cell 
(rat) 

[26-28] 

Intestine Parietal cell (rat) Parietal cell (rat) Parietal cell (rat) [29] 

Skin Fibroblast (human). 
Keratinocyte (human). 

Fibroblast (chicken, human), 
Keratinocyte (human) 

Fibroblast (chicken) [30-32] 

Blood vessel Smooth muscle cell (human, rat, 
bovine) 

Smooth muscle cell (human, rat, 
bovine) 

 [33-35] 

Spleen T cell (mouse) T cell (mouse)  [36] 

 

2. Extra-gonadal sites of estrogen receptor expression 
Sites Receptor subtypes References 

ERα ERβ Other receptors  

Brain Cholinergic neuron (rat), 
GABAergic neuron (rat), Pro-
opiomelanocortin neuron 
(mouse). 

GnRH neurons (mouse), Subiculum 
neuron (monkey), Ammon's horn 
neuron (monkey) 

GPER1 (glial cell, rat),  
GPER1 (GABAergic 
neuron, rat). 

[37-41] 

Fat Adipocyte (human) Adipocyte (human) GPER (adipocyte, 
mouse) 

[42-44] 

Bone Osteoblast (mouse), Osteocyte 
(mouse).  

Osteoblast (human), Osteocyte 
(human), Osteoclast (rat, human). 

 [45-50] 

Liver Hepatocyte (rat)   [29] 

Blood vessel Smooth muscle cell (human), 
Vascular endothelial cell 
(human) 

Endothelial cell (human) GPR30 (endothelial 
cell, rat) 

[51-54] 

Intestine Epithelial cell (rat), Parietal cell 
(rat), Myenteric neuron (rat) 

Epithelial cell (rat), Parietal cell (rat) GPER (colonic 
epithelia, human) 

[55, 56] 

Skin Keratinocyte (human), Mast cell 
(human) Sebocyte (human) 

Keratinocyte (human), Mast cell 
(human) 

 [57-59] 

Adrenal gland Adrenal cortex (rat) Adrenal cortex (rat) GPER1 (rat) [60] 

Muscle Satellite cell (rat) Satellite cell (rat)  [61] 

Kidney Mesangial cells (human, mouse) Mesangial cells (human, mouse)  [62] 

Pancreas β-cell (mouse) β-cell (mouse)  [63, 64] 

 

Adipose tissues. Adipose tissues, where estradiol stimulates the production of high density lipoprotein 

cholesterol (HDL) and triglycerides while decreasing LDL production and and fat deposition [65, 66], are 

the most extensively studied sites of extra-gonadal estrogen synthesis. Both male and female aromatase-
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beneficial role in the lipogenesis. However, an adverse effect of adipose tissue-driven estradiol is also 

indicated in the pathogenesis of breast cancer. For instance, in a breast with a tumor, adipose tissues 

proximal to the tumor exhibit higher aromatase activity than those distal to the tumor [67]. 

Bone. Aromatase expression in human bone has been demonstrated in osteoblasts, chondrocytes, and 

fibroblasts (Table 1), where they convert circulating androgens into estrogens [68]. In the bone of 

prepubertal children, the locally synthesized estradiol stimulates epiphyseal maturation during the growth 

phase [69]. However, in both males and females, the massive pubertal increase of estradiol leads to 

increased apoptosis of chondrocytes in the epiphyseal plate, causing chondrocyte depletion and hence, 

ossification and growth slow-down [70]. In adults, estradiol increases bone formation and mineralization 

and reduces bone resorption, thus reducing the risk of osteoporosis (68). Therefore, it is not surprising that 

the incidence of osteoporosis increases in postmenopausal women as their ovaries lose estradiol synthetic 

capacity.  

Skin. Aromatase expression in the skin occurs mainly in hair follicles and sebaceous glands [71]. 

Glucocorticoids, cAMP analogs, growth factors, and cytokines modulate aromatase expression in these 

cells and therefore, local estrogene synthesis [72]. Estradiol enhances collagen synthesis, increases skin 

thickness, and stimulates blood flow in the skin. Therefore, in situ estrogen synthesis in the skin is vital for 

maintaining healthy skin [73]. Estradiol also prolongs the anagen phase of the hair cycle and therefore 

enhances hair growth by increasing the synthesis of essential growth factors stimulating the proliferation of 

hair follicle cells [74]. 

Liver. In the liver, estradiol regulates protein synthesis, including lipoprotein and proteins responsible for 

blood clotting (factors II, VII, IX, X, plasminogen) [75]. Estrogen signaling is also essential in regulating 

glucose homeostasis, thus improving glucose tolerance and insulin sensitivity [76]. Recent research has 

explored the possibility that postmenopausal women with nonalcoholic fatty liver disease and with long 

durations of estrogen deficiency could have a higher risk of having severe fibrosis than premenopausal 

women [77]. Estrogen receptor beta (ERβ) is implicated in mediating the protective role that estradiol 

plays under pathogenic condition in the liver as it shows potent anti-proliferative and anti-inflammatory 

properties. As such, chronic disease is linked to elevated ERβ expression in the liver [78]. ERβ is also 

known to mediate the anti-tumor action of estrogens in intrahepatic cholangiocarcinoma [79]. 

Brain. High levels of estrogen receptors are expressed during brain development. During this period, sex 

hormones determine apoptosis, neuronal migration, neurogenesis, axonal guidance, and synaptogenesis. 

Estradiol induces sexual differentiation in the developing brain. Aromatase mRNA expression in the 

hypothalamus of males peaks before and after birth, inducing sexual differentiation of the brain [80]. In the 

brains of both males and females, estradiol provides a neuroprotective effect. Estradiol’s prevention of 

neurodegeneration in brain tissues is proven in both the Cyp19KO mouse model and the aromatase 
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results in accelerated neurodegeneration [12]. Estradiol effects in the brain also include regulating mood, 

pain sensitivity, motor control, and cognitive behavior [17-20]. Estradiol regulates neuronal metabolism by 

modulating the expression of metabolic enzymes such as GLUT (glucose-transporter), glycolytic enzyme 

hexokinase, pyruvate dehydrogenase (PDH), aconitase, and ATP synthase [81]. 

Adrenal gland. Estrogens stimulate adrenal cortex growth during development by promoting cell 

proliferation and enhancing steroidogenic activity by increasing StAR and SF-1 expression in the adrenal 

gland [34]. In the fetal adrenal gland, estradiol and ACTH form as a positive regulatory loop in which 

estradiol increases ACTH secretion from adrenal cortex while ACTH increase estradiol in the ovary [82].  

Pancreas. Estradiol increases insulin gene expression and insulin content in β-cells [63, 83], increases β-

cell proliferation during pancreatic development and recovery from injury [84], and prevents apoptosis of 

β-cells upon inflammatory insult [63] via ERα− and ERβ-mediated pathways. 

Others. In the blood vessel, estradiol positively impacts vascular function by preventing the oxidation of 

LDL cholesterol, stimulating nitric oxide synthesis and release, and inhibiting fibroblast transition to 

myofibroblast, preventing cardiac fibrosis [85-87] and atherosclerosis development. In the muscle, 

estradiol increases muscle mass and strength, alleviating disuse-induced muscle atrophy and promoting 

regrowth after reloading. It also stimulates muscle repair by stimulating satellite cell proliferation [88, 89]. 

Estradiol replacement on ovariectomized mice shows that estradiol can reduce stiffness in muscle as well 

as stimulate muscle regeneration [43]. In the kidney, estradiol has a role of protecting kidney functions 

during progressive glomerulosclerosis in the female rat remnant kidney model [90]. In the intestine, to 

maintein the intestinal epithelium, estrogens are necessary. Estrogens improve epithelial barriers and 

reduce intestinal permeability [91], preventing chronic mucosal inflammation in animals and humans.[92] 

Inflammation. Estrogens play an important role in the inflammatory response by regulating development, 

proliferation, migration, and apoptosis of immune cells [93]. Lymphocytes have been shown to express 

estrogen receptors (ERα and ERβ), but the expression levels of both receptors vary among cell types. 

CD4+ T-lymphocytes express ERα whereas B-lymphocytes express ERβ [94]. In contrast, CD8+ T-

lymphocytes express both receptors at low but equivalent levels [94]. Regardless of subcellular differences, 

estrogens appear to exert a suppressive effect on both B- and T-lymphopoiesis. In support, B-lymphocyte 

formation is selectively reduced with estradiol treatment [95], and ovariectomy results in increased B-

lymphopoiesis [96, 97]. In addition to the inhibitory effect on lymphopoiesis, estradiol has been shown to 

influence T helper (Th) responses; inhibit the production of Th1 cytokines such as IL-12, TNF-α and 

IFN−γ; and stimulate Th2 anti-inflammatory cytokine production such as IL-10, IL-4, and TGF-β [98]. 

Estradiol has also been shown to modulate the main activities (maturation, differentiation, and migration) 

of myeloid cells, including monocytes, macrophages, and dendritic cells [99-102]. Thus, estradiol has an 
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may account for its contribution in diseases associated with immune disorder.  

Estrogen and estrogen receptors in the gut  

In an effort to identify extra-gonadal sites of de novo estradiol synthesis, we generated a double transgenic 

mouse line in which a transgenic aromatase (cyp19) promoter induces the expression of a red fluorescent 

protein (RFP) (un-published). In this animal, RFP signal is strongly expressed in the Peyer's patch (Pp), a 

secondary lymphoid organ in the intestine. Pp have an organizational structure similar to lymph nodes 

consisting of multiple follicles and interfollicular areas. A follicle is made of a germinal center that is filled 

with proliferating B-lymphocytes, follicular dendritic cells, and macrophages; the interfollicular area is 

populated with T-lymphocytes as well as B-lymphocytes, macrophages, and dendritic cells. As part of the 

gut-associated lymphoid tissue, Pp are known as inductive sites of intestinal immune responses [103]. The 

induction process in the Pp starts with sensing antigens or microbes in the gut lumen by M-cells located in 

a monolayer of specialized intestinal epithelial cells known as the follicle-associated epithelium. M-cells 

transport antigens to antigen-presenting cells, specifically dendritic cells (DCs), within the underlying sub-

epithelial dome through transcytosis. Dendritic cells then further present antigens to T-and B-lymphocytes, 

triggering priming and proliferation of lymphocytes to complete the immune response. A well-known 

effect of the Pp’s induction function is generating antigen-specific intestinal IgA responses, which is 

critical for maintaining host-microbiota interaction, generating immune tolerance, and preventing infection 

[104-106]. Interestingly, estrogens plays a significant role in the gastrointestinal tract. In this section, we 

will describe some of the lesser known roles for estrogen in the gastrointestinal system.  

Napoleon Bonaparte was not aware of the true importance of his words when he said “An army marches on 

its stomach.” Technically, an army marches on its intestines. The gastrointestinal tract (GIT) is a unique 

environment colonized by a remarkable variety of bacteria as well as other organisms including fungi and 

viruses. This superorganism, the microbiome, is not a simple spectator in biological processes but is an 

active component of the biochemical and metabolic health of the host [107]. The microbiome is capable of 

digesting large molecules into simpler ones that can be efficiently reabsorbed by the host. The importance 

of a healthy microbiome has been well published [108-112], and multiple pathologies have been correlated 

with poor diversity of the microbiome, including irritable bowel (IBS)[113], osteoporosis [114, 115], and 

gluten intolerance [116]. Therefore, controlling the microbiome is paramount to maintaining an optimally 

functioning GIT. The mucosal epithelium is perfectly adapted to monitor both microbial and nutrient 

composition. The release of antimicrobial peptides [117] or anti-inflammatory molecules maintains the 

optimal microbial ecology depending on the current GIT contents. 

Appetite. Researchers have noted a correlation between estradiol levels and appetite. Food intake is 

significantly decreased during the preovulatory period when estradiol levels are increasing [118]. These 

actions are attributed to estradiol inhibiting appetite indirectly through cannabinoid receptors [119]. Further, 
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more interesting is that appetite is influenced by the microbiome present in the GIT. Bacterial peptides 

signal hunger or satiation [117, 120]; in essence, the bacteria control our desire to eat. Locally synthesized 

estrogen produced in response to microbiome composition in turn may influence immune responses, 

bringing us back to control of microbiome composition. 

Immune function. Estrogenic compounds in the gut lumen suppress immune function through targeted 

apoptosis and inhibition of cell proliferation in the germinal centers of ileal Pp [121]. The Pp are important 

in generating protective immune responses to pathogens through both innate and cell medicated responses 

[121] and are also key in tolerizing the host to food antigens. The mucosal surfaces of the gut must 

maintain homeostasis, allowing sufficient function of Pp to prevent immune responses to food antigens yet 

not responding prolifically to commensal bacteria in the gut. Abnormal Pp function through estrogenic 

compounds is responsible for initializing autoimmune responses and impaired innate responses. Again, we 

see the constituents of the gut signaling control of the microbiome composition. This leads into the next 

topic of estrogens and cancer.  

Cancer. The small intestine is the main absorptive area of the gastrointestinal tract. To maximize 

absorption, the epithelial layer is covered with invaginations or crypts of Lieberkühn and exists as a sheet 

of single cells. These cells are prone to injury and are therefore replaced every 3-5 days [122]. To facilitate 

this replacement, the base of the crypts is populated with stem cells that differentiate into the mature 

epithelium as they migrate towards the crest of the crypt. ERα and ERβ are both expressed in the crypt 

cells. However, they are distributed such that ERα is predominantly expressed in the cells at the base of 

crypts and ERβ is expressed in the cells towards the crest. ERα signaling stimulates proliferation [123] and 

ERβ signaling opposes this action [124, 125], and the net signaling from the two receptors controls 

proliferation. To further support the role of estrogen receptors in tumor development, ERβ−deficient mice 

demonstrate a hyper-proliferation of the colonic epithelium with progression to colon carcinoma [91, 126]. 

More than 30 years ago, it was established that there is an associative risk between reduced estrogen levels 

and colorectal cancer in menopausal women [127] and that hormone (estrogen) replacement therapy 

reduces the incidence of colorectal cancer [128]. Recent literature on estrogen and colorectal cancer 

confirms an anti-tumorigenic role for estrogen signaling in the gut due to preferential ERβ signaling [129]. 

However, estrogen in the gut is not always good. A recent review by Kwa et al [107] associated the 

“estrobolome” [130], bacteria with the capacity to metabolize estrogens, with level of risk for breast cancer. 

A phylogenetic diverse microbiome favors metabolism of conjugated estrogens. Once metabolized, the 

free estrogens are more easily reabsorbed increasing systemic estrogen levels. Increased circulating 

estrogens levels increases relative risk for hormone dependent malignancies such as breast cancer. As 

described above, our recent unpublished work has demonstrated that not only are Pp able to respond to 

estrogens, but they are also a significant site of estradiol synthesis. Thus, Pp are able to monitor the 
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locally and ultimately alters the diversity of the microbiome. 

In conclusion, although estradiol is best recognized as sex hormone that regulates the development and 

function of reproductive hormone across the entire mammalian species, ever-growing evidence 

demonstrates its multi-faceted nature in exerting its role in non-reproductive organs and systems under 

normal as well as pathological conditions. It will be exciting to see what other functions estradiol may play 

in local tissues and from where the hormone is supplied to those sites.  
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