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ABSTRACT 16 

Neutrophils, the most abundant innate immune cells, play essential roles in the innate immune 17 

system. As key innate immune cells, neutrophils detect intrusion of pathogens and initiate 18 

immune cascades with their functions; swarming (arresting), cytokine production, 19 

degranulation, phagocytosis, and projection of neutrophil extracellular trap. Because of their 20 

short lifespan and consumption during immune response, neutrophils need to be generated 21 

consistently, and generation of newborn neutrophils (granulopoiesis) should fulfill the 22 

environmental/systemic demands for training in cases of infection. Accumulating evidence 23 

suggests that neutrophils also play important roles in the regulation of adaptive immunity. 24 

Neutrophil-mediated immune responses end with apoptosis of the cells, and proper 25 

phagocytosis of the apoptotic body (efferocytosis) is crucial for initial and post resolution by 26 

producing tolerogenic innate/adaptive immune cells. However, inflammatory cues can impair 27 

these cascades, resulting in systemic immune activation; necrotic/pyroptotic neutrophil bodies 28 

can aggravate the excessive inflammation, increasing inflammatory macrophage and dendritic 29 

cell activation and subsequent TH1/TH17 responses contributing to the regulation of the 30 

pathogenesis of autoimmune disease. In this review, we briefly introduce recent studies of 31 

neutrophil function as players of immune response. 32 
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INTRODUCTION 34 

Neutrophils, the first defenders of the immune response, recruited into inflamed sites according 35 

to infectious and/or inflammatory cues. Recruited neutrophils recognize/integrate the unique 36 

patterns of danger molecule secreted by pathogens or the host and initiate immune cascades (1, 37 

2). Neutrophils can eliminate extracellular pathogens or debris with phagocytic activity while 38 

releasing pro/anti-inflammatory cytokines and redox/cytotoxic molecules (3), therefore can 39 

present a ‘blueprint’ of further immune responses. Although the functional roles of neutrophils 40 

have been investigated well in innate immunity, the heritage of immune response after 41 

neutrophil action is now getting attention to understand the following innate/adaptive immune 42 

activation (2). The excessive activation of neutrophils can threaten the homeostasis of the host 43 

immune/organ system and paradoxically induce immune paralysis during the progress of sepsis 44 

and tumors (1, 2). Moreover, recent studies demonstrated the possibility of neutrophil response 45 

and death in the pathogenesis of chronic inflammation and autoimmune disease (2, 4, 5), 46 

proving the notion that neutrophils are not just a part of innate immune system. In this review, 47 

we briefly overview the functions of neutrophils and their generation by focusing on the roles 48 

of neutrophils as modulators of the entire immune response.  49 

 50 

Neutrophil-triggered inflammatory cascades 51 

Neutrophils, the most abundant innate immune cells in blood stream patrol and surveil the 52 

inflammatory signs of the mammalian body (5-7). Depletion or defects of neutrophil function 53 

raises susceptibility to infection, especially opportunistic bacterial infection, demonstrating the 54 

important role of neutrophils for host defense (8). When epithelial cells or tissue-resident 55 

immune cells detect pathogen-associated molecular patterns (PAMPs) or host-derived danger-56 

associated molecular patterns (DAMPs), they secrete alert signals and chemokines, making the 57 

inflammatory environment (2, 3). As the frontline unit of innate immune cells, neutrophils can 58 UN
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recognize host- or bacteria-derived danger molecules and migrate into inflamed sites to block 59 

expansion of infection and inflammation (7, 9, 10) (Fig. 1A-D). When migrated neutrophils 60 

encounter pathogens, they may estimate the required number of neutrophils for pathogen 61 

exclusion with distinct reactive oxygen species (ROS) generation and secretion of IL-1β and 62 

chemokines (CXCL1 and CXCL2) (11). Recruited neutrophils, which undergo G protein-63 

coupled receptor kinase 2 (GRK2)-dependent internalization of CXCR2, can surround and 64 

swarm around pathogens to prevent their escape, preparing initial immune responses (10, 12). 65 

Neutrophils can ingest (phagocytosis) and subsequently eliminate bacterial/fungal pathogens 66 

or host-derived particles, while selectively opening (closing) their azurophil, specific, or 67 

gelatinase granules and context-dependent cytokines based on complex signaling of pattern-68 

recognition receptors (PRRs) and antibody-Fc receptor (2, 3, 13). During the process, 69 

neutrophils recognize and check the possibility of phagocytosis with dectin-1 (a non-TLR 70 

PRR), integrin Mac-1 (CD11b/CD18), and environmental cues (13-15). If the plan is frustrated, 71 

they are instructed to project lattice structures containing DNA and histone called a neutrophil 72 

extracellular trap (NET) and/or request the reinforcements of other immune cells, such as 73 

monocytes and macrophages for further immune response (4, 16). Whether there is neutrophil 74 

death (NETosis) or not (NET formation, surviving neutrophils), nuclear chromatin-based NET 75 

is not just a web-like DNA-histone complex; it is thickly covered with antimicrobial peptides 76 

and pro-coagulant molecules, like myeloperoxidase, cathepsin G, P-selectin glycoprotein 77 

ligand-1 (PSGL-1), neutrophil elastase (NE), defensins, and calprotectin (4, 17), carrying out 78 

neutrophil’s last mission even after death (NETosis). With the assistance of antimicrobial 79 

peptides from NET, reinforced macrophages can effectively kill the trapped pathogens, 80 

accelerating inflammatory cascades (16). Bacterial- or fungal-derived PAMPs and endogenous 81 

DAMPs (PSGL-1-platelets interaction, high-mobility group box 1 protein (HMGB1), immune 82 

complex) can act as triggers for NET formation; ROS/Ca2+ signaling can induce protein 83 UN
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arginine deiminase type 4 (PAD4)-mediated citrullination (arginine to citrulline, positive 84 

charge to no net charge) of histone; meanwhile, NE from azurophilic granules translocates to 85 

the nucleus, and proteolytic activity of PAD4 and NE wind off condensed chromatins (4, 17), 86 

facilitating the projection of an ‘armed’ web. Not all neutrophils are programmed to project 87 

NET, and the other neutrophils (no NET-projected) still cluster around the pathogens, secreting 88 

IL-1β and chemokines for CXCR2 (11), and wait for their own destinies. In contrast to NET 89 

projection, when neutrophils carry out phagocytosis with dectin-1, recruitment of NE by 90 

activated phagosome attenuates translocation of NE to the nucleus and subsequently inhibits 91 

NET formation (14). Previously, we demonstrated the functional role of phospholipase D2 92 

(PLD2), which catalyzes phosphatidylcholine-specific hydrolysis of phospholipids, in 93 

neutrophils for bacterial control during experimental sepsis. Inhibition of the PLD2 enzymatic 94 

activity or PLD2 knockout in neutrophils can attenuate GRK2-mediated CXCR2 95 

internalization in an LPS-stimulated condition and an experimental mouse sepsis model (18). 96 

With GRK2-dependent CXCR2 internalization, neutrophils can self-limit and stand around the 97 

pathogens (swarming) and therefore can arrest pathogen movements (12). Damaged tissues and 98 

bacterial movement or swarming can cause changes in osmolarity, which can attract leukocytes 99 

to patrol to these sites (19, 20). Membrane tension increased by osmotic pressure can lead to 100 

the interaction of the PLD2-mammalian target of rapamycin complex 2 (mTORC2), and the 101 

PLD2-mTORC2 complex can inhibit actin assembly during neutrophil mobilization (21). 102 

PLD2 does not affect the phagocytic activity of neutrophils, but Pld2 deficiency significantly 103 

augmented NET and subsequently increased bactericidal effects with increased PAD activity 104 

(18), collectively showing the sequential and crucial roles of neutrophils in host defense.  105 

 106 

Generation of acquired (trained) neutrophils 107 

While circulating neutrophils migrate into inflamed sites and ignite their short lives, new 108 UN
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neutrophils are continually generated in bone marrow to replace their former fellows via 109 

granulopoiesis. Because of their relatively short lifespan (a few hours to a few days), 110 

neutrophils need to be generated from hematopoietic stem cells consistently at steady-state 111 

(normal granulopoiesis), and the hematopoietic system can rapidly adapt to hematopoietic 112 

stress and external environmental cues and produce the white blood cells needed urgently to 113 

deal with an call like infection (emergency granulopoiesis for neutrophils) (22-24) (Fig. 1D, 114 

E). Granulocyte colony-stimulating factor (G-CSF) is the main growth factor for 115 

granulopoiesis, and β-catenin-T-cell factor/lymphoid enhancer-binding factor-mediated 116 

signaling maintains neutrophil maturation during normal/emergency granulopoiesis by 117 

increasing G-CSF receptor expression (25). Pathogenic bacterial infection can interfere with 118 

the expression or stability of Wnt/β-catenin-mediated signaling, which can promote 119 

granulopoiesis, to avoid or use the host defense system (25, 26). On the other hand, 120 

inflammatory cascade can induce secretion of G-CSF, IL-6, and granulocyte-macrophage 121 

colony-stimulating factor, which can stimulate emergency granulopoiesis in bone-marrow 122 

(medullary) and spleen (extramedullary, in the emergency state) (1, 27). These results suggest 123 

that there is a competition between pathogens and innate immune cells for the host 124 

reinforcement system. When the hematopoietic system detects this pathogen-triggered 125 

hematopoietic stress and increased cytokines, the hematopoietic system of bone marrow and 126 

spleen rapidly switch the main transcription factor for granulopoiesis from CCAT/enhancer-127 

binding protein (C/EBP)α to C/EBPβ, the master transcription factors for the steady and 128 

emergency states, respectively (1). Patterns of degraded or leaked proteins/peptides like N-129 

formyl-peptides produced by the inflamed/damaged host cells or bacteria can be detected by 130 

formyl peptide receptor (FPR)2 and trigger emergency granulopoiesis. Blocking or deficiency 131 

of Fpr2 attenuates sepsis-induced neutrophil generation, and sole administration of an FPR2 132 

ligand (WKYMVm) can be enough to induce granulopoiesis by increasing c-kit+sca-1- 133 UN
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granulocyte-macrophage progenitor cells in a phospholipase C-dependent manner (28). 134 

Likewise, activation of FPR can prevent sepsis-induced mortality by increased H2O2 135 

production of neutrophil and secretion of IFN-γ and IL-17a (29), the last of which can be 136 

secreted by IL-6/IL-23-exposed RORγt+ neutrophils, increase its bactericidal/anti-fungal 137 

activity (30, 31), and trigger IL-23/IL-17a-G-CSF axis-mediated granulopoiesis in bone 138 

marrow (32). Hence the hematopoietic system can detect molecular patterns and initiate 139 

generation of neutrophils. Several lines of study suggest that the properties of generated 140 

neutrophils are not constant; instead, the cells acquire lifelong functional modification, which 141 

is now called ‘trained immunity’ (33). The functions of trained neutrophil can be heterogeneous 142 

and context-dependent, which favor pro- or anti-inflammatory response in inflamed sites; for 143 

instance, β-glucan/type I interferon-trained neutrophils (N1 neutrophil) can drive anti-tumor 144 

activities with increased ROS production and T-cell stimulatory ligands (34, 35); meanwhile, 145 

prolonged G-CSF/GM-CSF-exposed (trained) neutrophils (N2 neutrophils) from bone marrow 146 

and spleen can drive pro-tumor immune responses (35-37) with increased angiogenetic 147 

molecules (VEGF, MMP-9) and T-cell suppressive ROS and arginase, the last two of which 148 

increase the ratio of Treg/cytotoxic CD8 T cells (35, 38, 39). Infection by bacteria (for example, 149 

M. tuberculosis) or change of microbiota can reprogram long-lasting myelopoiesis (40-43). 150 

Change of cytokine-sphingolipid signaling and subsequent lipid metabolism can affect the rate 151 

of myelopoiesis and differentiation of neutrophils with autophagy modulation (44-46). 152 

Likewise, Bacillus Calmette-Guérin (BCG) vaccination against tuberculosis can trigger 153 

epigenetic modification of neutrophils (genome-wide trimethylation at H3K4) and induce a 154 

phenotype change of generated neutrophils with increased maturation surface marker (CD10, 155 

CD15, and CD16) and activation marker (CD11b, CD66b) while decreasing CD62L (l-selectin) 156 

and PD-L1; these ‘trained’ neutrophil shows improved bactericidal and anti-fungal activity, but 157 

NET formation is not affected (47). Administration of 4-phenyl butyric acid, a peroxisomal 158 UN
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stress-reducing agent and inhibitor of histone deacetylase, can potently educate a small 159 

subpopulation of CD200R+CD86+, but low CD177 (neutrophil exhaustion marker) pro-160 

resolving (increased resolvin D1 (RvD1)/SerpinB1, reduced TNF-α) neutrophils with increased 161 

bactericidal activity (48). These studies indicate that, although the lifespan of neutrophils is 162 

relatively short, entrained by extrinsic cues with epigenetic modification from the immature 163 

stage (granulopoiesis) (23), neutrophils can be heterogeneous and ‘the giver’ of memory that 164 

guides the direction of further immune cascades. Interestingly, BCG vaccination of humans in 165 

the morning but not evening (circadian rhythm) can influence ‘long-term’ trained immunity of 166 

neutrophils (49). The interrelation between Bmal-1-dependent TH17 (not TH1 and Treg) 167 

development (in spleen and small intestine) and daily generation/ oscillation of neutrophils (in 168 

bone marrow) (23, 49) suggests that trained granulopoiesis also can be affected by systemic 169 

TH17 activation and vice versa; that can explain the functional role of gut microbiota in 170 

regulating the generation/priming of neutrophils and why some neutrophils migrate into the 171 

intestine to control IL-23/IL-17-mediated G-CSF production (42, 50, 51). However, details of 172 

the immunological roles of trained granulopoiesis in generating TH17 and identification of 173 

specific gut microbiota involved in trained immunity need to be deeply explored to understand 174 

the patho-mechanism of chronic inflammatory disease.  175 

 176 

Programed neutrophil apoptosis and initiation of resolution  177 

Neutrophil-mediated inflammatory responses end with apoptosis of the cells within inflamed 178 

sites, and some of the neutrophils reverse migrate to the lungs, the liver, the spleen, and the 179 

bone marrow, and then accept their programed cell death, which is critical for initiation of 180 

resolution (32, 52, 53) (Fig. 2A-E). Professional or non-professional phagocytic cells recognize 181 

the surface antigen (eat-me signal, phosphatidylserine) of apoptotic body and remove the debris 182 

of immune cascades via efferocytosis, restoring normal tissue/immune homeostasis (54). 183 UN
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Macrophages are professional efferocytic cells that remove apoptotic neutrophils and 184 

neutrophil-derived NET (55). Engulfment of cellular debris from the apoptotic body or NET 185 

component can modulate intracellular machineries and metabolism of macrophages and 186 

regulate proliferation and phenotype change of efferocytes, accelerating tissue resolution (56, 187 

57). During the efferocytic process, interaction between macrophage-derived developmental 188 

endothelial locus-1 and integrins (LFA-1, CD11a/CD18; and Mac-1) of the apoptotic body can 189 

increase the clearance of apoptotic neutrophils and subsequent immune resolution, which in 190 

turn induces production of specialized pro-resolving mediators, such as RvD1 and lipoxin A4 191 

(LXA4) in macrophages (32, 58). As a positive feedback loop, RvD1 can limit 192 

LPS/arachidonic-acid-induced inflammatory cues while promoting the conversion of M2-193 

macrophages (alternative activated) by switching production of proinflammatory leukotriene 194 

B4 to LXA4 and upregulating TGF-β (59-62). Produced LXA4 can sustain viability of 195 

macrophages against pathophysiological apoptotic cues by increasing Bcl2 via PI3K/Akt and 196 

ERK/Nrf-2 pathways and assist M2 macrophage polarization via the FPR2-IRF4/5 axis, 197 

accelerating the removal of apoptotic neutrophils (63-65). Likewise, complement protein C1q 198 

binds to apoptotic neutrophils and facilitates opsonization of NETs. Macrophages can also clear 199 

away apoptotic cells and C1q-opsonized NETs (55). Meanwhile, C1q can induce polarization 200 

of alternatively activated M2 macrophages in a MafB-dependent manner with increased type I 201 

IFN, IL-27, and IL-10 production, while attenuating inflammasome activation (66-68). 202 

Especially, efferocytosis of apoptotic (transmigrated) neutrophils in bone marrow decreases IL-203 

23/IL-17-G-CSF axis-mediated granulopoiesis in a β2 integrin (CD18)-dependent manner (32). 204 

Produced IL-10 can induce Jak-Stat3-mediated expression of the suppressor of cytokine 205 

signaling 3 (SOCS3), which can block G-CSF-mediated signaling and subsequent 206 

granulopoiesis; it can also block IL-6R/M-CSFR-mediated (WSXWS motif-containing, class 207 

I receptor) signaling but not IL-10R (no WSXWS motif, class II receptor) (69-72), thereby 208 UN
CO

RR
EC

TE
D 

PR
OO

F



10 

 

restraining the emergency preparedness and reinforcement of neutrophils. C1q bound to 209 

apoptotic cells also can modulate checkpoint ligand/receptor of dendritic cells (DC) (PD-L1, 210 

CD86) and macrophages (PD-L1/2, CD40) (73). These tolerogenic antigen-presenting cells 211 

(APCs) can migrate from inflamed sites into lymphatic drains and lymph nodes and induce Treg 212 

cells and T regulatory type 1 (Tr1) cells, which are crucial for initial and long-term peripheral 213 

tolerance (infectious tolerance), respectively (74, 75). Neutrophils can respond and adapt to the 214 

migrated circumstance with transcriptional modification (6, 76, 77). Treg/IL-10 educated 215 

neutrophils can become IL-10-producing and later apoptotic, assisting repair of damaged tissue 216 

by transferring preexisting matrix and fueling repair activities of other immune cells, such as 217 

monocytes, macrophages, and type 3 innate lymphoid cells (53, 76, 78, 79). Taken together, 218 

neutrophils are not limited to regulating inflammation in inflamed sites, but can also act as 219 

pioneers of systemic immune regulators. 220 

 221 

Frustrated resolution and neutrophil-mediated chronic inflammation 222 

Recently, accumulating evidence suggests that defects in apoptotic progress of neutrophils and 223 

frustrated efferocytosis are closely related to chronic/systemic inflammation, and that 224 

neutrophils can carry phagocytic antigen and directly guide lymphocyte migration (as trail) and 225 

activation (54, 80-84) (Fig. 3A-C). Neutrophils can exhibit MHC and co-stimulatory molecules 226 

by localizing in peripheral tissue (lung) and being exposed to inflammatory cues like immune 227 

complex-mediated FcγR signaling, G-CSF, and GM-CSF (6, 83). The maturation state (CD10+) 228 

of neutrophils can present opposite effects on T cells, and trained granulopoiesis (after BCG 229 

vaccination) can tune the ratio of mature and immature neutrophils; mature CD10+ CD66b+ 230 

neutrophils display an activated phenotype, but inhibit proliferation and production of IFN-γ 231 

of T cells, whereas immature (CD10-) neutrophils sustain T-cell survival and increase 232 

proliferation and IFN-γ production (47, 82). Besides types of pathogens, developmental stage 233 UN
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(immature, mature, or aged), activation state of neutrophils, and external cues of inflamed sites 234 

can shape the response of neutrophils with distinct transcriptional activities, and vice versa (23, 235 

77). An interesting aspect of macrophage-mediated efferocytosis is that, if an apoptotic cell 236 

was not infected, this process does not load lysosomal particles to MHC and therefore can 237 

modulate antigen presentation to lymphocytes, removing inflammatory stimuli silently and 238 

attenuating systemic adaptive immune activation (54). However, failure to silence inflam-239 

matory cues (or evasion of pathogens from bactericidal action of neutrophils after phagocytosis) 240 

and/or defect of efferocytosis; subsequently neglected dead bodies can induce a form of 241 

programmed cell death called necrosis (secondary necrosis) (84, 85). Bursting out 242 

inflammatory molecules and bacterial components can trigger serial pro-inflammatory 243 

responses of inflamed sites, and inflammatory cytokines such as IL-6, IL-8, IFN-α, and GM-244 

CSF, can prolong the lifespan of neutrophils that should have undergone ‘silent’ apoptosis, by 245 

modulating PI3K-Akt signaling and Bcl2 (Bcl-x for neutrophil); Bcl2 can block Bax-mediated 246 

release of cytochrome c and therefore attenuate caspase-dependent cell death (86, 87). 247 

Although induced Bcl2 in neutrophils does not affect the phagocytic activity of macrophages 248 

(88), exposure of pathogen- or host-derived inflammatory cues, such as IL-8, LPS, HMGB1, 249 

and S1P, can change the death of neutrophils from apoptosis to ferroptosis and NETosis, which 250 

are the main drivers of chronic and systemic autoimmunity (4, 17, 87, 89). HMGB1 released 251 

from ferroptotic cells can be taken by phagocytic macrophages to accumulate iron inside the 252 

cells, activating M1 macrophages, which then increase production of IL-6, TNF-α, and IL-1β 253 

(90). In addition, NET and its component HMGB1 can promote caspase-1-dependent 254 

macrophage pyroptosis, another form of cell death, which releases AIM2 inflammasome-255 

mediated IL-1β and accelerates inflammatory cascades while blocking macrophage-mediated 256 

efferocytosis with opsonin-related defects (91, 92). The DNA of NET can be recognized by the 257 

TLR of macrophages, which phagocyte NETs and NETs do not transfer into phagosome but 258 UN
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reside in cytosol; DNA and enzymatic activity of NE from NET stimulate the cyclic GMP-259 

AMP synthase (GAS)-stimulator of interferon genes (STING) pathway that induces type I IFN 260 

production and subsequently necroptosis and senescence of macrophages (93, 94). Moreover, 261 

the cGAS-STING pathway can turn on an anti-proliferative program and induce Bax-mediated 262 

cell death of macrophages, which can counteract the proliferation and efferocytic activity of, 263 

but promote macrophage-mediated inflammation (57, 93, 95). Whereas the efferocytosis of DC 264 

leads to tolerogenic immature DC with low costimulatory checkpoint ligands, activated 265 

neutrophils can recall and directly cluster with DCs, the most potent APC for T lymphocytes, 266 

through DC-SIGN and Mac-1, and can mediate maturation of DC, providing TNF-α and other 267 

cytokines and granule components (73, 96, 97). Moreover, NET components can drive DC 268 

activation to produce type I interferon, and DC can take some NET components as antigens, 269 

which may lead to autologous lymphocyte activation (87, 98). Enriched neutrophils in synovial 270 

fluid and delayed neutrophil apoptosis in joints may explain the increase of double-stranded 271 

DNA and anti-citrullinated antibodies of rheumatoid disease patients (99). Collectively, these 272 

facts suggest that neutrophils are crucial immune modulators that affect overall immune 273 

response.  274 

  275 

CONCLUSION 276 

The functions of neutrophils, the most abundant in the circulation and crucial innate immune 277 

cells in host defense, are now getting attention for understanding their following 278 

innate/adaptive immune cascades. As a frontline unit of non-specific innate immune responses, 279 

the research of neutrophils was focused on migration, detection, and removal of pathogens and 280 

damaged host cells (1, 2). However, accumulating evidence suggests that the immunological 281 

functions of neutrophil are not limited to initial immune responses. Neutrophils can educate 282 

other innate immune cells, such as monocytes, macrophages, and DCs, guiding the direction 283 UN
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of immune cascades with production of cytokines and granules and presenting their dead bodies 284 

as immune context (3, 32, 52, 53, 93, 94). Moreover, neutrophils directly/indirectly activate 285 

lymphocytes, which may aggravate the progress of chronic and autoimmune disease by 286 

presenting a source of auto-antigens (4, 17, 87, 89). On the other hand, programed apoptosis 287 

of neutrophils initiates immune modulatory phenotype changes of macrophages and DCs as 288 

efferocytosis, which can induce tolerogenic APCs that induce immune suppressive Treg and Tr1 289 

(32, 54, 58). Therefore, it is now accepted that excessive activation, dysfunction, or 290 

malfunction of neutrophils is closely related to pathogenesis and progression of disease. Hence 291 

neutrophils are emerging therapeutic targets for human disease (2, 5). However, further 292 

investigations of the roles of trained granulopoiesis and epigenetically modified neutrophils in 293 

immune cascades are needed. We hope the gradual progress in the analysis of trained 294 

granulopoiesis and heterogeneous neutrophils may lead to further understanding of peripheral 295 

tolerance and immune activation.   296 
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FIGURE LEGENDS 310 

Figure 1. Function of neutrophils and their generation (granulopoiesis).  311 

Neutrophils circulate and detect inflammatory cues. A. Because of their short lifespan, 312 

neutrophils are continuously generated in the bone marrow of the hematopoietic system by 313 

granulopoiesis. B. When they detect alert signals from inflamed tissue, neutrophils 314 

transmigrate into inflamed sites and initiate immune activation. C. Sensing the size of 315 

pathogens by means of dectin-1, non-TLR pattern recognition receptor, and distinct generation 316 

of reactive oxygen species (ROS), neutrophils may surround pathogens (swarming), prey on 317 

them (phagocytosis), or project a sticky neutrophil extracellular trap (NET), while secreting 318 

context-dependent cytokines and granules (degranulation). D, E. Self-immolation of 319 

neutrophils (D) and immune activation of other monocytes and macrophages (Mφ) increases 320 

production of IL-6, G-CSF, and GM-CSF, which in turn stimulate emergency neutrophil 321 

generation in the bone marrow (granulopoiesis) (E) and spleen (not shown). The context and 322 

signaling cues given for granulopoiesis affect the heterogeneity of newly generated neutrophils 323 

(trained granulopoiesis).  324 

 325 

Figure 2. Programmed neutrophil apoptosis and initiation of resolution.  326 

A. When the role of neutrophils in inflamed sites ends, they remain or reverse migrate into 327 

other organs (bone marrow, lungs, and spleen; not shown) and undergo programmed cell death 328 

(apoptosis). B, Apoptotic neutrophils expose phosphatidylserine as an eat-me signal, so that 329 

macrophages (Mφ), dendritic cells (DC), and monocytes can recognize an apoptotic body and 330 

initiate efferocytosis. C. Clearance of an apoptotic body changes the phenotype of efferocytic 331 

cells and induces the expression of immune-modulatory lipids called specialized pro-resolving 332 

mediators (SPMs). The efferocytosis and subsequent activation with resolvin D1 (RvD1), 333 

lipoxin A4 (LXA4), and TGF-β accelerate removal of cellular debris and restore normal 334 UN
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tissue/immune homeostasis. D. Induction of immune modulatory T cells, Foxp3+ Treg and IL-335 

10-producing CD4+Foxp3- Tr1. IL-10-educated neutrophils become apoptotic and help tissue 336 

repair. E. The efferocytosis of apoptotic neutrophils in the bone marrow decreases the IL-23/IL-337 

17a-G-CSF axis and restores normal state of granulopoiesis.  338 

 339 

Figure 3. Impaired efferocytosis and neutrophil death trigger prolonged inflammation.  340 

An inflammatory milieu can disrupt apoptosis of neutrophils and make the immune response 341 

chronic. A. A sustained neutrophil life exposed to inflammatory cytokines and other 342 

programmed neutrophil deaths, NETosis, secondary necrosis, and ferroptosis. B. Activation of 343 

inflammatory macrophages (Mφ), dendritic cells (DC), and antigen-presenting cell (APC)-like 344 

neutrophils. C. Activation of adaptive immune systems and chronic disease.  345 

  346 
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