Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer.