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ABSTRACT 1 

Background/Purpose: Emphysema, a pathologic component of chronic obstructive 2 

pulmonary disease, causes irreversible destruction. Many researchers have reported that 3 

mesenchymal stem cells can regenerate lung tissue after emphysema.  4 

Methods: We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) 5 

showed greater regenerative effects than dissociated ASCs in elastase-induced emphysema 6 

mice. ASCs were administered via an intrapleural route. 7 

Results: Mice injected with spheroid ASCs showed improved regeneration of lung tissue, 8 

increased expression of growth factors such as FGF2 and HGF, and a reduction in proteases 9 

with an induction of protease inhibitors when compared with mice injected with dissociated 10 

ASCs. 11 

Conclusions: Our findings indicate that spheroid ASCs show better regeneration of lung 12 

tissue than dissociated ACSs in elastase-induced emphysema mice. 13 

 14 

KEY WORDS: Chronic obstructive pulmonary disease, adipose-derived mesenchymal stem 15 

cells, spheroid cultures, regeneration  16 

 17 

18 
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1. INTRODUCTION 1 

Chronic obstructive pulmonary disease is the fourth leading cause of death worldwide and 2 

includes cases of chronic bronchitis and emphysema. Emphysema is characterized by alveoli 3 

damaged by external factors, such as smoking [1]. Matrix metalloproteases (MMPs) are 4 

extracellular matrix (ECM)-associated enzymes involved in the synthesis and degradation of 5 

connective tissue components for tissue remodeling and repair [2]. A recent study determined 6 

that secreted MMPs (MMP-2, 9, and 12) contributed to the development of emphysema by 7 

degrading the alveolar wall matrix [3]. In emphysema, regeneration of the alveolar wall is 8 

impaired; however, a mesenchymal stem cell (MSC) therapy for this condition is currently 9 

under development. MSCs that have been isolated from various organs, such as bone marrow, 10 

adipose tissue, and umbilical cord blood, can induce tissue repair via self-renewal, 11 

differentiation, and paracrine effects [4]. The recovery effects of MSCs have been confirmed 12 

in various lung disease models, including lipopolysaccharide (LPS)-, cigarette smoke-, and 13 

bleomycin-induced lung injury models [5-7]. 14 

 We previously tracked adipose-derived mesenchymal stem cells (ASCs) that were 15 

injected in vivo via an intravenous route. Labeled ASCs were detected for up to 24 h post-16 

injection [8]. Moreover, only 17% of cardiac sphere-derived stem cells survived up to 1 h 17 

after injection, and therapies using dissociated stem cells showed complications, including 18 

cell loss, in a myocardial infarction model [9, 10].  19 

 A spheroid is a self-assembled group of cells, and many studies have emphasized the 20 

differences between 2D and 3D culture environments, such as nutrient and oxygen gradients, 21 

cell-to-cell interactions, and matrix deposition [11, 12]. A recent study showed that spheroids 22 

increase anti-apoptotic and anti-inflammatory properties both in vitro and in vivo [13].We 23 

intrapleurally injected in this report aggregated “spheroid” ASCs in a mouse model of 24 

elastase-induced emphysema to compare their therapeutic efficacy with that of dissociated 25 
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 2 

2. MATERIALS AND METHODS 3 

2.1 Mice 4 

Pathogen-free female C57BL/6 mice at 6 weeks of age with a body weight of 20 g 5 

(Seongnam, Korea) were used. All animals were cared for according to the guidelines of the 6 

Institutional Animal Care and Use Committee of Asan Medical Center (Seoul, Korea). 7 

 8 

2.2 ASC culture 9 

Human ASCs were purchased from Invitrogen (Carlsbad, CA, USA). ASCs were cultured in 10 

MesenPRO RSTM supplemented with Growth Supplement (Invitrogen) and 1% penicillin at 11 

37°C in a 5% CO2 incubator. ASCs at passage 5 were used for all experiments. 12 

 13 

2.3 Spheroid formation 14 

Spheroids were formed using polydimethylsiloxane (PDMS)-based concave micro-well 15 

molds. Concave micro-wells with a diameter of 300 µm were coated in 70% (v/v) ethanol, 16 

followed by PBS and 3% (W/V) BSA to prevent cell attachment. Each concave micro-well 17 

contained 64 holes, and suspended ASCs were seeded at a density of 1 × 105 per well. After 18 

several minutes, the remaining cells were removed using ASC culture media. Concave micro-19 

wells seeded with ASCs were incubated at 37°C in a 5% CO2 incubator for 24 h. 20 

 21 

2.4 An elastase-induced mouse model of emphysema and ASC transplantation 22 

C57BL/6 mice were anesthetized intraperitoneally (i.p.) with 16 µL of Zoletil 50 (Virbac 23 

Laboratories, Carros, France) and 4 µL of Rompun (Bayer Korea, Ansan, Korea). Next, mice 24 

were intratracheally (i.t.) administered porcine pancreatic elastase (0.4 U, 8 U/mL; Sigma–25 
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Aldrich, St. Louis, MO, USA) at day 0. After 7 days, mice were intrapleurally injected with 1 

dissociated or spheroid ASCs (1 × 105 cells) using a syringe equipped with a 26 gauge needle. 2 

 3 

2.5 Gene expression analysis by quantitative polymerase chain reaction (qPCR) 4 

Total RNA from lung tissues and ASCs was extracted using an RNeasy Mini Kit (Qiagen, 5 

Düsseldorf, Germany) and synthesized into cDNA using a cDNA synthesis kit (Thermo 6 

Fisher Scientific, Waltham, MA, USA). qPCR analyses were performed with a real-time 7 

LightCycler 480 with SYBR Green I master mix (Roche Diagnostics) and primers. The list of 8 

primers used is shown in Supplementary Table 1.  9 

 10 

2.6 Detection of MMP activity assay using zymography 11 

To detect MMP activity in the mouse lung, tissues were homogenized in radio 12 

immunoprecipitation assay buffer (RIPA; Cell Signaling Technology, Danvers, MA, USA) 13 

without a protease inhibitor and quantified using a BCA kit (Thermo Scientific). Samples 14 

containing 10 µg of protein were subjected to 10% SDS-PAGE using a gelatin-based gel 15 

(Sigma–Aldrich). To develop the zymogram, the gels were incubated in 1× zymogram 16 

development buffer (Bio-Rad) at 37°C for 12 h. Next, gels were stained with 0.5% 17 

Coomassie blue R-250 (Bio-Rad) in 30% ethanol and 10% acetic acid for 1 h. Destaining was 18 

performed with 30% ethanol and 10% acetic acid. 19 

 20 

2.7 Enzyme-linked immunosorbent assay (ELISA) 21 

A total of 10 µg of protein from mouse tissue and 30 µg of total protein from 1 × 106 ASCs 22 

were used for ELISAs (R&D Systems; Minneapolis, MN) according to the manufacturer’s 23 

instructions. The measured proteins included human and mouse growth factors (FGF-2, HGF, 24 

and VEGF). 25 
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 1 

2.8 Western blotting 2 

Lysates of tissues and cells were homogenized in RIPA buffer and quantified using the BCA 3 

assay. Thirty microgram samples were separated by SDS-PAGE using a 10–15% gel and then 4 

transferred to a PVDF membrane. Primary antibodies against BAX, Bcl-2, FGF2, VEGF, 5 

MMP-2, and MMP-9 (Cell Signaling Technology, Danvers, MA) and their corresponding 6 

secondary antibodies were incubated with the membrane overnight at 4°C and for 1 h at room 7 

temperature, respectively. Membranes were scanned with LAS software using film to detect 8 

the protein signals.  9 

 10 

2.9 Histology and quantification of emphysema 11 

The histology of the lungs was completed using a previously described method [8]. Briefly, 12 

the perfused lungs were inflated with 0.5% low-melting agarose, fixed with 4% formalin, and 13 

embedded in paraffin. Lung sections with a thickness of 6 μm were stained with H and E. The 14 

mean linear intercepts (MLI) were determined from the microscopic images. 15 

 16 

2.10 Data analysis 17 

Statistical analyses were performed using the GraphPad Prism ver. 5 (GraphPad software, La 18 

Jolla, CA, USA). The data are presented as the mean ± SEM. The Mann–Whitney test was 19 

used to compare groups, and statistical significance was set at p < 0.05. 20 

 21 

22 
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3. RESULTS 1 

3.1 Characterization of dissociated and spheroid ASCs 2 

A monolayer of ASCs cultured for 3 days (Supplementary Fig. 1A) were seeded into PDMS 3 

concave micro-wells coated with 3% BSA. Five minutes after seeding, unattached ASCs were 4 

removed using ASC-conditioned medium. Cells began to aggregate within 1 h of seeding 5 

(Supplementary Fig. 1B). After 24 h, generally homogenous spheroid ASCs were observed 6 

(Supplementary Fig. 1C). 7 

 To characterize the dissociated and spheroid ASCs, we measured the expression of 8 

cell survival-related apoptosis proteins and growth factors in protein samples extracted from 9 

ASCs. Bcl-2 inhibits interactions between mitochondria and BAX in the cytosol. The Western 10 

blot images suggested that BAX expression was similar in spheroid and dissociated ASCs, 11 

whereas Bcl-2 expression was increased in spheroid ASCs (Fig. 1A). ImageJ was used to 12 

quantify protein levels. We determined that BAX expression was significantly decreased and 13 

BCL2 expression was significantly increased in spheroid ASCs when compared with 14 

dissociated ASCs. Furthermore, the Bcl-2/BAX ratio was significantly increased in spheroid 15 

ASCs (Fig. 1B). FGF-2 and VEGF levels were also significantly increased in spheroid ASCs 16 

(Figs. 1C and D). To measure the levels of secreted growth factors, the culture medium of 17 

dissociated and spheroid ASCs was concentrated, and growth factors were measured by 18 

ELISA (Fig. 1F). VEGF secretion was increased in spheroid ASCs when compared with 19 

dissociated ASCs. FGF2 was not detected in the media from either group. 20 

 21 

3.2 Spheroid ASCs improved lung recovery in an elastase-induced mouse model of 22 

emphysema  23 

Emphysema was induced by elastase in C57BL/6 mice (day 0). After 7 days, mice were 24 

intrapleurally injected with 1 x 105 dissociated or spheroid ASCs. On day 14, mice were 25 
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euthanized (Fig. 2A), and lung tissues were collected. The H and E-stained lungs of the 1 

elastase-treated group showed severe alveolar destruction (Fig. 2C) when compared with the 2 

control group (Fig. 2B). The mice treated with the two types of ASCs showed recovery from 3 

the alveolar damage (Figs. 2 D and E). We used the mean linear intercept (MLI) method to 4 

quantify this recovery. The MLI was reduced in the dissociated ASC-infused group (97.9 µm) 5 

and spheroid ASC-infused group (78.2 µm) when compared with the elastase only group 6 

(109.6 µm). The MLI of the spheroid ASC-infused group showed a stronger reduction than 7 

the dissociated ASC-infused group. These findings suggest that the recovery between the 8 

dissociated and spheroid ASC groups differed (Fig. 2F). 9 

 10 

3.3 Effects of injected ASCs on the lungs of mice with elastase-induced emphysema 11 

The harvested lung tissues from mice with or without elastase-induced emphysema were 12 

analyzed by ELISA and Western blotting (data not shown) to identify changes in host cells 13 

after the transplantation of dissociated or spheroid ASCs. The protein levels of mouse FGF-2, 14 

HGF, and VEGF were quantified using ELISA. Mouse FGF-2 was significantly increased in 15 

the spheroid ASC-injected group when compared with the dissociated ASC-injected group 16 

(Fig. 3A). Mouse HGF and VEGF levels were not significantly different between dissociated 17 

and spheroid ASC-injected groups (Figs. 3B and C). The growth factor levels in the three 18 

treatment groups were not significantly different from the control (-) group. 19 

 20 

3.4 Effects of injected ASCs on the regulation of MMP production 21 

To observe the effects of ASCs on tissue regeneration, the mRNA transcript levels of MMP-2, 22 

-9, and -12 in lung tissue were measured by qPCR. MMP-2 mRNA expression tended to be 23 

lower in the injected ASC group when compared with the negative control group. MMP-12 24 

expression was significantly lower in the spheroid ASC-injected group when compared with 25 
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the dissociated ASC-injected group (Fig. 4A). Protein expression levels were evaluated by 1 

Western blotting (Fig. 4B) and zymography (Fig. 4C). MMP-9 expression at the mRNA and 2 

protein level was similar between the dissociated and spheroid ASC-injected groups. Both 3 

groups also showed reduced MMP-2 expression and activity. Additionally, the spheroid ASC-4 

injected group showed a greater reduction in MMP-2 activity when compared with the 5 

dissociated ASC injected group. To extend these findings, we tested the expression levels of 6 

tissue inhibitor of metalloproteinase-1 (TIMP-1) and secretory leukocyte protease inhibitor 7 

(SLPI), which both inhibit MMPs (Fig. 4D). Surprisingly, the injection of either dissociated 8 

or spheroid ASCs significantly increased the mRNA transcript levels of TIMP-1, which 9 

encodes a protease inhibitor. The transplantation of spheroid ASCs resulted in a greater 10 

increase in TIMP-1 and SLPI expression when compared with dissociated ASCs. 11 

 12 

4. DISCUSSION 13 

In the current study, we examined if spheroid ASCs showed improved therapeutic efficacy in 14 

a mouse elastase-induced model of emphysema. Classically, MSCs have been cultured as a 15 

two-dimensional (2D) monolayer using coated culture plates. However, 2D cultures are 16 

disadvantaged by the fact that MSCs lose their stemness properties (e.g., replication potential 17 

and differentiation capacity) when grown in this manner; notably, this phenomenon does not 18 

occur in humans or mice in vivo [14]. To overcome this problem, many researchers have tried 19 

to adopt three-dimensional (3D) spheroid cultures. The effect of spheroid formation on 20 

cellular differentiation and cell-cell interactions has been studied. The formation of a spheroid 21 

prevented apoptosis, and thus facilitated differentiation, because of the conservation of cell-22 

cell interactions that were important for survival and colony formation [15, 16]. 23 

 Here we compared the expression of apoptotic and growth factors between 24 

dissociated and spheroid ASCs. A previous report showed that spheroid ASCs decreased 25 
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BAX protein expression when compared with dissociated ASCs [17]. Our Western blot 1 

results showed no significant difference in BAX protein levels and increased Bcl-2 protein 2 

expression in spheroid ASCs when compared with dissociated ASCs. The correlation of BAX 3 

and Bcl-2 expression was not determined. 4 

 Growth factors perform an important role in tissue regeneration. FGF-2 is a basic 5 

fibroblast growth factor involved in multiple biological activities, including angiogenesis, 6 

migration, proliferation, and anti-apoptosis [18-20]. VEGF is involved in vascular regulation 7 

in angiogenesis, cell-cell and cell-matrix interactions, and the proliferation of endothelial 8 

cells in injured lung tissue. VEGF was reported as a crucial regulatory factor in the 9 

aggravation or recovery of emphysema [21-23]. We observed an increase in FGF-2 and 10 

VEGF in cells and tissues without a release of FGF2 in the culture medium.  11 

 In various animal models, the major advantage of spheroid MSCs is their higher 12 

level of stemness and anti-inflammatory properties and exertion of stronger therapeutic 13 

effects, such as increased growth factor secretion in the recipient and greater differentiation 14 

capacity [13, 16, 17, 24]. We did not assess stemness in our current study; however, the 15 

effects of injected spheroid ASCs were confirmed by the increased growth factor expression 16 

in the host tissue when compared with dissociated ASCs. 17 

 The use of spheroid ASCs in our current study significantly attenuated emphysema 18 

in a mouse elastase-induced model when compared with dissociated ASCs at a similar dose 19 

of 1×105 cells. To characterize this therapeutic mechanism, we measured growth factor and 20 

MMP expression in mouse lung tissue lysates.  21 

 The expression of each growth factor was significantly enhanced and the expression 22 

of MMPs (-2 and -12) was diminished when compared with the dissociated ASC-injected 23 

group. In contrast, the expression and activity of the protease inhibitors TIMP-1 and SLPI 24 

were significantly enhanced in spheroid ASC-injected mice. Previous studies revealed that 25 
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exogenous growth factors, i.e., EGF, VEGF, and HGF as an angiogenic factor, enhanced the 1 

expression of MMPs in vitro and in vivo via cell migration and proliferation and ECM 2 

remodeling [25-27]. The MMPs (-2, -9, and -12) assayed in our current analyses are proteases 3 

with major roles in emphysema. These MMPs are secreted by various cells, including 4 

epithelial cells, neutrophils, eosinophils, and alveolar macrophages, and they can degrade 5 

matrix components in normal and abnormal states [28]. MMP-12 helps macrophages to 6 

invade tissues and thus contributes to the degradation of the alveolar wall. In a recent report, 7 

the pathogenesis of emphysema was blocked at an early stage by ablating the MMP-12 gene 8 

or inhibiting MMP-9 and MMP-12 in a smoke-induced emphysema animal model [29-31]. 9 

TIMP-1 inhibits the activity of most MMPs, including MMP-12, but not the membrane-type 10 

MMPs (-14, -15, -16, -17), whereas SLPI inhibits the activity of elastase [32].Some reports 11 

have shown that proteins secreted by MSCs can protect tissues by inhibiting the activity of 12 

endogenous and exogenous MMPs and proteases via the ERK1/2 pathway and other proteins, 13 

such as erythropoietin, TIPMs, and VEGF in vitro [2, 33, 34]. 14 

 Our current findings suggest that dissociated or spheroid ASCs injected in a mouse 15 

elastase-induced model of emphysema inhibit MMPs via TIMP-1 and SLPI and induce 16 

regeneration via growth factor production. Moreover, the use of spheroid cells resulted in an 17 

improved therapeutic efficacy in vivo when compared with dissociated cells. 18 

 19 

5. CONCLUSION 20 

Spheroid ASCs enhanced recovery in an elastase-induced mouse model of emphysema by 21 

increasing growth factor production and anti-proteases when compared with dissociated 22 

ASCs at the same dose. Thus, spheroid ASCs have potential as a future treatment of 23 

emphysema. 24 

 25 
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Figure legends 10 

Fig. 1. The expression of apoptotic markers and growth factors. (A) Western blotting images 11 

and (B) protein band quantification for BAX and Bcl-2. (C) Western blotting images and (D) 12 

protein band quantification for FGF-2 and VEGF. (E) FGF-2 and VEGF production was 13 

measured in conditioned media.  14 

 15 

Fig. 2. Improved recovery efficacy of ASCs in an elastase-induced mouse model of 16 

emphysema. (A) Experimental protocol. (B–E) Lung histology with H and E staining: (B) 17 

control (n = 5); (C) elastase only (n = 12); (D) elastase+dissociated ASCs (n = 10); and (E) 18 

spheroid ASCs (n = 11) (10×). (F) Mean linear intercept (mean ± SEM). Scale bar = 0.5 mm. 19 

*p < 0.05 and ***p < 0.001 for comparisons between 2 groups. 20 

 21 

Fig. 3. Growth factor production in lungs with emphysema: (A) FGF-2, (B) HGF, and (C) 22 

VEGF. *p < 0.05 and **p < 0.01 for comparisons between 2 groups. 23 

 24 

Fig. 4. Effects of ASCs on MMPs, TIMP-1 and SLPI expression in lungs with emphysema. 25 

(A) The mRNA levels of MMP-2, MMP-9, and MMP-12 in the lung. (B) and (C) 26 
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Representative images for western blotting and gelatin zymography. (D) The mRNA 1 

expression of TIMP-1 and SLPI. *p < 0.05, **p < 0.01, and ***p < 0.001 for comparisons 2 

between 2 groups. 3 

4 
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UNCORRECTED PROOF
Supplementary Table 1. Primer list 

Gene Forward primer Reverse primer 

β-actin TGGAATCCTGTGGCATCC TAAAACGCAGCTCAGTAA 

MMP2 ACAAGTGGTCCGCGTAAA CGGTCATCATCGTAGTTG 

MMP9 CTCGCGGCAAGTCTTCAGAG AGTTGCTTCTAGCCCAAAGAAC 

MMP12 TGGTATTCAAGGAGATGC GGTTTGTGCCTTGAAAAC 

TIMP1 GCAACTCGGACCTGGTCATA CGGCCCGTGATGAGAAACT 

SLPI GGCCTTTTACCTTTCACGGT TACGGCATTGTGGCTTCTCA 

Fgf2 GCGACCCACACGTCAAAC TCCCTTGATAGACACAAC 

Hgf AACAGGGGCTTTACGTTCAC CGTCCCTTTATAGCTGCCTC 

Gene Forward primer Reverse primer 

GAPDH ACCACAGTCCATGCCATC TCCACCACCCTGTTGCTG 

BAX TGGCAGCTGACATGTTTTCTGAC CGTCCCAACCACCCTGGTCT 

Bcl-2 AGATGTCCAGCCAGCTGCACCTGAC AGATAGGCACCAGGGTGAGCAAGCT 

FGF2 GGCCACTTCAAGGACCCCAAG TCAGCTCTTAGCAGACA 

HGF GCTATCGGGGTAAAGACCTA CGTAGCGTACCTCTGGATTG 

VEGF TCGGGCCTCCGAAACCATGA CCTGGTGAGAGATCTGGTTC 

Human 

Mouse 
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ROOFSupplementary Fig. 1. A formed spheroid of human adipose-derived mesenchymal stem 

cells (ASCs) by self-assembly (A) A monolayer of adipose-derived mesenchymal stem cells 

was cultured in T175 plates. (B) and (C) are generation process of spheroid ASCs. After 1h, 

aggregation of ASCs was observed in PDMS concave micro-wells (B). The spheroid ASCs 

formed in PDMS concave micro-well after 24h(C). Scale bar= 250㎛. 
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Human 

Gene Forward primer Reverse primer 

GAPD

H 

ACCACAGTCCATGCCATC TCCACCACCCTGTTGCTG 

BAX TGGCAGCTGACATGTTTTCTGAC CGTCCCAACCACCCTGGTCT 

Bcl-2 AGATGTCCAGCCAGCTGCACCTG

AC 

AGATAGGCACCAGGGTGAGCAAG

CT 

FGF2 GGCCACTTCAAGGACCCCAAG TCAGCTCTTAGCAGACA 

HGF GCTATCGGGGTAAAGACCTA CGTAGCGTACCTCTGGATTG 

VEGF TCGGGCCTCCGAAACCATGA CCTGGTGAGAGATCTGGTTC 

Mouse 

Gene Forward primer Reverse primer 

β-actin TGGAATCCTGTGGCATCC TAAAACGCAGCTCAGTAA 

MMP2 ACAAGTGGTCCGCGTAAA CGGTCATCATCGTAGTTG 

MMP9 CTCGCGGCAAGTCTTCAGAG AGTTGCTTCTAGCCCAAAGAAC 

MMP1

2 

TGGTATTCAAGGAGATGC GGTTTGTGCCTTGAAAAC 

TIMP1 GCAACTCGGACCTGGTCATA CGGCCCGTGATGAGAAACT 

SLPI GGCCTTTTACCTTTCACGGT TACGGCATTGTGGCTTCTCA 

Fgf2 GCGACCCACACGTCAAAC TCCCTTGATAGACACAAC 

Hgf AACAGGGGCTTTACGTTCAC CGTCCCTTTATAGCTGCCTC 

 

 


