BMB Reports Papers in Press available online.

Search Papers In Press
This galley proof is being listed electronically before publishing the final manuscript (It's not final version).

Detecting DNA hydroxymethylation: exploring its role in genome regulation
SUN-MIN LEE 1,* (Research worker)
1Department of Physics, Konkuk Univeristy, 120 Neungdong-ro, 05029 Seoul, South Korea
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, ranging from methods based on bisulfite conversion to bisulfite-free approaches and third-generation sequencing techniques. The role of 5hmC has been primarily studied in the context of global epigenetic reprogramming during developmental processes, as well as in embryonic stem cells (ESCs) and neuronal cells. This review aims to comprehensively report the recent techniques and discuss the emerging roles of 5hmC.
Abstract, Accepted Manuscript [Submitted on December 28, 2023, Accepted on February 1, 2024]
  © KSBMB. All rights reserved. / Powered by INFOrang Co., Ltd