BMB Reports - Manuscript Submission

Manuscript Draft

DOI: 10.5483/BMBRep.2023-0050

Manuscript Number: BMB-23-050

Title: Recording RNA by CRISPR-Cas adaptation: a brief review

Article Type: Mini Review

Keywords: CRISPR-Cas; CRISPR adaptation; Cas1-Cas2; RT-fused Cas1;

RNA recording

Corresponding Author: Sungchul Kim

Authors: Sungchul Kim^{1,*}, Gyeong-Seok Oh¹, Seongjin An^{1,2}

Institution: ¹Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.

²Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea,

1	Manuscript Type: Mini Review
2	
3	Title: Recording RNA by CRISPR-Cas adaptation: a brief review
4	
5	Author's name: Gyeong-Seok Oh ^{1,#} , Seongjin An ^{1,2,#} , and Sungchul Kim ^{1,*}
6	* These authors contributed equally to this work.
7	*Correspondence
8	
9	Affiliation:
10	1 Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
11	2 Department of Life Sciences, School of Life Sciences and Biotechnology, Korea
12	University, Seoul, 02841, Korea
13	
14	Running Title: The mechanism and application of RT-Cas1-Cas2
15	
16	Keywords: CRISPR-Cas, CRISPR adaptation, Cas1-Cas2, RT-fused Cas1, RNA recording
17	
18	Corresponding Author's Information: Tel. +82-2-880-6278, Fax. +82-2-887-0244,
19	sungchulkim.kr@gmail.com
20	
21	ABSTRACT
22	Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays
23	and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems
24	effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and
25	plasmids. Non-self nucleic acid fragments are acquired as spacers between repeats in the host
26	CRISPR array during a process called 'adaptation' to establish immunological memory. The
27	highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers
28	in a time course manner, which can subsequently be expressed as crRNAs complexed with
29	Cas effector proteins for the RNA-guided interference pathways. In some of RNA-targeting
30	type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-
31	Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we
32	summarize current studies focused on the molecular structure and function of the RT-fused
33 🔺	Cas1-Cas2 integrase and its potential applications as a directional RNA-recording tool in

cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future

35	directions for RNA-recording CRISPR technologies.
36	
37	Classification of CRISPR-Cas systems
38	CRISPR-Cas systems are diverse prokaryotic RNA-guided adaptive immune machineries tha
39	provide protection against invasions by 'mobile genetic elements' (MGEs), such as plasmids,
40	viruses, and transposons in ~40% of bacteria and ~90% of archaea (1-4). All CRISPR-Cas
41	systems follow three basic steps for the inheritable immunity against harmful MGEs (Figure
42	1A). First, during the 'adaptation' (also referred to as spacer acquisition) step, foreign DNA
43	or RNA fragments are captured and integrated between repeats in host CRISPR arrays,
44	updating an inheritable memory, called a spacer, for future encounters (3, 5-8). In the
45	'expression' step, integrated spacers are transcribed into a single, long precursor CRISPR
46	RNA (pre-crRNA) and further processed into mature crRNAs. The crRNAs are assembled
47	into a Cas effector, becoming a surveillance ribonucleoprotein complex, such as type I
48	Cascade, type II Cas9, type V Cas12 and type VI Cas13 effectors. During the final
49	'interference' step, target binding with an effector-crRNA complex through R-loop formation
50	results in target cleavage and degradation of the invading threat (Fig 1A) (1, 9-12).
51	CRISPR-Cas systems are divided into two major classes that distinctly differ in the
52	architectures of their effector modules related to crRNA processing and interference (Figure
53	1B). Class 1 CRISPR-Cas systems are comprised of types I, III and IV, and are further
54	divided into 16 subtypes, whereas class 2 CRISPR-Cas systems include types II, V and VI,
55	and 17 subtypes (13). Class 1 systems encode effector Cas modules as multi-subunit proteins
56	such as Cascade in type I, Csm complex in type III-A and Cmr complex in type III-B
57	systems. Additional Cas proteins often contribute to pre-crRNA processing or interference
58	steps in many subtypes. In contrast, class 2 systems consist of a single, multi-domain, and
59	large crRNA-binding protein, such as Cas9 in type II systems, Cas12 in type V systems, and
60	Cas13 in type VI systems. These effector complexes usually exhibit an all-in-one activity for
61	target interference as well as pre-crRNA processing in some variants.
62	Likewise, two strategies exist for abortive infection by MGEs and are utilized
63	depending on the type of an effector complex, (14). In types I, II, IV and V CRISPR-Cas
64	systems, DNA-targeting effector complexes directly destroy invading DNA via crRNA-
65	guided cleavage. Target DNA binding in these types leads to the activation of the DNase
66	activity of the effector complex, resulting in specific degradation of the target DNA to

67	circumscribe infection. In types III and VI CRISPR-Cas systems, RNA-targeting effector
68	complexes are utilized. Here, the effector modules are activated upon RNA binding, leading
69	to the RNase activity that cleaves the target RNA. Other accessory Cas proteins can also be
70	involved in combating the invader via the activation of protease-mediated cascade pathways
71	(e.g. TPR-CHAT/Csx29 in type III-E) (15-22) or collateral RNase activity (e.g. Csm6 in type
72	III-A) (Figure 1B) (23, 24). This can result in indirect inhibition of infection through cellular
73	signaling pathways that leads to the activation of downstream defense genes.
74	
75	RNA-targeting CRISPR-Cas systems
76	Type III and VI CRISPR-Cas systems, despite their evolutionary distance and structural
77	differences, exhibit the common feature of acquiring, sensing, and cleaving target RNA
78	molecules for (adaptive) immunity. Type III CRISPR-Cas systems, believed to be the oldest
79	member of the CRISPR-Cas family (25, 26), are classified further into six different annotated
80	subtypes: III-A to III-F (13). Type III CRISPR-Cas systems account for 25% of total
81	CRISPR-Cas loci in bacteria and 34% in archaea (27). Class 1 Type III CRISPR-Cas effector
82	complexes generally consist of multiple subunits, just to name a few, Csm2, Csm3, Csm4 and
83	Csm5 in types III-A and III-D, and Cmr1, Cmr3, Cmr4, Cmr5 and Cmr6 in types III-B and
84	III-C (11, 28-31). Of these, the signature Cas10 subunit, also referred to as Csm1 in types III-
85	A and III-D, and Cmr2 in types III-B and III-C is typically complexed with the main effector
86	complex. Upon target RNA binding, the conformational change of the Cas10 subunit
87	provides a DNase activity for proximal ssDNA cleavage in co-transcriptional R-loops and an
88	ATP cyclase activity for the generation of cyclic oligoadenylates as secondary messengers
89	that activate Csm6 protein for collateral RNA degradation. In comparison, the type III-E and
90	III-F systems lack Cas10 subunit. Of these, a recently reported type III-E effector, known as
91	gRAMP (also called Cas7-11) has a unique architecture that comprises subunits fused
92	together as single protein, resembling effectors in class 2 systems (15, 16, 21, 32-35). The
93	gRAMP effector is complexed with a TPR-CHAT (also known as Csx29) subunit, which is a
94	caspase-like peptidase that can cleave the Csx30 upon RNA binding to activate the CRISPR-
95	associated sigma factor RpoE for cell cycle retardation or cell death.
96	Next, we will discuss the type VI CRISPR-Cas system. The signature effector protein
97	of Type VI CRISPR-Cas systems is a single multidomain protein Cas13. It acts on in both
98	crRNA processing and target RNA recognition and cleavage for the immune response (36-
99	39). Six different type VI subtypes, types VI-A to VI-D, Cas13X and Cas13Y, have been

identified so far (13, 40). All Cas13 proteins in type VI subtypes contain two HEPN domains critical for RNA-mediated target surveillance. Upon target RNA loading, the conformational change activates the RNase activity in HEPN domains, resulting in target RNA cleavage as well as collateral subversion of bystander RNA hydrolysis, which establishes broad and nonspecific immunity (37, 41, 42).

The RNA targeting CRISPR-Cas systems described above require a mechanism to distinguish self from non-self. For discriminating between self and non-self, DNA targeting CRISPR-Cas effectors recognize a small RNA sequence motif called protospacer adjacent motif (PAM) to position a target sequence in MGEs (43). The absence of PAMs in the spacer flanking repeat sequences prevents self-recognition, thereby inhibiting autoimmunity. In contrast, the catalytic activity of type III and VI CRISPR-Cas effectors can be regulated by recognition of a small RNA sequence next to a target RNA sequence derived from a repeat portion, referred to as protospacer flanking site (PFS) (44-46). Whereas a PAM binding leads the activation of DNA targeting effectors, a mismatch in PFS with a crRNA primes RNA targeting effector for non-self RNA targeting, preventing toxic, nonspecific targeting of self-transcripts. In other words, autoimmune response can occur by signifying self-transcripts through complementarity of the crRNA to the PFS in the antisense CRISPR array transcript.

CRISPR adaptation by Cas1-Cas2

How do bacteria or archaea archive and remember previous invaders? This process occurs during the 'adaptation' step. In DNA-targeting CRISPR-Cas systems, the highly conserved Cas1-Cas2 complex mediates spacer acquisition derived from DNA and integrates them into the CRISPR array (Figure 1A) (47-49). Cas1-Cas2 complex form a heterohexameric Cas1₍₄₎-Cas2₍₂₎ complex (Figure 2A and 2B) (3, 5, 47, 48, 50-54). *In vivo* studies on spacer acquisition suggest that Cas1-Cas2 complex identifies suitable prespacers based on the PAM, which is also a prerequisite for the CRISPR-interference stage of immunity (55-57). Structural studies on the *E. coli* type I-E Cas1-Cas2 complex have demonstrated that the C terminal tail of the Cas1 subunit is responsible for PAM recognition (47, 52). In contrast, Cas1-Cas2 complexes in some type I systems, except type I-E and I-F systems, use an additional adaptation factor called Cas4, for PAM recognition (58-61). Although the Cas1-Cas2 complex preferentially integrates partial duplex DNAs harboring single-stranded 3' overhangs *in vitro* (47, 52, 62), a single-molecule study showed that the Cas1-Cas2 complex actually binds to a single strand of DNA containing a PAM sequence in more favorable

manner, suggesting that annealing of complementary ssDNA facilitates the generation of a
suitable substrate comprising a PS duplex with 3' overhangs (63). In most type II systems,
Cas9 and Csn2, together with a Cas1-Cas2 heterohexamer, play a role in PAM recognition,
although the precise mechanism remains to be investigated (64-67). During DNA adaptation,
the Cas1-Cas2 complex controls the correct orientation of integrated spacers through
asymmetric prespacer trimming in a delayed PAM trimming mode by DnaQ enzymes or Cas4
endonuclease itself (59, 63, 68).

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

133

134135

136

137

138

139

Identification of RT-fused Cas1 in type III CRISPR-Cas systems

For type III and VI CRISPR-Cas systems, the possibility of spacer acquisition derived from RNA by type III and VI CRISPR systems has been raised, as these can target RNA in addition to DNA (49). Interestingly, some bacteria harboring type III CRISPR-Cas systems have Cas1 fused with reverse transcriptase (RT), and these RT domains have been thought to be related to RTs known as group II introns (Figure 3A) (49, 69-72). Several Cas1 and associated RTs in type III CRISPR systems even seem to have co-evolved (70, 72, 73). Specifically, 537 sequences were analyzed in a comprehensive analysis to elucidate the origin and relationship between RTs and the associated CRISPR-Cas system and found that cases of RTs related to Cas1 loci were more prevalent in bacteria (11 clades) than archaea (only 1 clade) (Figure 3B). Since Cas1 proteins mediate spacer acquisition together with Cas2 subunits in a heterohexameric complex, it has been suggested that an RT domain would be required for direct spacer acquisition from RNA (69). RT-Cas1 fusion proteins were also identified in type VI-A CRISPR-Cas systems (74). In this study, two variant type VI-A systems were assumed to be evolved independently to fuse Cas1 proteins with RTs possibly derived from type III-A and III-D systems. Moreover, in addition to the RT domain fused with Cas1, the Cas6 endoribonuclease domains are also N-terminally fused to RT-Cas1 parts in many variants (Figure 3B) (13, 73, 75, 76). The role of Cas6 protein has been well established as an effector protein directly required for processing pre-crRNA (77) and Mohr et al. proved that the Cas6 domain fused with RT-Cas1 is also involved in RNA spacer acquisition (76).

161162

163

164

165

Structure of RT-fused Cas1-Cas2 complex

Determining the structure of a protein complex provides a detailed understanding of its molecular mechanism. To this end, Wang et al. recently revealed the entire cryo-EM structure

of type III Cas6-RT-Cas1-Cas2 complex in a naturally occurring <i>Thiomicrospira</i> (<i>Thio</i>)
species (Figure 2C) (78). Despite the authors effort to characterize the DNA-bound complex,
which combines purified Cas6-RT-Cas1- Cas2 proteins together with a DNA substrate
designed to resemble a half-site integration intermediate, only the DNA-unbound structure
(apo-Cas6-RT-Cas1-Cas2 complex) was solved. This structure of <i>Thio</i> apo-Cas6-RT-Cas1-
Cas2 complex is heterohexameric and consists of two distal Cas6-RT-Cas1 dimers and a
central Cas2 dimer, like typical Cas1-Cas2 integrases (Figure 2A-C) (48, 79-81). Thio Cas6-
RT-Cas1-Cas2 complex are distinguishable from those of E. coli Cas1-Cas2 in some respects
(or aspects of their structure). For example, in the E. coli Cas1-Cas2 complex, two positively
charged regions in the DNA binding cleft and Cas2 dimer are critical for prespacer binding,
enabling the intrinsic ruler mechanism (47, 52). Although similar charged regions are located
on the Cas1 domains and Cas2 subunits in the Cas6-RT-Cas1-Cas2 complex, Cas2 dimers
and one Cas1 dimers are rotated further away from another Cas1 dimer, resulting in an
altered dimer interface. The authors also reported that there exists close contact between three
active sites of Cas1-Cas2 integrase, RT and Cas6 maturase, implying that functional crosstalk
is tightly coordinated (Figure 2C). Furthermore, the RT domain of Cas6-RT-Cas1 resembles
other RTs, such as retroviral and group II intron RTs (Figure 2D) (82, 83), implying that the
integration process by Cas6-RT-Cas1-Cas2 could be followed by the target-primed reverse
transcription similar to retro-homing mechanism of group II introns.

In another alternative approach, Mohr et al. revealed a truncated mutant structure of the Cas6 maturase domain of *Marinomonas mediterranea* (*MMB-1*) type III-B Cas6-RT-Cas1-Cas2 (Figure 2E) (84). The structure of the Cas6 from MMB-1 was superimposed onto that from *Thio*, showing an overall good alignment, except for differences in the β-strand architecture of the C-terminal RRM fold. In addition, the overall architecture of Cas6 domains in Cas6-RT-Cas1 proteins looks quite distinct from other stand-alone Cas6 proteins (84-86). Thus, it suggests that the Cas6 domain in Cas6-RT-Cas1-Cas2 complex is not only critical to crRNA processing, but also may be functionally engaged in either RNA substrate capture and process during reverse transcription by RT domain or prespacer integration cooperated with Cas1-Cas2 integrase in the complex.

Functional features of RT-fused Cas1-Cas2 complex

Domain-fused proteins, including RT-fused Cas1-2 integrases, typically coordinate their series of actions. It has been suggested that RNA could be a suitable substrate for spacer

199	acquisition by Cas1-Cas2 integrase, with assistance from the fused RT. In vivo integration		
200	assay using RNA transcripts harboring self-splicing introns have shown that RNA transcripts		
201	can be integrated into CRISPR arrays by the MMB-1 Cas6-RT-Cas1-Cas2 complex (87). This		
202	result was reproduced using the Cas6-RT-Cas1-Cas2 of Fusicatenibacter saccharivorans (F.		
203	sac) (88) and Vibrio vulnificus (V. vul) (89). MMB-1 and Thio Cas6-RT-Cas1-Cas2 complexes		
204	show substrate versatility, as these have been shown to integrate dsDNA, ssDNA, and ssRNA		
205	oligonucleotides into the CRISPR DNA (78, 87). Full-site integration occurs only site-		
206	specifically when dsDNA substrates are provided. In MMB-1, both RT and Cas1-Cas2		
207	integrase activities of the Cas6-RT-Cas1-Cas2 complex are indispensable for RNA		
208	integration, while RT activity is not required for DNA integration. In contrast, Thio Cas6-RT-		
209	Cas1 alone, regardless of the presence of Cas2 dimer, exhibits integration activity, although		
210	Cas2 improves integration efficiency. Thio Cas6-RT-Cas1-Cas2 is significantly more efficient		
211	at integrating dsDNA, ssDNA, and DNA/RNA hybrid substrates than ssRNA substrates.		
212	Collectively, these results suggest that the RT and Cas1 domains in the Cas6-RT-Cas1-Cas2		
213	complex closely cooperate for RT process and integration functions (78, 87). Furthermore,		
214	mutations in the Cas6 active site affect both integration and RT activity, while mutations in		
215	the Cas1 and RT domains show no effect on Cas6 RNA processing activity. This suggests a		
216	unidirectional crosstalk between the Cas6 domain and the other two domains in Thio Cas6-		
217	RT-Cas1-Cas2 (78).		
218	Next, the sequence and length specificity of spacer acquisition by Cas6-RT-Cas1-		
219	Cas2 has also been examined closely. In MMB-1, the majority of spacers (70-75%) were 34-		
220	36 base pairs (bp) long, with no significant sequence specificity observed (69). A small		
221	preference towards the sense strand spacer was also observed in an RT-independent manner		
222	in MMB-1, but this strand bias was not reconstructed in E. coli. In contrast, the median spaces		
223	length was 39 bp, with a distribution bias towards longer spacers in F. sac. (88). Strikingly, a		
224	strong bias towards AT-rich spacers was also observed. This apparent bias towards AT-rich		
225	spacers may be due to the AT-richness of RNA ends, but the bias persisted even when		
226	considering only spacers derived from the gene body. Furthermore, the F. sac Cas6-RT-Cas1-		
227	Cas2 complex did not exhibit any preference for PAM-like sequence motifs, but most spacers		
228	were acquired from the areas proximal to start and stop codons. Also, spacers were		
229	preferentially acquired toward an antisense orientation. Lastly, in V. vul, most of the spacers		
230	were between 34–38 bp with no PAM-like preference (89). However, there was an antisense		
231	bias for coding sequence orientation with a significant GC bias. Unlike F. sac, there was no		

232	bias at the start and end codons. Taken together, the differential specificity for spacer length
233	and sequence observed in previous independent studies implies significant variation among
234	these systems in vivo, which needs to be characterized in future studies.
235	
236	Application for RNA recording using RT-Cas1-Cas2
237	The Cas1-Cas2 adaptation complex can integrate foreign nucleic acids as spacers between the
238	leader sequence and the first repeat sequence of its own CRISPR array (53, 55). Taking
239	advantage of this nucleic acid induced CRISPR-Cas memory system, molecular recording
240	using CRISPR-Cas systems has emerged as a prominent field of research with the potential to
241	revolutionize various areas of biotechnology and life sciences. Cas1-Cas2-based DNA
242	recording offers several advantages over other explored methods for storing information (90-
243	92). Several recently published articles have described diverse approaches to molecular
244	recording using CRISPR-Cas systems, each with its own advantages and limitations (93). In
245	2016, Shipman et al. developed the first DNA recording system using the type I-E Cas1-Cas2
246	complex in E. coli (94). One of key benefits of this recording system is that the Cas1-Cas2
247	integrase can target and capture specific DNA molecules as spacers and integrate them into
248	the CRISPR array directionally and temporally, reflecting dynamic changes in real time
249	within a cell (95-98). Since the recorded DNA was stored in the CRISPR array in a time-
250	ordered way, it is possible to reconstruct the recorded information temporally and make a
251	lineage of events by sequencing the CRISPR array later on (95, 99). By creating a permanent
252	record of events within the genome, researchers can gain valuable insights into the underlying
253	mechanisms driving cellular behavior and response to environmental stimuli at a single-cell
254	level (95, 100). Moreover, since the CRISPR array is inherent within the genome of the
255	bacterial cell, it offers a reliable and long-term record that can be easily retrieved and
256	analyzed without the need for external devices or systems in the case of some prokaryotes.
257	However, these molecular recording systems have several limitations that need to be
258	addressed. For instance, these systems integrate spacers derived from DNA, not RNA and
259	they do not co-ordinate the transcriptional dynamics of the cell. There is also a need to
260	transform exogenous nucleic acids to verify the specificities and efficiencies of molecular
261	recording (99).
262	Similarly, transcriptional molecular recorders are innovative tools that can capture

approach has the potential to reveal the precise timing, order, and intensity of transcriptional

various transcriptional events and incorporate them into the genome of the cell. This

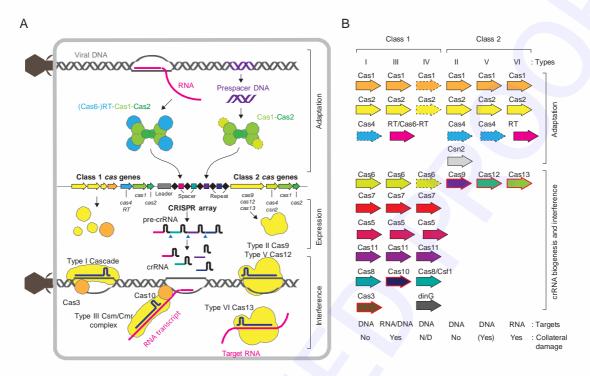
263

activity at the cellular level, without requiring multiple destructive assays (Figure 4A). To this end, Schmidt et al. utilized F. sac Cas6-RT-Cas1-Cas2 for transcriptional recording instead of the DNA integrating E. coli Cas1-Cas2 complex (88), since Cas6-RT-Cas1-Cas2 has been used as a spacer integrase from cellular transcripts (Figure 4B) (69). This study showed that the tracking of transcriptional responses to specific stimuli within bacterial cells can be achieved via transcriptional recording (88). Furthermore, transcriptional events stored as RNA-derived spacers at the CRISPR array reflected temporal and global transcriptomic memories to various stresses (99, 101). In another recent study by Schmidt et al., they engineered multiplexed transcriptional recording to track transcriptional histories of the stress response in the physiological environment, enabling engineered microbiome as sentinel cells to record environmental changes in mouse guts by Record-seq (Figure 4B) (101) (Fig. 4). All together, these studies support the idea that RT-Cas1-Cas2-based recording technology can be a useful tool for studying the evolution of cells within various environmental contexts as well as for novel therapeutic development and diagnostics. Lastly, a retron RT, which can reverse transcribe non-coding RNA (ncRNA), has also been proposed to record temporal memories of transcriptional events in a live cell and emerged as an alternative to transcriptional recording using RT-Cas1-Cas2 (102).

Concluding remark and future perspectives

In the last decade, the CRISRP-based genome engineering field has been successfully revolutionized along with our understanding for mechanisms of the CRISPR-Cas adaptive immune systems. DNA cutting CRISPR-Cas effectors, such as type II Cas9 and type V Cas12a (also called as Cpf1), have been mainly focused and engineered to develop diverse genome editing technologies (103). Additional need for advancing RNA editing tools has enabled RNA-targeting type VI CRISPR Cas13 effectors to be reconfigured for the use in gene silencing (104) and RNA diagnostics (105). Beyond the gene editing, an endeavor is still being made to discover novel CRISPR-based technologies, such as CRISPR-mediated imaging, epigenome manipulation, and molecular recording tools. In this review, we focus on recent advances and understandings regarding molecular recording techniques based on CRISPR adaptation modules. Throughout recent genetic, structural and biochemical approaches, we can now explain how proteins related to the DNA CRISPR adaptation function to ensure the efficiency and fidelity for the precise spacer acquisition (8). However, our knowledge about the mechanism of CRISPR RNA adaptation is very limited.

While these molecular recording systems using RT-Cas1-Cas2 have several promising advantages warranting their future use, RT-Cas1-Cas2-based recorders still have inherent limitations that need to be addressed. It remains to be solved how these recorders can function the same way in the eukaryotic system. The process of implementing RT-Cas1-Cas2-based recorders into mammalian cells may depend on non-Cas bacterial factors (51, 106), or may be established by a combination with epigenome manipulating techniques in eukaryotic environments. Furthermore, the capacity and efficiency to detect CRISPR arrays, which are intended to integrate transcript-derived spacers of interest, could be very slim. Given that not all spacers of interest will be integrated as expected, this inefficient recording possibility may further reduce the chance of detecting the spacer of interest. Therefore, more optimized sequencing techniques are needed to be developed to overcome the detection limit in the future.


ACKNOWLEDGMENTS

This work was supported by IBS-R008-D1, Young Scientist Fellowship program of the Institute for Basic Science from the Ministry of Science and ICT of Korea.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

FIGURE LEGENDS

331332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

330

Figure 1. Overview of the mechanism and classification of CRISPR-Cas systems

(A) Schematic of the CRISPR-Cas adaptive immunity. During the adaptation stage, foreign DNA (gray helical lines) or RNA (pink lines) can be captured and integrated into CRISPR array, by Cas1-Cas2 and (Cas6-)RT-Cas1-Cas2 complexes, respectively. Acquired nucleic acids are converted to new spacers and recorded in a leader-proximal order, creating immunological memories. In the expression stage, spacers in CRISPR array are transcribed to pre-crRNA, and processed into crRNAs (crRNA biogenesis). The effector RNP complex are assembled crRNAs with expressed effector Cas proteins. At the final interference stage, effector complexes target against revisiting foreign (viral) DNAs and their transcripts through sequence-specific cleavage complementary to the sequence of crRNA. The image is adopted and modified from Lee et al. Trends in Biochemical Sciences, 2022 (8). (B) Classification and gene structure of CRISPR-Cas systems. In adaptation associated cas genes, there are well conserved genes, Cas1 and Cas2. Some accessory genes exist like Cas4 in type I, II and V, or reverse transcriptase (RT) in type III and VI, or Csn2 in type II. The classification of each type primarily based on effector genes. Class 1 has multiple interfering and crRNA biogenesis genes. Meanwhile, Class 2 has single effector genes, e.g. Cas9, Cas12 or Cas13. The signature proteins in each type are represented with red outline. Target nucleic acids and the existing collateral damage effect are indicated below.

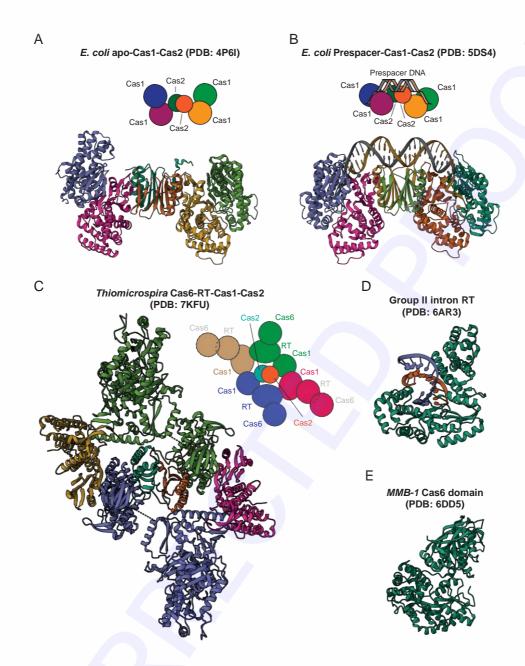


Figure 2. Structural architectures of CRISPR integrases and related proteins

(A) Structure of *E. coli* type I-E DNA-unbound (apo) Cas1-Cas2 complex (Protein Data Bank, PDB, ID: 4P6I) (50). (B) Structure of *E. coli* type I-E prespacer DNA-bound Cas1-Cas2 complex (PDB ID: 5DS4) (52). (C) Structure of *Thiomicrospira* Cas6-RT-Cas1-Cas2 complex (PDB ID: 7KFU) (75). Two of the four Cas6-RT domains are invisible. (A–C) The arrangement models of the color-coded subunits and DNA (in B) are represented above the crystal (in A and B) and cryo-EM (in C) structures of the complexes. (D) Structure of *Marinomonas mediterranea* (*MMB-1*) truncated Cas6 domain (PDB ID: 6DD5) (76). (E) Structure of group II intron reverse transcriptase bound to an RNA template base paired with a DNA primer (PDB ID: 6AR3) (82).

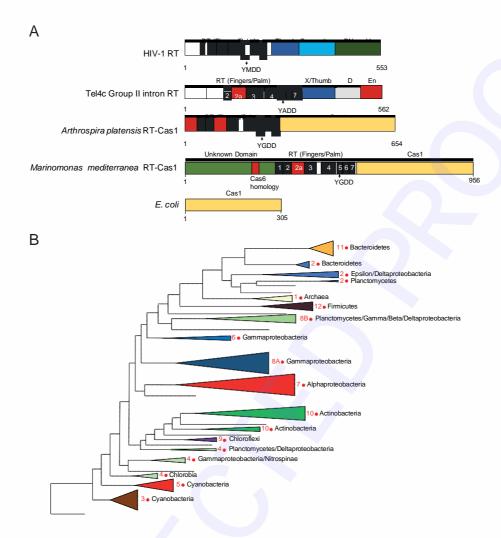


Figure 3. Domain structure and Phylogenetic distribution of the RT-fused Cas1 and its related proteins

(A) Schematic of the domain organization of HIV-1 RT, Tel4c group II intron RT, *A. platensis* type III-B RT-Cas1, *MMB-1* type III-B RT-Cas1, and *E. coli* type I-E Cas1. Conserved RT motifs (1 to 7) are indicated in black boxes. Conserved motifs in mobile group II intron and non-LTR—retrotransposon RTs (0 and 2a) are labeled in red boxes. The YXDD sequence found in motif 5 represented with two aspartic acid residues is indicated by arrow. The X/Thumb domains commonly found in HIV-1 and group II intron RTs are indicated. Amino acid numbers are indicated below the bars. D, DNA binding domain. En, endonuclease domain. The image is taken from Silas et al. Science, 2016 (69). (B) Phylogenetic tree of Cas1 associated with RTs. The analysis is reconstructed with 148 Cas1 proteins. The identified clades with numbers are named and colored according to the RT-associated clade. The figure is taken and modified from Toro et al. Scientific Reports, 2017 (73).

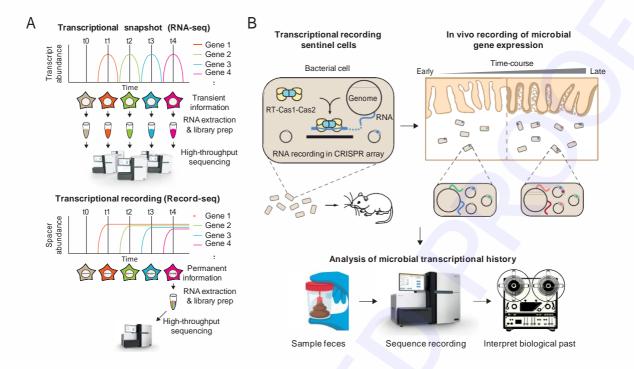


Figure 4. In vivo transcriptional recording by RT-Cas1-Cas2

(A) Comparison between RNA-seq and Record—seq. RNA-seq captures the transcriptomes from subject cells at each point in time, providing a transient snapshot of cellular events. By contrast, transcriptional records in CRISPR arrays provide molecular records that can be used to reconstruct transcriptional events that occurred over time only by a one-shot analysis. The image is adopted and revised from Schmidt et al. Nature, 2018 (88). (B) Schematic of experimental platform for the noninvasive interpretation of transcriptional recordings using *F. sac* RT-Cas1-Cas2 in bacterial cells. The *E. coli* cells transformed to express RT-Cas1-Cas2 proteins and harbor plasmids with CRISPR arrays are orally gavaged into mice. Stress response patterns by bacterial strains as sentinel cells are stored in CRISPR arrays in an inheritable and time-ordered way. Eventually, the recorded information can be reconstructed by sequencing the CRISPR arrays from microbial samples without any effort for the time-course harvest. The figure is taken and modified from Schmidt et al. Science, 2022 (101).

392	REF	ERENCES
393	1.	Hille F, Richter H, Wong SP, Bratovic M, Ressel S and Charpentier E (2018) The
394		Biology of CRISPR-Cas: Backward and Forward. Cell 172, 1239-1259
395	2.	Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61
396	3.	McGinn J and Marraffini LA (2019) Molecular mechanisms of CRISPR-Cas spacer
397		acquisition. Nat Rev Microbiol 17, 7-12
398	4.	Frost LS, Leplae R, Summers AO and Toussaint A (2005) Mobile genetic elements:
399		the agents of open source evolution. Nat Rev Microbiol 3, 722-732
400	5.	Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC and Brouns SJ
401		(2017) CRISPR-Cas: Adapting to change. Science 356
402	6.	Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired
403		resistance against viruses in prokaryotes. Science 315, 1709-1712
404	7.	Fineran PC and Charpentier E (2012) Memory of viral infections by CRISPR-Cas
405		adaptive immune systems: acquisition of new information. Virology 434, 202-209
406	8.	Lee H and Sashital DG (2022) Creating memories: molecular mechanisms of CRISPR
407		adaptation. Trends Biochem Sci 47, 464-476
408	9.	Deveau H, Garneau JE and Moineau S (2010) CRISPR/Cas system and its role in
409		phage-bacteria interactions. Annu Rev Microbiol 64, 475-493
410	10.	Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune
411		system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71
412	11.	Hale CR, Zhao P, Olson S et al (2009) RNA-guided RNA cleavage by a CRISPR
413		RNA-Cas protein complex. Cell 139, 945-956
414	12.	Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene
415		transfer in staphylococci by targeting DNA. Science 322, 1843-1845
416	13.	Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-
417		Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83

418	14.	van Beljouw SPB, Sanders J, Rodriguez-Molina A and Brouns SJJ (2023) RNA-
419		targeting CRISPR-Cas systems. Nat Rev Microbiol 21, 21-34
420 421	15.	Ekundayo B, Torre D, Beckert B et al (2023) Structural insights into the regulation of Cas7-11 by TPR-CHAT. Nat Struct Mol Biol 30, 135-139
422 423 424	16.	Wang S, Guo M, Zhu Y, Lin Z and Huang Z (2022) Cryo-EM structure of the type III-E CRISPR-Cas effector gRAMP in complex with TPR-CHAT. Cell Res 32, 1128-1131
425 426	17.	Huo Y, Zhao H, Dong Q and Jiang T (2023) Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nat Microbiol 8, 522-532
427 428	18.	Wang X, Yu G, Wen Y et al (2022) Target RNA-guided protease activity in type III-E CRISPR-Cas system. Nucleic Acids Res 50, 12913-12923
429 430	19.	Kato K, Okazaki S, Schmitt-Ulms C et al (2022) RNA-triggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease. Science 378, 882-889
431 432	20.	Strecker J, Demircioglu FE, Li D et al (2022) RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 378, 874-881
433 434	21.	Yu G, Wang X, Zhang Y et al (2022) Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex. Nat Microbiol 7, 2078-2088
435 436	22.	Hu C, van Beljouw SPB, Nam KH et al (2022) Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 377, 1278-1285
437 438	23.	Niewoehner O, Garcia-Doval C, Rostol JT et al (2017) Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543-548
439 440 441	24.	Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G and Siksnys V (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605-609
442 443 444	25.	Koonin EV and Makarova KS (2018) Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma, ACS Chem Biol 13, 309-312

445	26.	Coleman GA, Davin AA, Mahendrarajah TA et al (2021) A rooted phylogeny resolves
446		early bacterial evolution. Science 372
447	27.	Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary
448		classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736
449	28.	Molina R, Sofos N and Montoya G (2020) Structural basis of CRISPR-Cas Type III
450		prokaryotic defence systems. Curr Opin Struct Biol 65, 119-129
451	29.	Tamulaitis G, Venclovas C and Siksnys V (2017) Type III CRISPR-Cas Immunity:
452		Major Differences Brushed Aside. Trends Microbiol 25, 49-61
453	30.	Rouillon C, Zhou M, Zhang J et al (2013) Structure of the CRISPR interference
454		complex CSM reveals key similarities with cascade. Mol Cell 52, 124-134
455	31.	Zhang J, Rouillon C, Kerou M et al (2012) Structure and mechanism of the CMR
456		complex for CRISPR-mediated antiviral immunity. Mol Cell 45, 303-313
457	32.	van Beljouw SPB, Haagsma AC, Rodriguez-Molina A, van den Berg DF, Vink JNA
458		and Brouns SJJ (2021) The gRAMP CRISPR-Cas effector is an RNA endonuclease
459		complexed with a caspase-like peptidase. Science 373, 1349-1353
460	33.	Goswami HN, Rai J, Das A and Li H (2022) Molecular mechanism of active Cas7-11
461		in processing CRISPR RNA and interfering target RNA. Elife 11
462	34.	Kato K, Zhou W, Okazaki S et al (2022) Structure and engineering of the type III-E
463		CRISPR-Cas7-11 effector complex. Cell 185, 2324-2337 e2316
464	35.	Ozcan A, Krajeski R, Ioannidi E et al (2021) Programmable RNA targeting with the
465		single-protein CRISPR effector Cas7-11. Nature 597, 720-725
466	36.	East-Seletsky A, O'Connell MR, Knight SC et al (2016) Two distinct RNase activities
467		of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-
468		273
469	37.	Liu L, Li X, Wang J et al (2017) Two Distant Catalytic Sites Are Responsible for
470		C2c2 RNase Activities. Cell 168, 121-134 e112

471	38.	Liu L, Li X, Ma J et al (2017) The Molecular Architecture for RNA-Guided RNA
472		Cleavage by Cas13a. Cell 170, 714-726 e710
473	39.	Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-
474		component programmable RNA-guided RNA-targeting CRISPR effector. Science
475		353, aaf5573
476	40.	Xu C, Zhou Y, Xiao Q et al (2021) Programmable RNA editing with compact
477		CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 18, 499-506
478	41.	Tambe A, East-Seletsky A, Knott GJ, Doudna JA and O'Connell MR (2018) RNA
479		Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Rep
480		24, 1025-1036
481	42.	Meeske AJ, Nakandakari-Higa S and Marraffini LA (2019) Cas13-induced cellular
	42.	
482		dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241-245
483	43.	Leenay RT and Beisel CL (2017) Deciphering, Communicating, and Engineering the
484		CRISPR PAM. J Mol Biol 429, 177-191
485	44.	Meeske AJ and Marraffini LA (2018) RNA Guide Complementarity Prevents Self-
486		Targeting in Type VI CRISPR Systems. Mol Cell 71, 791-801 e793
487	45.	Marraffini LA and Sontheimer EJ (2010) Self versus non-self discrimination during
488		CRISPR RNA-directed immunity. Nature 463, 568-571
489	46.	Elmore JR, Sheppard NF, Ramia N et al (2016) Bipartite recognition of target RNAs
490		activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 30, 447-
491		459
131		43)
492	47.	Wang J, Li J, Zhao H et al (2015) Structural and Mechanistic Basis of PAM-
493		Dependent Spacer Acquisition in CRISPR-Cas Systems. Cell 163, 840-853
494	48.	Xiao Y, Ng S, Nam KH and Ke A (2017) How type II CRISPR-Cas establish
495		immunity through Cas1-Cas2-mediated spacer integration. Nature 550, 137-141
496	49.	Makarova KS and Koonin EV (2015) Annotation and Classification of CRISPR-Cas
497		Systems. Methods Mol Biol 1311, 47-75

498	50.	Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW and Doudna JA (2014)
499		Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas
500		adaptive immunity. Nat Struct Mol Biol 21, 528-534
501	51.	Nunez JK, Bai L, Harrington LB, Hinder TL and Doudna JA (2016) CRISPR
502		Immunological Memory Requires a Host Factor for Specificity. Mol Cell 62, 824-833
503	52.	Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015)
504		Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535-538
505	53.	Nunez JK, Lee AS, Engelman A and Doudna JA (2015) Integrase-mediated spacer
506		acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193-198
507	54.	Wright AV, Nunez JK and Doudna JA (2016) Biology and Applications of CRISPR
508		Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44
509	55.	Yosef I, Goren MG and Qimron U (2012) Proteins and DNA elements essential for
510		the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40, 5569-5576
511	56.	Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J and Mojica FJ
512		(2013) CRISPR-spacer integration reporter plasmids reveal distinct genuine
513		acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA
514		Biol 10, 792-802
515	57.	Levy A, Goren MG, Yosef I et al (2015) CRISPR adaptation biases explain preference
516		for acquisition of foreign DNA. Nature 520, 505-510
517	58.	Dhingra Y, Suresh SK, Juneja P and Sashital DG (2022) PAM binding ensures
518		orientational integration during Cas4-Cas1-Cas2-mediated CRISPR adaptation. Mol
519		Cell 82, 4353-4367 e4356
520	59.	Hu C, Almendros C, Nam KH et al (2021) Mechanism for Cas4-assisted directional
521		spacer acquisition in CRISPR-Cas. Nature 598, 515-520
522	60.	Kieper SN, Almendros C, Haagsma AC, Barendregt A, Heck AJR and Brouns SJJ
523		(2021) Cas4-Cas1 Is a Protospacer Adjacent Motif-Processing Factor Mediating Half-
524		Site Spacer Integration During CRISPR Adaptation, CRISPR J 4, 536-548

525	61.	Lee H, Dhingra Y and Sashital DG (2019) The Cas4-Cas1-Cas2 complex mediates
526		precise prespacer processing during CRISPR adaptation. Elife 8
527	62.	Shiriaeva AA, Savitskaya E, Datsenko KA et al (2019) Detection of spacer precursors
528		formed in vivo during primed CRISPR adaptation. Nat Commun 10, 4603
529	63.	Kim S, Loeff L, Colombo S, Jergic S, Brouns SJJ and Joo C (2020) Selective loading
530		and processing of prespacers for precise CRISPR adaptation. Nature 579, 141-145
531	64.	Wei Y, Terns RM and Terns MP (2015) Cas9 function and host genome sampling in
532		Type II-A CRISPR-Cas adaptation. Genes Dev 29, 356-361
533	65.	Heler R, Samai P, Modell JW et al (2015) Cas9 specifies functional viral targets
534		during CRISPR-Cas adaptation. Nature 519, 199-202
535	66.	Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA and Doudna JA (2021) A
536		CRISPR-Cas9-integrase complex generates precise DNA fragments for genome
537		integration. Nucleic Acids Res 49, 3546-3556
538	67.	Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V and Wigley DB
539		(2019) Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-
540		Cas System. Mol Cell 75, 90-101 e105
541	68.	Ramachandran A, Summerville L, Learn BA, DeBell L and Bailey S (2020)
542		Processing and integration of functionally oriented prespacers in the Escherichia coli
543		CRISPR system depends on bacterial host exonucleases. J Biol Chem 295, 3403-3414
544	69.	Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA
545		by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234
546	70.	Silas S, Makarova KS, Shmakov S et al (2017) On the Origin of Reverse
547		Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer
548		Repertoires. mBio 8
549	71.	Simon DM and Zimmerly S (2008) A diversity of uncharacterized reverse
550		transcriptases in bacteria. Nucleic Acids Res 36, 7219-7229
551	72	Toro N and Nisa-Martinez R (2014) Comprehensive phylogenetic analysis of bacterial

552		reverse transcriptases. PLoS One 9, e114083
553	73.	Toro N, Martinez-Abarca F and Gonzalez-Delgado A (2017) The Reverse
554		Transcriptases Associated with CRISPR-Cas Systems. Sci Rep 7, 7089
555	74.	Toro N, Mestre MR, Martinez-Abarca F and Gonzalez-Delgado A (2019) Recruitment
556		of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems.
557		Front Microbiol 10, 2160
558	75.	Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021)
559		Structural coordination between active sites of a CRISPR reverse transcriptase-
560		integrase complex. Nat Commun 12, 2571
561	76.	Mohr G, Silas S, Stamos JL et al (2018) A Reverse Transcriptase-Cas1 Fusion Protein
562		Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA
563		Spacer Acquisition. Mol Cell 72, 700-714 e708
564	77.	Carte J, Wang R, Li H, Terns RM and Terns MP (2008) Cas6 is an endoribonuclease
565		that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22, 3489-
566		3496
567	78.	Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021)
568		Structural coordination between active sites of a CRISPR reverse transcriptase-
569		integrase complex. Nature communications 12, 2571
570	79.	Wright AV, Liu J-J, Knott GJ, Doxzen KW, Nogales E and Doudna JA (2017)
571		Structures of the CRISPR genome integration complex. Science 357, 1113-1118
572	80.	Nuñez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015)
573		Foreign DNA capture during CRISPR—Cas adaptive immunity. Nature 527, 535-538
574	81.	Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of PAM-dependent
575		spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853
576	82.	Stamos JL, Lentzsch AM and Lambowitz AM (2017) Structure of a thermostable
577		group II intron reverse transcriptase with template-primer and its functional and
578		evolutionary implications. Molecular cell 68, 926-939. e924

579	83.	Mitchell M, Gillis A, Futahashi M, Fujiwara H and Skordalakes E (2010) Structural
580		basis for telomerase catalytic subunit TERT binding to RNA template and telomeric
581		DNA. Nature structural & molecular biology 17, 513-518
582	84.	Mohr G, Silas S, Stamos JL et al (2018) A reverse transcriptase-Cas1 fusion protein
583		contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer
584		acquisition. Molecular cell 72, 700-714. e708
585	85.	Hochstrasser ML and Doudna JA (2015) Cutting it close: CRISPR-associated
586		endoribonuclease structure and function. Trends in biochemical sciences 40, 58-66
587	86.	Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH and White MF (2013)
588		Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for
589		CRISPR RNA processing. Biochemical Journal 452, 223-230
590	87.	Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA
591		by a natural reverse transcriptase—Cas1 fusion protein. Science 351, aad4234
592	88.	Schmidt F, Cherepkova MY and Platt RJ (2018) Transcriptional recording by CRISPR
593		spacer acquisition from RNA. Nature 562, 380-385
594	89.	González-Delgado A, Mestre MR, Martínez-Abarca F and Toro N (2019) Spacer
595		acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein
596		associated with a type III-D CRISPR-Cas system in Vibrio vulnificus. Nucleic Acids
597		Research 47, 10202-10211
598	90.	Burrill DR and Silver PA (2010) Making cellular memories. Cell 140, 13-18
599	91.	Gardner TS, Cantor CR and Collins JJ (2000) Construction of a genetic toggle switch
600		in Escherichia coli. Nature 403, 339-342
601	92.	Siuti P, Yazbek J and Lu TK (2013) Synthetic circuits integrating logic and memory in
602		living cells. Nat Biotechnol 31, 448-452
603	93.	Lear SK and Shipman SL (2023) Molecular recording: transcriptional data collection
604		into the genome. Curr Opin Biotechnol 79, 102855
605	94.	Shipman SL, Nivala J, Macklis JD and Church GM (2016) Molecular recordings by

606		directed CRISPR spacer acquisition. Science 353, aaf1175
607 608	95.	Sheth RU, Yim SS, Wu FL and Wang HH (2017) Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457-1461
609 610 611	96.	Shipman SL, Nivala J, Macklis JD and Church GM (2017) CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345-349
612 613	97.	Matsoukas IG (2017) Commentary: CRISPR-Cas Encoding of a Digital Movie into the Genomes of a Population of Living Bacteria. Front Bioeng Biotechnol 5, 57
614 615	98.	Sheth RU and Wang HH (2018) DNA-based memory devices for recording cellular events. Nat Rev Genet 19, 718-732
616 617	99.	Tanna T, Schmidt F, Cherepkova MY, Okoniewski M and Platt RJ (2020) Recording transcriptional histories using Record-seq. Nat Protoc 15, 513-539
618 619	100.	McKenna A and Gagnon JA (2019) Recording development with single cell dynamic lineage tracing. Development 146
620 621	101.	Schmidt F, Zimmermann J, Tanna T et al (2022) Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038
622 623	102.	Bhattarai-Kline S, Lear SK, Fishman CB et al (2022) Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217-225
624 625	103.	Wang JY and Doudna JA (2023) CRISPR technology: A decade of genome editing is only the beginning. Science 379, eadd8643
626	104.	Tang L (2020) Guiding Cas13 for RNA knockdown. Nat Methods 17, 461
627 628	105.	Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F and Collins JJ (2021) CRISPR-based diagnostics. Nat Biomed Eng 5, 643-656
629 630	106.	Yoganand KN, Sivathanu R, Nimkar S and Anand B (2017) Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the
631		unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids

Res 45, 367-381