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Alternations in usage of polyadenylation sites during transcription termination yield 

transcript isoforms from a gene. Recent findings of transcriptome-wide alternative 

polyadenylation (APA) as a molecular response to changes in biology position APA not only as 

a molecular event of early transcriptional termination but also as a cellular regulatory step 

affecting various biological pathways. With the development of high-throughput profiling 

technologies at a single nucleotide level and their applications targeted to the 3’-end of mRNAs, 

dynamics in the landscape of mRNA 3’-end is measureable at a global scale. In this review, 

methods and technologies that have been adopted to study APA events are discussed. In addition, 

various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq 

datasets are introduced. 
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Almost all of the protein coding messenger RNAs (mRNAs) in eukaryotic cells, with the 

exception of histone transcripts, are subjected to polyadenylation. It is a two-step event that 

occurs towards the completion of transcription in which the nascent transcript is cleaved, 

followed by the addition of an untemplated stretch of adenine nucleotides to its 3’ end. The 

addition of the poly(A) tail has been shown to be important for the stability, nuclear export and 

translation of a transcript1-3.  

 

Polyadenylation is carried out by the coordination of various cis- and trans-acting factors. 

The poly(A) signal (PAS; AAUAAA hexamer and variants) located 10~30 nucleotides upstream 

of the cleavage site plays a central role in defining the poly(A) site of a transcript; it is assisted 

by U-rich upstream elements (USE) and GU-rich downstream elements (DSE), which have been 

shown to be able to affect the “strength” of the poly(A) signal4-6. As these cis-acting elements are 

transcribed, usually at the end of 3’ untranslated region (UTR), they are recognized and bound 

by various multi-subunit protein complexes. PAS is recognized by CPSF (cleavage and 

polyadenylation specificity factors), and CSTF (cleavage stimulation factors) bind to DSE. 

Together, along with several other cofactors including CFI (cleavage factors I) and CFII, they 

perform cleavage at the poly(A) site. They then recruit poly(A) polymerase to the cleavage site 

for the synthesis of the poly(A) tail2.  

 

Most of the transcripts in mammalian cells (~70%) possess more than one PAS, 

providing the possibility of alternative polyadenylation (APA), that is, one transcript may carry 
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based on the location of the alternative poly(A) sites: UTR-APA and CR (coding region)-APA8. 

For UTR-APA, the alternative poly(A) site is located in the 3’UTR, while in the case of CR-

APA, the alternative poly(A) site resides mostly in upstream introns. Naturally, the physiological 

outcomes of UTR-APA differ from that of CR-APA. UTR-APA can lead to the inclusion or 

exclusion of part of the 3’UTR in a transcript, and since 3’UTR often serves as the binding 

platform of many regulatory micro-RNAs and RNA binding proteins, UTR-APA is capable of 

affecting the transcript’s localization, translation efficiency, stability, etc9-11. On the other hand, 

when CR-APA occurs, the usage of an upstream intronic poly(A) site results in the exclusion of 

part of the coding region, leading to the production of a truncated protein, possibly lacking 

certain functional domains and therefore may exert a different function or be regulated 

differently than the full-length counterpart12.  

 

In recent years, new technologies have enabled scientists to study APA at a 

transcriptome-wide scale. Interestingly, global APA events have been observed to be correlated 

to various cellular processes such as proliferation and differentiation13-15; they also show tissue 

specificity16. Moreover, it has been shown that global APA pattern changes during disease 

progression, including tumorigenesis17-20. These indicate that APA events are finely regulated in 

cells and that APA is one of the layers of gene expression regulation that control cellular biology. 

Therefore, the physiological outcomes of APA pattern changes in various cellular contexts and 

the mechanisms that govern APA have been the focus of many studies.  
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transcriptome-wide level. Ever-advancing technology has allowed us to achieve this task with 

ever-improving precision. In this review, we will discuss some important technologies that have 

been adopted to study APA events.  

 

Early Discoveries of APA 

 Some of the earliest APA discoveries were reported in the 1980s. For example, a CR-

APA event was observed in IgM gene, and DHFR gene showed UTR-APA21-24. These cases of 

alternative processing events were first revealed by the discrepancies of sizes of the same gene in 

northern-blotting, and western-blotting, in the case of CR-APA. R-loop mapping and restriction 

mapping were then used to confirm that the differences reside in the 3’ end structure of the 

transcripts. In the following decade, dozens of APA events were discovered by the similar 

approach, albeit at a one-gene-at-a-time pace.  

 

 As technologies in molecular biology matured and sequencing data accumulated, APA 

studies were introduced to a more global scale in the 2000s. The first large-scale APA surveys 

were done by analyzing Expressed Sequence Tag (EST) data of human, mouse, and rat. To 

search for poly(A) sites in the genomes, Tian et al.25, as well as Yan and Marr26, first aligned 

ESTs to the genomes, then singled out 3’ end ESTs by looking for stretches of As and Ts at 5’ or 

3’ termini of unaligned EST sequences. These 3’ end ESTs were then validated by searching for 

the presence of consensus PAS sequence patterns. Their analyses showed that a great proportion 

of genes (~50% in human and ~30% in murine) have APA. Moreover, many of the APA events 
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regulation strategy in cellular biology.  

 

Analyzing EST data revealed the presence of APA in genes at a transcriptome-wide scale. 

However, the dynamics of global APA regulations remained elusive until microarray-based 

approaches were used to study global APA pattern changes13,27,28. In these studies, probes on the 

microarrays were designed to be APA sensitive. For each APA regulated gene, there are two or 

more probes specific to only the full-length transcript, and two or more probes specific to both 

the full-length and the shorter APA product on the microarray chip. After applying fluorescently-

labelled nucleic acid library to the chip for hybridization, the ratio of the signals from these 

probes can then be calculated to measure the APA status of the gene. Microarray data obtained 

from two different cellular conditions can then be compared to study the APA dynamic changes 

and its physiological implications.  Surprisingly, by adopting this approach it was shown that 

highly proliferating cells tend to have more 3’ UTR shortening in their transcriptomes; while 

generating induced pluripotent stem cells, global 3’ UTR lengthening is observed13,27. 

Microarray is a powerful tool to obtain a global picture on APA events in the transcriptome. 

Nevertheless, it suffers from several drawbacks. First of all, microarray cannot detect novel APA 

events, for APA-sensitive probe sets can only be designed if an APA events are previously 

known. Second, it cannot precisely pinpoint where the poly(A) site is, which may be important 

for studying the physiological functions of APA events. Moreover, if a gene has two or more 

alternative PAS, probe design and quantification can become quite complicated and 

challenging29.  
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 The advent of second-generation sequencing technologies enabled researchers to rapidly 

obtain a large amount of sequence information at single nucleotide resolution. Technologies such 

as RNA-seq quickly became commonly used for surveying the transcriptome of various cell 

types and tissues in different organisms30-32. In RNA-seq, poly(A) tail-containing RNA is first 

isolated from total RNA. They are then either primed with oligo d(T) primer or random 

hexamers for cDNA synthesis followed by fragmentation. (Alternatively, the poly(A)-containing 

RNA pool is first fragmented followed by random hexamer priming to generate cDNA pool.) 

The cDNA pool is then amplified and constructed into library, which can be sequenced by 

various sequencing platforms, most commonly the Illumina sequencing technology. After 

mapping the short sequence fragments, or reads, to the corresponding genome, the reads can be 

piled up for visualization of gene expression profile of the cell or tissue.  

The highly quantitative nature of RNA-seq makes it suitable for APA pattern analysis. 

This may be achieved in a similar way as the APA calculation done in microarray approaches, 

namely, by taking the ratio of the read density of the long form-only regions and the read density 

of the regions common to both long and short transcripts. However, since many genes contain 

isoforms with complicated and overlapping structures, using RNA-seq reads for APA analysis on 

certain genes can still be challenging. Fortunately, many sophisticated bioinformatics tools have 

been developed to more accurately analyze APA patterns in transcriptomes.  

For instance, a probabilistic transcript quantification method named Kallisto was 

developed to estimate the expression levels of annotated transcript isoforms33. APA dynamics of 

a gene can then be measured by comparing the expression ratios of its short isoforms over the 
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analysis.  

For UTR-APA identification and measurement, many algorithms were written as listed in 

Table 1. In general, 3’UTR length changes are measured by modeling the RNA-seq read density 

changes near the 3’ end of mRNA transcripts.  

Algorithm Reference Description 
 

DaPars 
 

34 
It first models the RNA-seq-read densities of both tumor and normal as a 
linear combination of both proximal and distal polyA sites. It then uses a 
linear regression model to identify the location of the de novo proximal polyA 
site, followed by quantification of the changes in APA between tumor and 
normal. 

 
ChangePoint 

 
35 

It is based on a generalized likelihood ratio statistic for identifying 3’UTR 
length change in the analysis of RNA-seq data. A directional multiple test 
procedure is then developed to identifying APA events between two samples. 

 
Roar 

 
36 

It is based on Fisher test to detect disequilibriums in the number of RNA-seq 
reads mapped to the 3’UTRs. Read counts and lengths of fragments are then 
used to calculate the prevalence of the short isoform over the long one in two 
biological conditions to identify APA events. 

3USS 37 A web-server developed with the aim of giving experimentalists the 
possibility to identify alternative 3’UTRs between two samples by RNA-seq 
data analysis.  

 
IsoSCM 

 
38 

A method for transcript assembly that incorporates change point analysis by a 
Bayesian framework to improve the 3’UTR annotation process with RNA-seq 
data.  

KLEAT 39 An analysis tool that uses de novo assembly of RNA-seq data to characterize 
cleavage sites on 3’UTRs through direct observation of poly(A) tails. 

 
GETUTR 

 
40 

It first makes a density function of RNA-seq reads aligned to the 3’UTRs 
using kernel density estimation. A smoothing step is then applied to maintain 
the biological changes of the 3’UTR. The goal of the method is to estimate 
the 3’UTR landscape based on these smoothed RNA-seq signal. 

 

 

Indeed, with the aid of these bioinformatics tools, RNA-seq can be a powerful tool to 

study the alternative processing of mRNAs. However, when profiling APA patterns, especially 

when handling genes with multiple isoforms, often times the reads mapped to regions that 

differentiate isoforms constitute only a relatively small portion of the total reads mapped to the 

gene, and even less so for 3’ end junction reads, making it rather challenging to confidently 
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accurate when it comes to identifying poly(A) sites, making novel APA isoform identification 

rather difficult. Therefore, several methods have been developed to address these issues by 

enriching for 3’ end reads in high-throughput sequencing experiments29,41,42.  

 

The most common way to enrich for 3’ end reads (adopted in PAS-seq43, A-seq44, 

3SEQ45, SAPAS46, ect.) is to first fragment the poly(A) tail-containing RNA pool, followed by 

reverse transcription using oligo d(T) priming. The cDNA pool, which should only contain 3’ 

end junction fragments, is then amplified and sequenced. Alternatively, an oligo d(T) primed 

cDNA library can be sequenced using oligo d(T) sequencing primer directly. All the sequencing 

reads should therefore be 3’ end junction reads (PolyA-seq7).  Moreover, direct RNA sequencing 

technology by Helicos Biosciences has also been used for sequencing the 3’ ends of poly(A) tail-

containing RNAs47. In this method, mRNA molecules are hybridized to a “lawn” of oligo d(T) 

primers attached to the flow cell and are sequenced directly by synthesis. Compared to PAS-seq 

and equivalents, Helicos platform is more quantitative as no amplification step is involved; it 

requires less starting material. However, Helicos platform suffers from higher error rate, shorter 

read lengths, lower throughput, and the lack of multiplexing capability29,32.  

 

All of the above mentioned methods use oligo d(T) for priming at some points during the 

procedures. Internal priming (stretches of As in the middle of transcripts being falsely recognized 

as poly(A) tails by the oligo d(T) primer), and thus false identification of 3’ end junctions, is 

therefore a major issue for these methods48. In an effort to lower the false discovery rate, Jan et 

al.48 developed a modified version of 3’ end sequencing method that avoided the use of oligo d(T) 
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to add a biotinylated double-stranded adapter to the 3’ end of the poly(A) tail through splint-

ligation, which eliminates the possibility of internal priming. The mRNAs are then partially 

digested, and the 3’ end fragments are captured by streptavidin. cDNA synthesis is primed with 

the adapter itself and reverse-transcribed with dTTP as the only deoxynucleoside triphosphate 

present, limiting the reverse transcription to the poly(A) site. The RNA fragments immediately 

upstream of poly(A) tails can then be released and processed for sequencing by RNase H 

digestion. Since RNase H would only digest RNA strand that is hybridized with a DNA strand, 

in this case the poly(A) tail region, the RNA fragments released after RNase H digestion should 

most likely come from poly(A) tail-containing fragments. This method indeed eliminates a great 

number of false identified 3’ ends, yet it is more labor intensive and involves more enzymatic 

reactions, which may introduce biases in terms of the quantification of the signals49.  

3’ end sequencing data provides sophisticated knowledge for pinpointing annotated as 

well as unannotated poly(A) sites in the transcriptome that is under interrogation. As mentioned 

above, although RNA-seq is highly quantitative, yet it does not provide enough information to 

accurately identify poly(A) sites. Therefore, by incorporating 3’ end-seq data with RNA-seq data, 

the quality of APA profiling can be greatly improved. Briefly, by analyzing 3’ end-seq data, 

potential poly(A) sites and thus isoform structures in the transcriptome can be defined and 

reported. The expression levels of the isoforms can then be estimated by a maximum-likelihood 

method that best explains the observed RNA-seq read profiles. Finally, the APA events can be 

measured by the expression ratios of the isoforms in the gene between two biological conditions. 

 

APA Studies Beyond the Second-Generation Sequencing Era 
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transcriptome characterization. However, when it comes to expression profiling of mRNA 

isoforms, these methods still suffer from their limitation in read lengths. Due to the relatively 

short read lengths (~100 bp), compared to the lengths of most transcripts, full-length transcript 

isoforms must be reconstructed via various computational methods. Yet the performances of the 

reconstruction methods have been shown to be unsatisfactory50. Alternative sequencing 

platforms have been developed to achieve longer read lengths.  

 

For example, the SMRT (single molecule, real-time) sequencing technology by PacBio 

has achieved average read length of > 10,000 bp51. In SMRT technology, DNA polymerase is 

immobilized to the bottom of a specialized light detecting well called zero-mode waveguide 

(ZMW). ZMW is designed to only be light sensitive at the bottom of the well, where sequencing 

by synthesis is performed by the DNA polymerase. A movie that contains the sequencing 

information can then be recorded as a single DNA molecule is replicated by the DNA 

polymerase in full-length. PacBio has also developed a protocol specifically for transcript 

isoform characterization called Iso-Seq. It has been successfully adopted in characterizing the 

transcriptomes of human and herpesvirus52,53. The transcriptome dynamics during lineage 

commitment of blood cell and the progression of brain tumor have also been characterized by 

Iso-Seq54,55. Last but not least, it was recently used to profile the APA events in sorghum 

transcriptome56. In all of these studies, due to the long read lengths, novel isoforms have been 

identified and characterized with high confidence.  

 



UNCORREC
TE

D P
ROOFHowever, SMRT sequencing still suffers from certain drawbacks. For instance, longer 

transcripts still cannot be sequenced in full-length in high quality. This is partly due to the 

limitations in library preparation and the limitation of read length (or movie time), and also the 

fact that shorter cDNA molecules (~1.5 kb) are more favored by the sequencing platform. 

Moreover, since shorter transcripts are more favored than longer transcripts during sequencing, 

the quantitative performance of Iso-Seq is severely affected51.  

 

To harness the quantitative power of the short-read second generation sequencing and the 

isoform characterization ability of long-read PacBio sequencing, hybrid sequencing have been 

developed. By integrating the long read data from PacBio and the short read data from Illumina, 

Au et al. significantly reduced the error rate of long reads in PacBio sequencing57. When 

applying the hybrid sequencing to human embryonic stem cell transcriptome, they demonstrated 

the higher sensitivity and accuracy of isoform characterization, as well as a better ability to 

identify novel isoforms, over traditional methods solely using short-read second generation 

sequencing method58.  

 

Concluding Remarks  

 In recent years, APA have been appreciated more and more as a key layer of gene 

expression regulation mechanism. Since many studies have shown that the expression levels of 

certain transcript isoforms can have substantial impacts on biology11,12,17,24,59,60, simply profiling 

the expression levels of genes in the transcriptomes cannot provide sufficient information 

regarding the physiological condition of a transcriptome. Indeed, with the methods (and their 

integrative efforts) discussed above, the transcript isoform expression profiling in transcriptomes 
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addressed in the future to improve the transcriptome-wide studies of APA events. For example, 

many of the algorithms developed for APA characterization rely heavily on annotated gene 

structures. Therefore, a more comprehensive and accurate transcriptome annotation is needed for 

better performances by these algorithms in APA analysis. Furthermore, as shown in various 

studies adopting hybrid sequencing methods61,62, being able to obtain long-read sequencing data 

by Iso-Seq is highly beneficial to transcript isoform expression profiling as well as novel isoform 

identification. However, the bias toward shorter transcripts over longer ones of Iso-Seq renders 

the isoform characterization of long transcripts unreliable. New technologies or sample 

preparation methods (e.g. the construction of a sequencing library with homogenous length by 

concatenation followed by fragmentation of the cDNA pool) need to be developed to address this 

issue for better characterization of APA events in long transcripts by hybrid sequencing methods.  

 

 With the advance of modern technologies and the rapid accumulation of the knowledge 

on the physiological outcomes of APA events in the field, in the near future, transcriptome-wide 

APA analysis can potentially become as routinely and easily performed as it currently is with 

gene expression profiling by RNA-seq; more importantly, valuable insights on various biological 

processes and the pathogenesis of diseases can be obtained by APA analysis.  
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Figure 1. Schematic showing a gene structure and alternative polyadenylation. A gene is 

composed of exons and introns. Exons of a gene divide into coding DNA sequence (CDS) and 

untranslated regions (UTRs). Alternative polyadenylation can occur within the last exon of a 

gene (UTR-APA) and/or upstream exons/introns (CR-APA).  

 

Figure 2. A work flow for 3’end-seq and PacBio Iso-seq. (A) Multiple versions of global 

profiling method for 3’-end sequence of mRNAs are available. An example of 3’end-seq method 

is shown. A 3’end-seq cDNA library is produced by a series of molecular biology work 

integrating first strand cDNA synthesis and PCR. Short sequence reads of polyadenylation site 

are cataloged by conducting RNA-seq using the cDNA library and trimming/aligning sequencing 

data. (B) The SMRT bell cDNA library for PacBio-seq can be produced from cDNA amplicon 

which is made by reverse transcription. Concatemerized long reads of insert in SMRT bell 

cDNA library are produced as raw data. Processed long reads (by eliminating SMRT bell 

sequences) are aligned to generate a consensus sequence of long reads.  
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