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Abstract  

CD44 pre-mRNA includes 20 exons, among which exons1-5 (C1-C5) 

and exons16-20 (C6-C10) are constant exons, whereas exons 6-15 

(V1-V10) are variant exons. V6 exon containing isoforms has been 

known to be implicated in tumor cell invasion and metastasis. 

In the present study, we performed SR protein screen for CD44 

V6 splicing using overexpression and lentivirus-mediated shRNA 

treatment. Using CD44 V6 minigene, we demonstrate that 

increased SRSF3 and SRSF4 expression do not affect V6 splicing, 

but increased expression of SRSF1, SRSF6 and SRSF9  inhibit V6 

splicing significantly. In addition, using constitutive exon 

specific primer set, we could not detect alteration of CD44 

splicing after SR protein-targeting shRNA treatment. However, 

using V6 specific primer, we identified that reduced SRSF2 

expression significantly reduced V6 isoform, but increased V6-10 

and V6,7-10 isoforms. Our results indicate that SR proteins are 

important regulatory proteins for CD44 V6 splicing. 
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Introduction 

Pre-mRNA splicing is an important gene regulatory process in 

which introns are removed and exons are ligated together to 

produce mRNA (1). Importantly, alternative splicing produces 

multiple proteins from a single gene. At least 95% of human 

genes are alternatively spliced, thus regulation of 

alternative splicing plays key roles in signal transduction 

and development. Aberrant splicing causes various genetic 

diseases and cancer (2-4). Alternative splicing is regulated 

by cis- and trans-acting elements. Cis-acting elements are 

splicing enhancers or inhibitors that are located at exons or 

introns. Trans-acting elements are proteins that regulate 

alternative splicing. The best known trans-acting elements are 

Serine-Arginine rich (SR) proteins and heterogeneous nuclear 

ribonucleoprotein (hnRNP) (5, 6). Pre-mRNA splicing is 

processed by a ribonucleoprotein (RNP) complex called 

spliceosome that is composed of U small nuclear RNP particles 

(snRNPs) and many proteins.  

CD44 receptor is a cell adhesion membrane glycoprotein, which 

mediates communication and adhesion between adjacent cells as 

well as between cells and the extracellular matrix, and 

directs intracellular signaling for growth and motility. The 

function of CD44 depends on its ligands, whereas Hyaluronic 

acid mediates the tumor suppressor function of CD44, growth 
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pre-mRNA includes 20 exons, among which exons1-5 (C1-C5) and 

exons16-20 (C6-C10) are constant exons, whereas exons6-15 (V1-

V10) are variant exons (8). Alternative splicing of CD44 

variant exons produces a large number of mRNA isoforms 

encoding for proteins with different post-transcriptional 

modifications and diverse ligand-binding properties (9-11). 

Variant exons are differently included or skipped to generate 

a large variety of splicing variants. CD44 proteins sizes are 

ranged from 85 kDa (CD44s) to 250 kDa (CD44 V3-V10). V6 exon 

containing isoforms play important roles in tumor cell 

invasion and metastasis. V6 exon has been shown to be highly 

expressed in tumors compared with normal tissues. V6 containing 

isoform forms a complex with hepatocyte growth factor (HGF) 

and tyrosine kinase receptor Met to activate met-dependent Ras 

signaling through association of ezrinradixin-moesin (ERM) to 

the cytoplasmic tail of CD44 (12, 13).  

SR proteins are a protein family that includes 13 members - 

SRSF1~12 and tra2β. SR proteins are composed of RNA 

recognition motif (RRM) domain and RS domain (5). SR proteins 

have important roles both in constitutive and alternative 

splicing. In the constitutive splicing, SR proteins are known 

to promote spliceosome assembly including U1 snRNP binding to 

5’ splice-site and U2 snRNP binding to branch-point (14, 15). 

In alternative splicing, SR proteins are shown to antagonize 
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or skipping through interacting with exons or introns. In 

addition to the roles in RNA splicing, SR proteins also 

functions in transcription elongation, RNA stability, mRNA 

transport and mRNA translation (17). 

In the present study, we performed SR protein screen for CD44 

V6 splicing using overexpression and lentivirus-mediated shRNA 

treatment. Using CD44 V6 minigene, we demonstrate that SRSF3 

and SRSF4 do not affect V6 splicing, SRSF1, SRSF6 and SRSF9 

inhibit V6 splicing significantly. In addition, using 

constitutive exon specific primer set, we could not detect 

alteration of CD44 splicing after SR protein-targeting shRNA 

treatment. Using V6 specific primer, we identified that reduced 

SRSF2 expression significantly reduced V6 isoform, but 

increased V6-10 and V6,7-10 isoforms. Our results indicate that SR 

proteins are important regulatory proteins for CD44 V6 splicing 

 

 

Results 

 

SRSF3 and SRSF4 did not affect V6 exon splicing of CD44 pre-

mRNA 

In order to identify the SR proteins that affect V6 exon 

splicing of CD44 pre-mRNA, we applied the MCF7 stable cell 

line that expresses pFlare-V6 plasmid (18). As previously 
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introns are inserted between β-globin exon 1 and GFP exon 

(figure 1A). GFP is expressed when V6 is skipped, and then RFP 

is expressed when V6 is included. To detect V6 exon splicing, 

we used a primer set that basepair with β-globin and GFP exon 

(figure 1A). Consistent with the previous results (18), V6 

included isoform was dominantly expressed, whereas V6 excluded 

isoform was expressed in a much less significant level (lane 1, 

figure 1B). It was also consistent with previously published 

conclusion (18), that SRSF2 significantly promotes V6 skipped 

isoform and inhibits V6 inclusion. Next we tested the function 

of SRSF3 and SRSF4 on V6 splicing. Although V6 exon and 

flanking introns include a number of potential binding sites 

for SRSF3 and SRSF4, figure 1B shows that neither SRSF3 nor 

SRSF4 affected V6 splicing. Thus we conclude that SRSF3 and 

SRSF4 are not regulatory factors for V6 exon splicing of CD44 

pre-mRNA. 

 

SRSF1, SRSF6 and SRSF9 inhibit V6 exon splicing 

We further asked whether other SR proteins regulate V6 exon 

splicing. We also noticed that V6 exon and flanking introns 

contains a significant numbers of potential binding sequences 

for SRSF1, SRSF6 and SRSF9. These sequences provide potentials 

that these proteins regulate V6 exon splicing. To this aim, we 

expressed SRSF1 or SRSF6 or SRSF9 in the pFlare-V6 cell line. 
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of these proteins induced the V6 skipped isoform significanty 

(~44%, ~36% and ~46% independently). Therefore we conclude 

that SRSF1, SRSF6 and SRSF9 inhibit V6 exon splicing.  

 

Using primer set that basepair with constitutive exons could 

not detect the induction of any various exon-included isoforms 

by reduced SR protein expression  

We next wondered whether reduced expression of SR proteins 

could induce alteration of endogenous CD44 splicing. To 

address this question, we treated MCF7 cells using lentivirus-

mediated shRNA and then extracted RNA from cells. The standard 

primers that basepair with constitutive C5 and C6 exons were 

used to detect both the isoform that includes only 

constitutive exons (C) and the isoforms that includes any 

variant isoform (V) (lower panel, figure 3). Consistent with 

the previously reported results (19), RT-PCR results for CD44 

splicing using these primers show that C isoform was 

predominantly detected, whereas V isoforms were not detected 

(lane 1, figure 3). Moreover, non-silencing (NS) shRNA 

treatment did not induce any alteration of CD44 splicing (lane 

2), suggesting that the NS shRNA can be used as a negative 

control. The results using shRNAs that target different SR 

proteins suggest that reduced expression of SRSF1, SRSF2, 

SRSF3, SRSF4 and SRSF9 did not induce production of any V 
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conclusion that SRSF3 and SRSF4 did not affect CD44 splicing, 

but not with the conclusion that SRSF1, SRSF2 and SRSF9 

regulate V6 exon splicing.  

 

Using V6 exon specific primer could detect the induction of 

various exon-included isoforms by reduced SRSF2 

As the primers could not detect various isoform containing 

isoforms, we determined to use one primer that basepair with V6 

exon and the other that basepair with C6 exon (lower panel, 

figure 4). The primers could detect V6-10 exon combinations, but 

not V2-V5. The figure 4 results show that the isoform that 

includes only V6 isoform among V6-10 was dominantly detected (V6, 

lane 1). In addition, an isoform that include V6, V7, V8, V9 and 

V10 (V6-10) and an isoform that includes V6, V8, V9 and V10 (V6,7-10) 

were produced in less significant levels. We next asked 

whether reduced expression of SR proteins affects expression 

of these CD44 isoforms. Figure 4 results demonstrate that 

reduced expression of SRSF3 SRSF1 caused a decrease of V6-10 and 

V6,7-10 isoforms (lanes 1 and 6). Moreover, reduced SRSF9 and 

SRSF4 expression did not induce significant change of CD44 

isoforms. Most significantly, reduced expression of SRSF2 

induced decreased expression of V6, but increased expression of 

both V6-10 and V6,7-10 expression. Our results suggest that SRSF2 

is a key player in CD44 V6 splicing. 
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Discussion 

CD44 pre-mRNA splicing is one of most complicated splicing 

events in human genes. CD44 pre-mRNA includes 10 constant 

exons, exons 1-5 (C1-C5) and 16-20 (C6-C10), and 10 various 

exons, exons 6-15 (V1-V10) (18, 19). In this manuscript, we 

studied the function of SR proteins on V6 exon splicing of CD44 

pre-mRNA. First, in the overexpression of SR proteins into the 

pFlare-V6 minigene harboring MCF7 stable cell line, we 

demonstrated that SRSF1, SRSF6 and SRSF9 but not SRSF3 and 

SRSF4 inhibit V6 exon splicing. Next, we analyzed the SR 

proteins function by reducing their expression through shRNA 

treatment. We found that using the primer set that basepair 

with the constitutive exons of CD44 pre-mRNA, the changes of 

alternative splicing by SR proteins were not detectable. 

However, Using the primer that basepair with V6 exon, we show 

that SRSF2-targeting shRNA decreased V6 isoform significantly, 

but increased V6-10 and V6,7-10 isoforms. Our results indicate 

that CD44 V6 splicing is regulated by SR proteins.  

SR proteins have been known to function through binding to the 

enhancer to promote spliceosome assembly (20-22). Recently it 

was also reported that SR proteins can either promote or 

inhibit exon inclusion (23-25). In addition, using tethered SR 

proteins it was demonstrated that splicing activation and 

repression by SR proteins depends on the location of their 
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SR proteins we analyzed could potentially interact with V6 exon 

and flanking introns, only some of them could inhibit V6 

splicing. Furthermore, the locations of SR protein binding did 

not affect their functions. The results can be explained that 

various potential binding locations of SR proteins on V6 exon 

and flanking introns could possibly function through 

combinatory or synergistically. How these combination or 

synergistic effects regulate alternative splicing has not been 

well understood. One of our most striking results is that 

reduced SRSF2 expression could induce various V6 exon 

containing isoforms. How the proteins encoded by these mRNA 

isoforms function need to be determined. 

Our results indicate that the the SR proteins, whose 

overexpression showed inhibitory effects on V6 splicing, did 

not demonstrate significant effects as their expressions were 

reduced. This kind of quantitative differences was also shown 

before (19, 27).  Another possibility is the difference of the 

assay systems in two experiments: whereas overexpression 

experiments were performed using minigene-harboring stable 

cell line, shRNA treatments were performed by analyzing 

endogenous CD44 splicing. Another different results caused by 

assay systems are the differences in primer for analyzing V6 

splicing of CD44 pre-mRNA: only V6 specific primers but not 

constitutive exon specific primers could detect the alteration 
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pre-mRNA should be detected using the primer that basepair 

with itself. 

Materials and methods  

Cell culture  

MCF7 cells was maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Hyclone) supplemented with antibiotics (100 U/ml 

penicillin G and 100 µg/ml streptomycin) and 10% of Fetal 

Bovine Serum (FBS; Hyclone) in a humidified 5% CO2 condition 

at 37°C. The stable pFlare-V6 stable cell was obtained as 

previous described (18). Different SR proteins plasmids were 

transfected into the stable cells using polyethyleneimide (PEI) 

Reagent according to the manufacturer’s protocol. 

RT-PCR 

Total RNAs were extracted using RiboEx reagent (GeneAll) 

following manufacturer’s protocol. RT-PCR was conducted as 

previously described (19). For the endogenous CD44 pre-mRNA 

splicing, RT-PCR was conducted as described previously (28). A 

specific primer, CD44RT (5’-ATG CAA ACT GCA AGA ATC-3’) was 

used for reverse transcription. Following primers were used to 

detect CD44 splicing: primers for detection of pFlare-V6 stable 

cells [pFlarev6 Fwd (5’- GGA AGA GTT GGT GGT GAG G-3’), 

pFlarev6 Rev (5’-GGT GCA GAT GAA CTT CAG G-3’)], endogenous 

CD44 splicing [For (5’- AAG ACA TCT ACC CCA GCA AC-3’), Exon C7 

Rev (5’- TTT GCT CCA CCT TCT TGA CTC C -3’)], V6 splicing [Fwd 
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CCT TCT TGA CTC C-3’)].The endogenous RT-PCR products were 

confirmed by sequencing.  

 

shRNA treatment 

shRNA lenti-virus was prepared using different SR protein 

shRNA plasmi as previous described (19). Knockdown of SR 

proteins were performed by treating cells with the virus for 

72 h. 
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Figure legends 

Figure 1. SR proteins regulate V6 exon splicing of CD44 pre-

mRNA. (A) pFlare-V6 minigene is shown. V6 exon is shown with 

black box, β-globin and GFP/RFP exons are shown with 

white/gray boxes. Introns that flanks V6 are shown with thicker 

lines, introns of β-globin and GFP are shown with thinner 
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treated with pcDNA3.1+ or SRSF2 or SRSF3 or SRSF4. 

Quantitation results by Image J from three independent 

experiments are shown at bottom. The significant change was 

evaluated by Student’s t-test. The error bars represent 

standard deviation of the repeats. 

Figure 2. SRSF1, SRSF6 and SRSF9 inhibit V6 exon splicing. RT-

PCR analysis using RNAs from pFlare-V6 MCF7 cells treated with 

pcDNA3.1+ or SRSF1 or SRSF6 or SRSF9. Quantitation results by 

Image J from three or more independent experiments are shown 

at bottom. The significant change was evaluated by Student’s 

t-test. Results are expressed as percentages of ratio skipping 

V6 /total. The error bars represent standard deviation of the 

repeats. 

Figure 3. Using primer set that basepair with constitutive 

exons could not detect the induction of any various exon-

included isoforms by reduced SR protein expression. (Upper 

panel) RT-PCR analysis using RNAs from cells treated with 

shRNA viruses that target SRSF3, SRSF9, SRSF2, SRSF4 or SRSF1. 

Non-silencing shRNA was used as a control. The identities of 

spliced products are shown at right. (Lower panel) primers 

used in RT-PCR analysis are shown with arrows. 

Figure 4. Using V6 exon specific primer could detect the 

induction of various exon-included isoforms by reduced SRSF2. 

(Upper panel) RT-PCR analysis using RNAs from SR protein-
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ROOFtargeting shRNA viruses treated cells. The identities of the 

spliced products are shown at right. (Lower panel) primers 

used in the RT-PCR analysis are shown with arrows. 
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