
UNCORREC
TE

D P
ROOFBMB Reports - Manuscript Submission 

Manuscript Draft 

Manuscript Number: BMB-16-222 

Title: Cancer Stem Cell Heterogeneity: Origin and New Perspectives on CSC 

Targeting 

Article Type: Mini Review 

Keywords: Cancer; Cancer stem cell; Cancer therapy; Plasticity; 

Reprogramming 

Corresponding Author: Hyunggee Kim 

Authors: Kiyoung Eun1, Seok-Won Ham1, Hyunggee Kim1,* 

Institution: 1Department of Biotechnology, College of Life Sciences and 

Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, 

Republic of Korea, 



UNCORREC
TE

D P
ROOFManuscript Type: Mini Review 

 

Title: Cancer Stem Cell Heterogeneity: Origin and New Perspectives on CSC Targeting 

 

Author's name: Kiyoung Eun1†, Seok-Won Ham1†, Hyunggee Kim1* 

†These authors equally contributed to this work. 

*Corresponding author 

 

Affiliation: 1Department of Biotechnology, College of Life Sciences and Biotechnology, 

Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. 

 

Running Title: Cancer stem cells: origin, heterogeneity and targeting. 

 

Keywords: Cancer, Cancer stem cell, Cancer therapy, Plasticity, Reprogramming 

 

Corresponding Author's Information:  

Phone: +82-2-3290-3059; Fax: +82-2-3290-3040;  

E-mail: hg-kim@korea.ac.kr 



UNCORREC
TE

D P
ROOFAbstract 

Most of cancers still remain to be incurable human diseases. According to recent 

findings, especially targeting cancer stem cells (CSCs) is the most issued therapeutic strategy. 

CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-

renewal and aberrant differentiation potential. Most of all, presence of CSCs is closely 

associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to 

target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer 

malignancies; increased metastases, recurrence, and even acquired resistance after the anti-

CSC therapies developed in experimental models. One of the most forceful underlying 

reasons is a “cancer heterogeneity” due to “CSC plasticity”. Comprehensive understanding of 

CSC-derived heterogeneity will provide novel insights for the establishment of efficient 

targeting strategies to eliminate CSCs. Here we introduce findings on mechanisms of CSC 

reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also we 

suggest concepts on improved CSC-targeted therapy to overcome therapeutic resistance 

caused by CSC plasticity and heterogeneity. 
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Revealing the origin of cancer has been a topic of much interest in that it might shed 

a light to a complete treatment of cancer. For the past 20 years, a plenty of studies have 

suggested that only a small subpopulation of the cancer cells with tumor-initiating capability 

is the core origin of the tumorigenesis and the subset of cancer cells were named cancer stem 

cells (CSCs). As it can be inferred from its nomenclature, CSCs share several features of 

normal stem cells. They can self-renew to form identical daughter cells by cell division and 

differentiate into various types of progenies [1]. 

Early researches on CSCs have focused on verifying the existence of CSCs in certain 

types of cancer and finding molecular markers for the isolation of CSCs. Several years after 

the conceptual suggestion of existence of stem-like cancer cells, experimental evidence was 

first provided in leukemia model, confirming that CD34+CD38- leukemic cells show bone 

marrow hematopoietic stem cell characteristics [2, 3]. Solid tumor CSCs were first identified 

in the breast cancer (CD44+CD24-/lowLin-) followed by their establishment in other 

common cancer types including brain, ovary, prostate, colon, pancreas, liver, skin, and lung, 

and their common or unique CSC markers have been suggested [4, 5]. 

Currently it is widely accepted that CSCs are closely related to the pathological 

features which result in worse clinical prognosis. Resistance to the conventional anti-cancer 

therapies is a feature of CSCs which is most important when it comes to the clinical point of 

view. CSCs harbor endogenous resistance mechanism against radiation and chemotherapy 

which gives CSCs a survival advantage over differentiated counterparts [6, 7]. Also, CSCs 

lead to diverse composition of cells in a tumor bulk which results in the generation of 

phenotypically varied subclones, thereby increasing chances to leave survived fraction after 

anti-cancer therapy [8]. 

Surrounding microenvironment critically affects cancer malignancy by regulating 
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also takes part in therapeutic resistance by protecting tumor cells from the therapy-induced 

damages [9]. Earlier studies have demonstrated the role of microenvironments, such as 

perivascular, hypoxic and invasive niches, in generation and maintenance of CSCs [10], but 

subsequent studies have shown the evidences that CSCs also reconstitute the 

microenvironment themselves through transdifferentiation into lineages which resemble 

normal stroma such as blood vessel endothelial cells, pericytes or fibroblasts [11-13]. 

Increased infiltration to the surrounding area and metastasis to the secondary organs 

are considered to be the most remarkable features of malignant tumors [14]. Presence of 

CSCs within tumor often connected to the enhanced invasiveness and metastatic capability. 

Many studies have demonstrated the promotive roles of CSCs in tumor invasiveness and 

metastasis through in vitro and in vivo gain-or-loss-of-function approaches [15-18]. Besides, 

recent studies are focusing on the plasticity of CSCs; dynamic transition of cellular 

phenotype between epithelial-like and mesenchymal-like depending on the stages of invasion 

or metastasis [19]. Corresponding to the characteristics of CSCs mentioned above, 

bioinformatics-based researches have shown that a worse prognosis of the patient correlates 

to higher expression of the molecular signatures related to CSCs [20]. 

Two representative concepts about the origin of the CSC were suggested; one 

postulating transformed adult stem cell as a CSC source and the other demonstrating that 

differentiated cancer cells can be reprogrammed to become CSC [10]. Recent findings 

reported that reprogramming occurs in the variety of the tumors and it affects CSC 

heterogeneity by two ways; reprogramming of genetically diverse non-CSCs and dynamic 

state-switching of CSCs of enhanced plasticity [1, 21, 22]. Thus, this review article focuses 

on the CSC reprogramming, giving explanations on the molecular mechanism of 

reprogramming discovered through varying previous researches. In addition, this review 
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remedies to overcome those limits. 
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1. Core stemness signals and transcription factors (TFs) for reprogramming 

It has been known that normal stem cells and CSCs share core stemness signaling 

such as Notch, Hedgehog, WNT/β-CATENIN, JAK/STAT, NFκB, and so on [23]. They have 

vital roles in maintaining stem cell properties or regulating their differentiations during 

numerous developmental processes and tumor progression. Recently, some papers suggested 

that an activation of these signals functions in regulating stem cell plasticity in both of normal 

and cancer tissues. In normal cerebral cortex, glial cell types like astrocytes give rise to 

reactive astrocytes, which have a multipotency like neural stem cell in vivo and in vitro, via 

Sonic Hedgehog (SHH) signaling induction after invasive injury and re-differentiated into 

neurons [24]. It implies that certain types of differentiated cells act as tissue progenitors via 

dedifferentiation to repair tissue injuries. Similarly, SHH secreted by endothelial cells 

promotes CSC-like properties of glioma cells [25]. Therefore, exposure to appropriate such 

stemness signaling can induces dedifferentiation mechanisms in normal tissues and cancer 

uses them to build its hierarchical organization.   

Recent studies have identified that the most representative reprogramming process in 

physiological conditions is a transformation of epithelial cell into mesenchymal type, namely 

epithelial to mesenchymal transition (EMT). Because mesenchymal type cells facilitate to 

migrate through extracellular matrix (ECM), it is crucially important to embryogenesis and 

further developmental process [26]. Importantly, this phenomenon appears in both of normal 

and cancer cells. Both of mammary epithelial cells and mammary carcinomas undergone 

EMT acquire lots of stem cell phenotypes [27]. Moreover, mechanisms of EMT and CSCs 

share many identical TFs, such as TWIST, ZEB1/2, and HIFs, and signaling pathways of 

TGF-β, WNT, NOTCH, and Hedgehog [28]. During recent two decades, growing number of 

studies have shown that the importance of NFκB-mediated inflammatory signal has been 
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program by NFkB-Twist axis activated by TNFα stimulation [30].  

Although CSCs activate such core stemness signaling pathways, more importantly, 

final alteration of gene expression pattern is directly controlled by TFs. For examples, HGF-

cMET-mediated reprogramming network requires function of NANOG, which is one of 

embryonic TFs [31]. Likewise, many studies have explained by linking their CSC 

reprogramming mechanisms and key stem cell transcription factor networks. Its importance 

has been suggested in induced pluripotent stem cells (iPSCs) generation from somatic cells 

by ectopic expression of 4 TFs, OCT3/4, SOX2, KLF4, and cMYC [32]. They regulate 

various genes required for pluripotency. Activation of iPSC reprogramming factors has 

identified in many types of cancers including glioblastoma and carcinomas of breast, liver, 

prostate, and lung, especially in CSCs [33-36]. More specifically in brain tumor, core 

neurodevelopmental TFs containing POU3F2, SOX2, SALL2, and OLIG2 are crucial roles in 

stem-like glioma cells and their ectopic expression induces stem cell properties [37], 

indicating that it is necessary to understand the functions of TFs related to tissue 

stem/progenitors. Moreover, many studies dealing with such stemness-associated TFs have 

demonstrated their roles in the acquisition of CSC properties by their gain-of function 

experiments. So, to target CSCs, it is necessary to understand comprehensively about 

extracellular reprogramming signal inducers like ligands, their downstream signal cascades, 

and finally corresponding TFs in CSCs (Fig 1). Hereafter, we introduce in depth several 

mechanisms which account for cancer cell reprogramming into CSC. 

 

2. Microenvironmental factors  

Although cancer is closely associated with genetic mutation, plasticity of cancer is 

more affected by their microenvironment rather than mutation during reprogramming process. 
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from specialized microenvironments, called stem cell niches [38]. Similarly, numerous 

studies have suggested CSCs require their own CSC niches to maintain their properties. 

These niches consist of endothelial cells, immune cells, fibroblasts, ECM, and their secreted 

factors like growth factors or cytokines [39]. The most studied niches are perivascular and 

hypoxic niches, but other microenvironments composed of various stromal cells have been 

identified [40]. Interestingly, recent studies have suggested that CSC niches or certain 

microenvironments are important to not only CSC maintenance, but reprogramming into 

CSCs.  

2-1. Perivascular niche  

The best studied niche is a perivascular niche, meaning microenvironments around 

blood vessels. Along with numerous studies, Kiel et al firstly concluded hematopoietic stem 

cells reside in perivascular region in spleen and bone marrow and defined it as a stem cell 

niche [41]. Likewise, this niche is crucial for maintenance of CSC populations in cancer 

tissue by direct cell-cell interactions or secreted soluble factors [42]. Glioma is the best 

known human cancer about peri-vascular niche for CSCs. In 2007, it was firstly suggested 

vascular microenvironments help maintenance of self-renewing CSC pool in brain tumor [43]. 

Recently, its functions in dedifferentiation into CSCs as well as maintenance of stemness 

properties has been reported. Endothelial cells enhance stemness properties of CSCs in 

glioma by Notch signal activation and nitric oxide (NO) signaling pathway [44]. Similarly, 

increased inhibitor of differentiation 4 (ID4) by platelet-derived growth factor (PDGF)-driven 

NO signaling promotes JAGGED1-NOTCH activity, resulted in self-renewal properties and 

tumorigenesis of glioblastoma [45]. Shh-positive endothelial cells increase various stemness 

factor like SOX2, OLIG2, and BMI1 in glioma cells, generating CD133+ CSC-like glioma 

cell [46].  
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vascular niche also identified. Vascular endothelial growth factor (VEGF) in the niche 

promotes cancer stemness properties in skin squamous cell carcinoma [47]. In head and neck 

squamous cell carcinoma, epidermal growth factor (EGF)-secreted from endothelial cells 

induces EMT of cancer cells and lead them to acquire stem cell characteristics [48].   

2-2. Hypoxia 

Since oxygen is an indispensable factor for cellular metabolism and various 

physiologies, its concentration is maintained constantly in our body. Importantly, as it accepts 

a final electron in oxidative phosphorylation, physiological condition of low oxygen, named 

hypoxia, causes harmful damages to cells. It has been identified that various cells have many 

response and adaptation mechanisms to hypoxia, which are mainly mediated by oxygen 

sensor protein, Hypoxia inducible factors (HIFs). Hypoxia also has a beneficial effect on 

embryonic development or maintaining stem cell functions [49]. Unfortunately, cancer 

utilizes these stem cell-related programs to maintain or generate CSCs in hypoxia. In 

neuroblastomas, HIF1α and HIF2α stabilized in hypoxia change gene expression patterns and 

induce dedifferentiation into Notch-1 and c-kit expressing neural crest sympathetic 

progenitors-like cells [50]. Similarly, increased ID2 by HIF1 plays role in dedifferentiation of 

neuroblastoma cells [51]. Some studies demonstrated direct regulation of well-known 

stemness TFs in hypoxia. Hypoxia and HIFs induce ALKBH5-mediated m6A-demethylation 

of Nanog mRNA and its stabilization in breast cancer [52].  

Since hypoxia causes a depletion of nutrients as well as oxygen, it is an unfavorable 

condition for cellular growth or a lots of biosynthetic processes even in cancer cells. Not only 

an adaptation, but an evasion from the hypoxia condition may be a possible way to survive. 

According to recent studies, EMT is actually the most relevant phenomenon with cellular 

invasiveness and cancer reprogramming in hypoxia. HIF1α transcriptionally regulates well-
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indicated that core stemness signaling pathways involving NOTCH, WNT/β-CATENIN, 

Hedgehog, and NFκB are potentially associated with hypoxia and EMT [55]. In breast cancer, 

JAGGED2-NOTCH signaling induced by hypoxia stimulates EMT programs, causing 

metastasis and acquisition of stem cell properties [56]. These results suggest that hypoxia-

mediated EMT programs play a pivotal function in activating metastatic cells that have 

cancer stem cell properties.  

2-3. Other stromal cells  

Recent trend in cancer biology is to identify mechanisms governing 

microenvironment-mediated tumor malignancy. There are numerous types of stromal cells 

including immune cells, mesenchymal stem cells and even fibroblasts in tumor tissues, 

promoting CSC plasticity. Especially, tumor modulates immune cells by secretion of various 

cytokines to make help tumor progression rather than attack them. It is suggestive that 

inflammatory-associated factors may activate reprogramming network leading to generation 

of CSCs. Recruited monocytes and macrophages into tumor tissue induce invasion and 

metastasis and create immunosuppressive environment via secretion of TGF-β, known as a 

potent stimulator of EMT [57]. Activated NFκB and STAT3 signaling pathways via 

inflammatory cytokines like IL-6 and TNFα also induce EMT [58, 59]. These immune-

associated microenvironments are inevitably occurred in tumor tissues and participate in 

cancer plasticity regardless intended or unintended. 

Fibroblasts in tumor tissue, called cancer-associated fibroblasts (CAFs), promotes 

tumor progression and some studies demonstrated their role in dedifferentiation. CAF 

promotes malignancy of breast cancer through EMT induced by TGF-β secretion [60]. 

Myofibroblast-secreted factor including HGF enhances Wnt signal activity and stemness 

properties of LGR5-positive colorectal cancer stem cells [61]. Stellate cell which is 
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[62].  

These reports have showed varying cytokines or growth factors from various stromal 

cells activate stem cell properties of cancer cells and induce metastasis. Importantly, because 

most of cytokine-mediated signaling pathways can be associated with inflammation 

responses, damages induced by various therapies may cause such inflammatory 

microenvironment, rather leading cancer malignancies. One study showed CAF secrets IL-

17A, which enhances stem cell properties of colorectal cancer after chemotherapy, resulting 

in a chemoresistance and a recurrence [63].  

 

3. Epigenetic alteration 

Beyond these signaling cascades, a final determination of cell type is dependent on 

epigenetic status of lineage determinant factors. During iPSCs generation, iPSC TFs consist 

of embryonic stem cell (ESC) chromatin network along with various epigenetic modulators, 

driving specialized epigenetic mechanisms which play crucial roles in resetting their 

identities during reprogramming process [64, 65]. Likewise, such stemness TFs and 

epigenetic modifications are considered to function as crucial elements for reprogramming 

cancer cells into CSCs. In fact, many recent studies have reported relevance of various 

epigenetic modifiers in cancers. For example, cancer cells repress differentiation-related 

genes or tumor suppressor genes through epigenetic silencing of Polycomb-group proteins 

(PcGs), which function in cellular differentiation and development via histone modification-

driven transcriptional repression [66, 67]. Although methylation status of each cancer type 

varies, hypermethylated gene sets of specific type of cancer are sharing with ESC signature 

[68]. It has been identified that key factors of polycomb repressive complex 2 (PRC2), such 

as enhancer of zeste homolog 2 (EZH2) and suppressor of zeste 12 homolog (SUZ12), were 
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maintenance of their CSC population [69-72]. Ectopic expression of SUZ12 in differentiated 

breast cancer cell resulted in the CSC formation [70]. BMI1, a key subunit of PCR1 complex, 

is upregulated by controlling methylation pattern on its promoter by embryonic transcription 

factor SALL4 in leukemic stem cells [73]. In glioblastoma, BMI1 and EZH2 are highly 

expressed in tumor-initiating CD133-positive cells and their knockdown disrupts stem cell 

properties [74]. Besides PRC complex subunit, numerous chromatin regulators have been 

reported in human cancer. DNA methyltransferases (DNMTs) containing DNMT1 essential 

for maintenance of existing methylation patterns and DNMT3 for de novo methylations at 

CpG islands are also potential factors for CSC reprogramming. For incidence, DNMT1 and 

DNMT3A have crucial function in regulating malignancies of breast cancer stem cells and 

various leukemia stem cells, respectively [75, 76]. Another histone methyltransferase, mixed-

lineage leukemia 1 (MLL1), is required for hypoxia-induced self-renewal properties [77], 

whereas one of histone demethylases, JARID1B, is engaged in the dynamics of CSC 

population in melanomas [78]  

In conclusion, an aberrant epigenetics induce or suppress transcription of stemness or 

differentiation factors, resulting an activation of various stemness signaling pathways in 

differentiated cancer cells. Furthermore, to explain variable cancer plasticity, chromatin status 

also may be closely associated with their surrounding microenvironments, rather than a one-

time genetic mutation. For example, differentiated basal breast cancers acquire CSC 

characteristics by ZEB1 increased by TGFβ signaling [79]. Altogether, dynamics of 

chromatin status are controlled by regular cellular programs controlled by stimuli recognizers, 

signal mediators, and TFs followed by physiological conditions or proper environmental 

factors.  
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1. Current CSC targeting strategies and their limitations 

As it is clarified that CSC takes critical roles in cancer progression and therapeutic 

resistance as the apex of cancer hierarchy, anti-cancer therapy targeting CSCs has been 

suggested to be a promising therapeutic modality to effectively eliminate the origin of cancer 

development and reduce the risk of recurrence [80]. There are several studies showing CSC 

targeting strategies including targeting CSC-marker, CSC-specific cellular signaling 

pathways, and CSC microenvironment. Since several prominent CSC cell surface markers 

have been discovered in various cancer types, researchers speculated that it would be 

promising to target those markers for the CSC-specific drug delivery and direct inhibition of 

CSC maintenance. Many studies tried CD133-mediated CSC targeting, for instance, drug 

conjugation to CD133 antibody, immune-mediated clearing with CD133-recognizing bi-

specific antibodies bound to immune cells and nanoparticle-conjugated CD133 aptamer 

showed modest anti-CSC effect [81]. Researchers also tried to abrogate CSC-specific 

signaling nodes by chemical- or antibody-dependent inhibition. Recent reports demonstrated 

positive clinical and pre-clinical outcomes of CSC-specific signaling component inhibitors 

such as OMP-18R5 targeting WNT receptor Frizzled, BMS-906024 targeting γ-secretase to 

block NOTCH signaling, and vismodegib and BMS-833923 which block SHH signal 

receptor Smoothened [82-84]. 

Despite the multilateral approaches, recent studies have pointed out the limitations of 

CSC targeting strategies. CSC marker-negative or differentiation marker-positive cancer cells 

could initiate tumor formation [85, 86]. Besides, single cell transcriptome analysis revealed 

that the cells positive for the different CSC markers or the cells harboring activation of the 

distinct CSC-specific signaling nodes could co-exist within a population of tumor cells, and 

multiple CSC or cancer subtype markers can be simultaneously expressed by a cell, 
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segregate CSCs and non-CSCs [87]. Also, activation of CSC-specific signaling pathways 

could be heterogeneous within a tumor, implying that abrogation of a single pathway may not 

critically affect whole CSCs [88]. It is plausible that diversity of CSCs may be generated by 

distinct stemness or reprogramming signaling activations, resulting in divergent expression 

patterns or CSC markers. Therefore, development of CSC-specific targeting strategies using 

marker-dependently sorted CSCs and targeting of a single CSC marker or signaling node is 

not proper strategy due to CSC heterogeneity. 

 

2. Necessity for comprehensive understanding of CSC dynamics: Diversity of phenotypes 

and distinct reprogramming process  

In the past, we commonly defined CSC as a cell at a “fixed” status consistently 

maintaining so called “CSC phenotypes”. However, a number of evidence suggest that we 

should put more weight to plasticity of CSCs, a dynamic conversion of phenotypic status by 

trans-differentiation and reprogramming, rather than assuming that CSCs remain in the 

steady-state [1]. In the breast CSC model, both ALDH+ and CD44+/CD24- populations are 

stem-like, but their phenotypes differ; one being more quiescent resembling luminal type of 

normal breast stem cells and the other being more mesenchymal-like similar to basal type of 

breast stem cells, even though those populations are capable of interconversion between each 

other [8, 89].  

Recently, several cancers are subdivided into “subtypes” by distinct gene expression 

patterns and characteristics, even though they were generated from an identical tissue. Thus, a 

subtypical conversion of CSCs may be a potent cause of CSC dynamics. This phenomenon 

has been demonstrated in various cancers and showed clear example of their plasticity. 

Phenotypic transition of the proneural type of brain tumor stem cells into mesenchymal type 
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modulators for this transition [90-92]. Another study showed CSC plasticity in the prostate 

cancer, which is strongly related to metastatic capability [93]. Recent findings suggested that 

poor prognostic outcome of the castration-resistant prostate cancer accounts for the dynamic 

switching of prostate CSCs between epithelial-like and mesenchymal-like states by androgen 

signaling, histone modification and miRNAs which eventually promotes metastatic spread 

[93-95]. A capability for these dynamic transitions leads CSCs to adapt to environmental 

changes in the process of invasion and metastasis thereby affecting tumor progression and 

imparting therapeutic resistance. These studies have suggested that the repetitive and rapid 

reprogramming process generates hierarchical organization and mixed composition of 

phenotypically distinct subclones. Importantly, each subtypes may require activations of 

distinct and specific signaling pathways, because they show their specific gene expression 

patterns. Although we still narrowly understand about subtypical interconversions of CSCs, it 

is likely that distinct signaling activators or specific microenvironmental conditions may be 

required for the transition into specific subtypes.  

 

3. Necessity for comprehensive understanding of CSC dynamics: Status of CSC sources 

Given that CSCs could be originated from differentiated non-CSCs by 

reprogramming signals, it is reasonable that these signals dedifferentiate non-CSCs harboring 

diverse genetic contents giving rise to genetically heterogeneous CSCs or that they may not 

give rise to CSCs even in an existence of powerful reprogramming activators. During iPSC 

generation, reprogramming is affected by various factors, including epigenetic factors and 

TFs, acting as reprogramming barriers or enhancers [96]. A previous study reported that each 

of the clones with different genetic alterations requires activation of distinct signaling nodes, 

which can promote stem cell-like properties and tumor propagation. This result suggests that, 
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the genetic background would give rise to a variety of CSC phenotypes [21]. One of common 

features of cancers is an unstable genomic status, including mutations and aberrant 

epigenetics, and it is known that each of the cells consisting tumor bulk harbors various 

genetic alterations thus presenting genetic heterogeneity [14]. Cancer cells with diverse 

background status may reach to different CSC hierarchical stages or become different CSC 

types even in identical conditions. Despites diverse mechanisms governing stemness or 

reprogramming, it seems that they converge towards several stemness TFs to regulate stem 

cell gene signatures. For example, epigenetic modifiers interacting stemness TFs may 

function as crucial elements to do this, because genes being epigenetically tied-up status, 

called “heterochromatin”, should be open to facilitate their transcription in non-CSCs. 

Therefore, it is plausible that identifying transcription factor and epigenetic modifier 

networks involving in CSCs and reprogramming process should be a potential approach to 

develop CSC targeting strategy. Furthermore, development of CSC-specific therapy that 

targets molecular mechanisms controlling CSC heterogeneity should be proceeded in the near 

future. 
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As mentioned above, developing therapeutic strategies to target CSCs is necessary 

considering its impact on cancer progression and prognosis of patients. However, targeted 

elimination of pre-existing CSCs is not enough as it is demonstrated by plenty of recent 

findings that the CSCs can be newly generated from the differentiated non-CSCs by 

reprogramming mechanism through which even CSCs with different characteristics could 

emerge. That is, CSCs not only serve as the origin of tumor formation, but also drive 

heterogeneity of cell composition inside the tumor and of CSCs themselves as well. Since 

CSC diversity renders tumor resistant to the anti-cancer therapies eventually resulting in 

recurrence, it is necessary to gain a new insight from comprehensive understanding of CSC 

plasticity based on molecular genetics and biology.  

Thus our perspectives on establishing novel CSC-targeting strategy suggest that we 

should consider the following respects (Fig 2). 1) Since populations of CSCs already reside in 

the tumor, eliminating them by marker-dependent targeting or inhibition of CSC-specific 

signaling nodes should be initial and basic regimens as is currently accepted. 2) Also, 

controlling a variety of reprogramming mechanisms should be combined to prevent de novo 

generation of the different types of CSCs. Unfortunately, it is impossible to modulate all the 

reprogramming signals at the same time, 3) therefore certain microenvironment-specific or 

subtype-specific core transcription factor-epigenetic modifier networks should be identified 

and considered as a potential target. Although CSCs are regulated by diverse signaling 

depending on their types, we may speculate that CSCs would share a common transcriptional 

programs mediated by core transcription factor-epigenetic modifier networks, as described in 

similar gene expression signature among CSCs of identical subtype.  

In summary, interconnected networks consisting of various transcription factors, 

microenvironmental factors and epigenetic alterations modulate CSC reprogramming and 
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and heterogeneity. Therefore, as this review suggests, future direction for targeting CSCs 

should include both CSC and de novo CSC generation, thus it must be based on recent 

findings about CSC plasticity and the comprehensive validations on the networks of related 

signaling pathways. 
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Figure 1. Core signaling pathways and epigenetic modifications regulating CSC 

reprogramming and differentiation. 

 

Figure 2. A schematic diagram showing CSC targeting strategies 
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