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21 ABSTRACT 

22 Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays 

23 and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems 

24 effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and 

25 plasmids. Non-self nucleic acid fragments are acquired as spacers between repeats in the host 

26 CRISPR array during a process called ‘adaptation’ to establish immunological memory. The 

27 highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers 

28 in a time course manner, which can subsequently be expressed as crRNAs complexed with 

29 Cas effector proteins for the RNA-guided interference pathways. In some of RNA-targeting 

30 type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT- 

31 Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we 

32 summarize current studies focused on the molecular structure and function of the RT-fused 

33 Cas1-Cas2 integrase and its potential applications as a directional RNA-recording tool in 
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34 cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future 

35 directions for RNA-recording CRISPR technologies. 

36 

37 Classification of CRISPR-Cas systems 

38 CRISPR-Cas systems are diverse prokaryotic RNA-guided adaptive immune machineries that 

39 provide protection against invasions by ‘mobile genetic elements’(MGEs), such as plasmids, 

40 viruses, and transposons in ~40% of bacteria and ~90% of archaea (1-4). All CRISPR-Cas 

41 systems follow three basic steps for the inheritable immunity against harmful MGEs (Figure 

42 1A). First, during the ‘adaptation’ (also referred to as spacer acquisition) step, foreign DNA 

43 or RNA fragments are captured and integrated between repeats in host CRISPR arrays, 

44 updating an inheritable memory, called a spacer, for future encounters (3, 5-8). In the 

45 ‘expression’ step, integrated spacers are transcribed into a single, long precursor CRISPR 

46 RNA (pre-crRNA) and further processed into mature crRNAs. The crRNAs are assembled 

47 into a Cas effector, becoming a surveillance ribonucleoprotein complex, such as type I 

48 Cascade, type II Cas9, type V Cas12 and type VI Cas13 effectors. During the final 

49 ‘interference’ step, target binding with an effector-crRNA complex through R-loop formation 

50 results in target cleavage and degradation of the invading threat (Fig 1A) (1, 9-12). 

51 CRISPR–Cas systems are divided into two major classes that distinctly differ in the 

52 architectures of their effector modules related to crRNA processing and interference (Figure 

53 1B). Class 1 CRISPR-Cas systems are comprised of types I, III and IV, and are further 

54 divided into 16 subtypes, whereas class 2 CRISPR-Cas systems include types II, V and VI, 

55 and 17 subtypes (13). Class 1 systems encode effector Cas modules as multi-subunit proteins, 

56 such as Cascade in type I, Csm complex in type III-A and Cmr complex in type III-B 

57 systems. Additional Cas proteins often contribute to pre-crRNA processing or interference 

58 steps in many subtypes. In contrast, class 2 systems consist of a single, multi-domain, and 

59 large crRNA-binding protein, such as Cas9 in type II systems, Cas12 in type V systems, and 

60 Cas13 in type VI systems. These effector complexes usually exhibit an all-in-one activity for 

61 target interference as well as pre-crRNA processing in some variants. 

62 Likewise, two strategies exist for abortive infection by MGEs and are utilized 

63 depending on the type of an effector complex, (14). In types I, II, IV and V CRISPR–Cas 

64 systems, DNA-targeting effector complexes directly destroy invading DNA via crRNA- 

65 guided cleavage. Target DNA binding in these types leads to the activation of the DNase 

66 activity of the effector complex, resulting in specific degradation of the target DNA to 
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67 circumscribe infection. In types III and VI CRISPR-Cas systems, RNA-targeting effector 

68 complexes are utilized. Here, the effector modules are activated upon RNA binding, leading 

69 to the RNase activity that cleaves the target RNA. Other accessory Cas proteins can also be 

70 involved in combating the invader via the activation of protease-mediated cascade pathways 

71 (e.g. TPR-CHAT/Csx29 in type III-E) (15-22) or collateral RNase activity (e.g. Csm6 in type 

72 III-A) (Figure 1B) (23, 24). This can result in indirect inhibition of infection through cellular 

73 signaling pathways that leads to the activation of downstream defense genes. 

74 

75 RNA-targeting CRISPR-Cas systems 

76 Type III and VI CRISPR-Cas systems, despite their evolutionary distance and structural 

77 differences, exhibit the common feature of acquiring, sensing, and cleaving target RNA 

78 molecules for (adaptive) immunity. Type III CRISPR–Cas systems, believed to be the oldest 

79 member of the CRISPR–Cas family (25, 26), are classified further into six different annotated 

80 subtypes : III-A to III-F (13). Type III CRISPR–Cas systems account for 25% of total 

81 CRISPR-Cas loci in bacteria and 34% in archaea (27). Class 1 Type III CRISPR-Cas effector 

82 complexes generally consist of multiple subunits, just to name a few, Csm2, Csm3, Csm4 and 

83 Csm5 in types III-A and III-D, and Cmr1, Cmr3, Cmr4, Cmr5 and Cmr6 in types III-B and 

84 III-C (11, 28-31). Of these, the signature Cas10 subunit, also referred to as Csm1 in types III- 

85 A and III-D, and Cmr2 in types III-B and III-C is typically complexed with the main effector 

86 complex. Upon target RNA binding, the conformational change of the Cas10 subunit 

87 provides a DNase activity for proximal ssDNA cleavage in co-transcriptional R-loops and an 

88 ATP cyclase activity for the generation of cyclic oligoadenylates as secondary messengers 

89 that activate Csm6 protein for collateral RNA degradation. In comparison, the type III-E and 

90 III-F systems lack Cas10 subunit. Of these, a recently reported type III-E effector, known as 

91 gRAMP (also called Cas7-11) has a unique architecture that comprises subunits fused 

92 together as single protein, resembling effectors in class 2 systems (15, 16, 21, 32-35). The 

93 gRAMP effector is complexed with a TPR-CHAT (also known as Csx29) subunit, which is a 

94 caspase-like peptidase that can cleave the Csx30 upon RNA binding to activate the CRISPR- 

95 associated sigma factor RpoE for cell cycle retardation or cell death. 

96 Next, we will discuss the type VI CRISPR-Cas system. The signature effector protein 

97 of Type VI CRISPR-Cas systems is a single multidomain protein Cas13. It acts on in both 

98 crRNA processing and target RNA recognition and cleavage for the immune response (36- 

99 39). Six different type VI subtypes, types VI-A to VI-D, Cas13X and Cas13Y, have been 
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identified so far (13, 40). All Cas13 proteins in type VI subtypes contain two HEPN domains 

critical for RNA-mediated target surveillance. Upon target RNA loading, the conformational 

change activates the RNase activity in HEPN domains, resulting in target RNA cleavage as 

well as collateral subversion of bystander RNA hydrolysis, which establishes broad and 

nonspecific immunity (37, 41, 42). 

The RNA targeting CRISPR-Cas systems described above require a mechanism to 

distinguish self from non-self. For discriminating between self and non-self, DNA targeting 

CRISPR-Cas effectors recognize a small RNA sequence motif called protospacer adjacent 

motif (PAM) to position a target sequence in MGEs (43). The absence of PAMs in the spacer 

flanking repeat sequences prevents self-recognition, thereby inhibiting autoimmunity. In 

contrast, the catalytic activity of type III and VI CRISPR-Cas effectors can be regulated by 

recognition of a small RNA sequence next to a target RNA sequence derived from a repeat 

portion, referred to as protospacer flanking site (PFS) (44-46). Whereas a PAM binding leads 

the activation of DNA targeting effectors, a mismatch in PFS with a crRNA primes RNA 

targeting effector for non-self RNA targeting, preventing toxic, nonspecific targeting of self- 

transcripts. In other words, autoimmune response can occur by signifying self-transcripts 

through complementarity of the crRNA to the PFS in the antisense CRISPR array transcript. 

 

CRISPR adaptation by Cas1-Cas2 

How do bacteria or archaea archive and remember previous invaders? This process occurs 

during the ‘adaptation’ step. In DNA-targeting CRISPR-Cas systems, the highly conserved 

Cas1-Cas2 complex mediates spacer acquisition derived from DNA and integrates them into 

the CRISPR array (Figure 1A) (47-49). Cas1-Cas2 complex form a heterohexameric Cas1(4)- 

Cas2(2) complex (Figure 2A and 2B) (3, 5, 47, 48, 50-54). In vivo studies on spacer 

acquisition suggest that Cas1-Cas2 complex identifies suitable prespacers based on the PAM, 

which is also a prerequisite for the CRISPR-interference stage of immunity (55-57). 

Structural studies on the E. coli type I-E Cas1-Cas2 complex have demonstrated that the C 

terminal tail of the Cas1 subunit is responsible for PAM recognition (47, 52). In contrast, 

Cas1-Cas2 complexes in some type I systems, except type I-E and I-F systems, use an 

additional adaptation factor called Cas4, for PAM recognition (58-61). Although the Cas1- 

Cas2 complex preferentially integrates partial duplex DNAs harboring single-stranded 3′ 

overhangs in vitro (47, 52, 62), a single-molecule study showed that the Cas1-Cas2 complex 

actually binds to a single strand of DNA containing a PAM sequence in more favorable UN
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manner, suggesting that annealing of complementary ssDNA facilitates the generation of a 

suitable substrate comprising a PS duplex with 3′ overhangs (63). In most type II systems, 

Cas9 and Csn2, together with a Cas1-Cas2 heterohexamer, play a role in PAM recognition, 

although the precise mechanism remains to be investigated (64-67). During DNA adaptation, 

the Cas1-Cas2 complex controls the correct orientation of integrated spacers through 

asymmetric prespacer trimming in a delayed PAM trimming mode by DnaQ enzymes or Cas4 

endonuclease itself (59, 63, 68). 

 

Identification of RT-fused Cas1 in type III CRISPR-Cas systems 

For type III and VI CRISPR-Cas systems, the possibility of spacer acquisition 

derived from RNA by type III and VI CRISPR systems has been raised, as these can target 

RNA in addition to DNA (49). Interestingly, some bacteria harboring type III CRISPR-Cas 

systems have Cas1 fused with reverse transcriptase (RT), and these RT domains have been 

thought to be related to RTs known as group II introns (Figure 3A) (49, 69-72). Several Cas1 

and associated RTs in type III CRISPR systems even seem to have co-evolved (70, 72, 73). 

Specifically, 537 sequences were analyzed in a comprehensive analysis to elucidate the origin 

and relationship between RTs and the associated CRISPR-Cas system and found that cases of 

RTs related to Cas1 loci were more prevalent in bacteria (11 clades) than archaea (only 1 

clade) (Figure 3B). Since Cas1 proteins mediate spacer acquisition together with Cas2 

subunits in a heterohexameric complex, it has been suggested that an RT domain would be 

required for direct spacer acquisition from RNA (69). RT-Cas1 fusion proteins were also 

identified in type VI-A CRISPR-Cas systems (74). In this study, two variant type VI-A 

systems were assumed to be evolved independently to fuse Cas1 proteins with RTs possibly 

derived from type III-A and III-D systems. Moreover, in addition to the RT domain fused 

with Cas1, the Cas6 endoribonuclease domains are also N-terminally fused to RT-Cas1 parts 

in many variants (Figure 3B) (13, 73, 75, 76). The role of Cas6 protein has been well 

established as an effector protein directly required for processing pre-crRNA (77) and Mohr 

et al. proved that the Cas6 domain fused with RT-Cas1 is also involved in RNA spacer 

acquisition (76). 

 

Structure of RT-fused Cas1-Cas2 complex 

Determining the structure of a protein complex provides a detailed understanding of its 

molecular mechanism. To this end, Wang et al. recently revealed the entire cryo-EM structure UN
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of type III Cas6-RT-Cas1-Cas2 complex in a naturally occurring Thiomicrospira (Thio) 

species (Figure 2C) (78). Despite the authors effort to characterize the DNA-bound complex, 

which combines purified Cas6-RT-Cas1- Cas2 proteins together with a DNA substrate 

designed to resemble a half-site integration intermediate, only the DNA-unbound structure 

(apo-Cas6-RT-Cas1-Cas2 complex) was solved. This structure of Thio apo-Cas6-RT-Cas1- 

Cas2 complex is heterohexameric and consists of two distal Cas6-RT-Cas1 dimers and a 

central Cas2 dimer, like typical Cas1-Cas2 integrases (Figure 2A–C) (48, 79-81). Thio Cas6- 

RT-Cas1-Cas2 complex are distinguishable from those of E. coli Cas1-Cas2 in some respects 

(or aspects of their structure). For example, in the E. coli Cas1-Cas2 complex, two positively 

charged regions in the DNA binding cleft and Cas2 dimer are critical for prespacer binding, 

enabling the intrinsic ruler mechanism (47, 52). Although similar charged regions are located 

on the Cas1 domains and Cas2 subunits in the Cas6-RT-Cas1-Cas2 complex, Cas2 dimers  

and one Cas1 dimers are rotated further away from another Cas1 dimer, resulting in an  

altered dimer interface. The authors also reported that there exists close contact between three 

active sites of Cas1-Cas2 integrase, RT and Cas6 maturase, implying that functional crosstalk 

is tightly coordinated (Figure 2C). Furthermore, the RT domain of Cas6-RT-Cas1 resembles 

other RTs, such as retroviral and group II intron RTs (Figure 2D) (82, 83), implying that the 

integration process by Cas6-RT-Cas1-Cas2 could be followed by the target-primed reverse 

transcription similar to retro-homing mechanism of group II introns. 

In another alternative approach, Mohr et al. revealed a truncated mutant structure of 

the Cas6 maturase domain of Marinomonas mediterranea (MMB-1) type III-B Cas6-RT- 

Cas1-Cas2 (Figure 2E) (84). The structure of the Cas6 from MMB-1 was superimposed onto 

that from Thio, showing an overall good alignment, except for differences in the β-strand 

architecture of the C-terminal RRM fold. In addition, the overall architecture of Cas6 

domains in Cas6-RT-Cas1 proteins looks quite distinct from other stand-alone Cas6 proteins 

(84-86). Thus, it suggests that the Cas6 domain in Cas6-RT-Cas1-Cas2 complex is not only 

critical to crRNA processing, but also may be functionally engaged in either RNA substrate 

capture and process during reverse transcription by RT domain or prespacer integration 

cooperated with Cas1-Cas2 integrase in the complex. 

 

Functional features of RT-fused Cas1-Cas2 complex 

Domain-fused proteins, including RT-fused Cas1-2 integrases, typically coordinate their 

series of actions. It has been suggested that RNA could be a suitable substrate for spacer UN
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acquisition by Cas1-Cas2 integrase, with assistance from the fused RT. In vivo integration 

assay using RNA transcripts harboring self-splicing introns have shown that RNA transcripts 

can be integrated into CRISPR arrays by the MMB-1 Cas6-RT-Cas1-Cas2 complex (87). This 

result was reproduced using the Cas6-RT-Cas1-Cas2 of Fusicatenibacter saccharivorans (F. 

sac) (88) and Vibrio vulnificus (V. vul) (89). MMB-1 and Thio Cas6-RT-Cas1-Cas2 complexes 

show substrate versatility, as these have been shown to integrate dsDNA, ssDNA, and ssRNA 

oligonucleotides into the CRISPR DNA (78, 87). Full-site integration occurs only site- 

specifically when dsDNA substrates are provided. In MMB-1, both RT and Cas1-Cas2 

integrase activities of the Cas6-RT-Cas1-Cas2 complex are indispensable for RNA 

integration, while RT activity is not required for DNA integration. In contrast, Thio Cas6-RT- 

Cas1 alone, regardless of the presence of Cas2 dimer, exhibits integration activity, although 

Cas2 improves integration efficiency. Thio Cas6-RT-Cas1-Cas2 is significantly more efficient 

at integrating dsDNA, ssDNA, and DNA/RNA hybrid substrates than ssRNA substrates. 

Collectively, these results suggest that the RT and Cas1 domains in the Cas6-RT-Cas1-Cas2 

complex closely cooperate for RT process and integration functions (78, 87). Furthermore, 

mutations in the Cas6 active site affect both integration and RT activity, while mutations in 

the Cas1 and RT domains show no effect on Cas6 RNA processing activity. This suggests a 

unidirectional crosstalk between the Cas6 domain and the other two domains in Thio Cas6- 

RT-Cas1-Cas2 (78). 

Next, the sequence and length specificity of spacer acquisition by Cas6-RT-Cas1- 

Cas2 has also been examined closely. In MMB-1, the majority of spacers (70–75%) were 34– 

36 base pairs (bp) long, with no significant sequence specificity observed (69). A small 

preference towards the sense strand spacer was also observed in an RT-independent manner  

in MMB-1, but this strand bias was not reconstructed in E. coli. In contrast, the median spacer 

length was 39 bp, with a distribution bias towards longer spacers in F. sac. (88). Strikingly, a 

strong bias towards AT-rich spacers was also observed. This apparent bias towards AT-rich 

spacers may be due to the AT-richness of RNA ends, but the bias persisted even when 

considering only spacers derived from the gene body. Furthermore, the F. sac Cas6-RT-Cas1- 

Cas2 complex did not exhibit any preference for PAM-like sequence motifs, but most spacers 

were acquired from the areas proximal to start and stop codons. Also, spacers were 

preferentially acquired toward an antisense orientation. Lastly, in V. vul, most of the spacers 

were between 34–38 bp with no PAM-like preference (89). However, there was an antisense 

bias for coding sequence orientation with a significant GC bias. Unlike F. sac, there was no UN
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bias at the start and end codons. Taken together, the differential specificity for spacer length 

and sequence observed in previous independent studies implies significant variation among 

these systems in vivo, which needs to be characterized in future studies. 

 

Application for RNA recording using RT-Cas1-Cas2 

The Cas1-Cas2 adaptation complex can integrate foreign nucleic acids as spacers between the 

leader sequence and the first repeat sequence of its own CRISPR array (53, 55). Taking 

advantage of this nucleic acid induced CRISPR-Cas memory system, molecular recording 

using CRISPR-Cas systems has emerged as a prominent field of research with the potential to 

revolutionize various areas of biotechnology and life sciences. Cas1-Cas2-based DNA 

recording offers several advantages over other explored methods for storing information (90- 

92). Several recently published articles have described diverse approaches to molecular 

recording using CRISPR-Cas systems, each with its own advantages and limitations (93). In 

2016, Shipman et al. developed the first DNA recording system using the type I-E Cas1-Cas2 

complex in E. coli (94). One of key benefits of this recording system is that the Cas1-Cas2 

integrase can target and capture specific DNA molecules as spacers and integrate them into 

the CRISPR array directionally and temporally, reflecting dynamic changes in real time  

within a cell (95-98). Since the recorded DNA was stored in the CRISPR array in a time- 

ordered way, it is possible to reconstruct the recorded information temporally and make a 

lineage of events by sequencing the CRISPR array later on (95, 99). By creating a permanent 

record of events within the genome, researchers can gain valuable insights into the underlying 

mechanisms driving cellular behavior and response to environmental stimuli at a single-cell 

level (95, 100). Moreover, since the CRISPR array is inherent within the genome of the 

bacterial cell, it offers a reliable and long-term record that can be easily retrieved and 

analyzed without the need for external devices or systems in the case of some prokaryotes. 

However, these molecular recording systems have several limitations that need to be 

addressed. For instance, these systems integrate spacers derived from DNA, not RNA and 

they do not co-ordinate the transcriptional dynamics of the cell. There is also a need to 

transform exogenous nucleic acids to verify the specificities and efficiencies of molecular 

recording (99). 

Similarly, transcriptional molecular recorders are innovative tools that can capture 

various transcriptional events and incorporate them into the genome of the cell. This 

approach has the potential to reveal the precise timing, order, and intensity of transcriptional UN
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activity at the cellular level, without requiring multiple destructive assays (Figure 4A). To this 

end, Schmidt et al. utilized F. sac Cas6-RT-Cas1-Cas2 for transcriptional recording instead of 

the DNA integrating E. coli Cas1-Cas2 complex (88), since Cas6-RT-Cas1-Cas2 has been 

used as a spacer integrase from cellular transcripts (Figure 4B) (69). This study showed that 

the tracking of transcriptional responses to specific stimuli within bacterial cells can be 

achieved via transcriptional recording (88). Furthermore, transcriptional events stored as 

RNA-derived spacers at the CRISPR array reflected temporal and global transcriptomic 

memories to various stresses (99, 101). In another recent study by Schmidt et al., they 

engineered multiplexed transcriptional recording to track transcriptional histories of the stress 

response in the physiological environment, enabling engineered microbiome as sentinel cells 

to record environmental changes in mouse guts by Record-seq (Figure 4B) (101) (Fig. 4). All 

together, these studies support the idea that RT-Cas1-Cas2-based recording technology can be 

a useful tool for studying the evolution of cells within various environmental contexts as well 

as for novel therapeutic development and diagnostics. Lastly, a retron RT, which can reverse 

transcribe non-coding RNA (ncRNA), has also been proposed to record temporal memories of 

transcriptional events in a live cell and emerged as an alternative to transcriptional recording 

using RT-Cas1-Cas2 (102). 

 

Concluding remark and future perspectives 

In the last decade, the CRISRP-based genome engineering field has been successfully 

revolutionized along with our understanding for mechanisms of the CRISPR-Cas adaptive 

immune systems. DNA cutting CRISPR-Cas effectors, such as type II Cas9 and type V 

Cas12a (also called as Cpf1), have been mainly focused and engineered to develop diverse 

genome editing technologies (103). Additional need for advancing RNA editing tools has 

enabled RNA-targeting type VI CRISPR Cas13 effectors to be reconfigured for the use in 

gene silencing (104) and RNA diagnostics (105). Beyond the gene editing, an endeavor is still 

being made to discover novel CRISPR-based technologies, such as CRISPR-mediated 

imaging, epigenome manipulation, and molecular recording tools. In this review, we focus on 

recent advances and understandings regarding molecular recording techniques based on 

CRISPR adaptation modules. Throughout recent genetic, structural and biochemical 

approaches, we can now explain how proteins related to the DNA CRISPR adaptation 

function to ensure the efficiency and fidelity for the precise spacer acquisition (8). However, 

our knowledge about the mechanism of CRISPR RNA adaptation is very limited. UN
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To extend our knowledge and to improve technical limitations of current RNA 

recording tools, further studies are required to be addressed to more understand the basic 

mechanism of RT-Cas1-Cas2-mediated CRISPR adaptation. Outstanding questions are like 

below. How the ssRNA or RNA/DNA or dsDNA bound RT-Cas1-Cas2 structures are 

configured? How the cooperation between domains of RT-Cas1-Cas2 can be achieved for 

CRISPR RNA acquisition, and which role of Cas6 is critical in this process? How the RT 

domain in this complex reverse transcribes RNA substrates? How the actual process from 

ssRNA capture to full site integration can be coordinated? How is the suitable spacer size 

determined during RNA adaptation? And how the orientation of integrated spacers ensures 

for immunity? It is also not known whether RNA spacer acquisition can contribute to 

immunity against RNA bacteriophages and other foreign RNA elements beside targeting 

nascent viral transcripts. 

While these molecular recording systems using RT-Cas1-Cas2 have several  

promising advantages warranting their future use, RT-Cas1-Cas2-based recorders still have 

inherent limitations that need to be addressed. It remains to be solved how these recorders can 

function the same way in the eukaryotic system. The process of implementing RT- Cas1- 

Cas2-based recorders into mammalian cells may depend on non-Cas bacterial factors (51, 

106), or may be established by a combination with epigenome manipulating techniques in 

eukaryotic environments. Furthermore, the capacity and efficiency to detect CRISPR arrays, 

which are intended to integrate transcript-derived spacers of interest, could be very slim. 

Given that not all spacers of interest will be integrated as expected, this inefficient recording 

possibility may further reduce the chance of detecting the spacer of interest. Therefore, more 

optimized sequencing techniques are needed to be developed to overcome the detection limit 

in the future. 
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Figure 1. Overview of the mechanism and classification of CRISPR-Cas systems 

(A) Schematic of the CRISPR-Cas adaptive immunity. During the adaptation stage, foreign 

DNA (gray helical lines) or RNA (pink lines) can be captured and integrated into CRISPR 

array, by Cas1-Cas2 and (Cas6-)RT-Cas1-Cas2 complexes, respectively. Acquired nucleic 

acids are converted to new spacers and recorded in a leader-proximal order, creating 

immunological memories. In the expression stage, spacers in CRISPR array are transcribed to 

pre-crRNA, and processed into crRNAs (crRNA biogenesis). The effector RNP complex are 

assembled crRNAs with expressed effector Cas proteins. At the final interference stage, 

effector complexes target against revisiting foreign (viral) DNAs and their transcripts through 

sequence-specific cleavage complementary to the sequence of crRNA. The image is adopted 

and modified from Lee et al. Trends in Biochemical Sciences, 2022 (8). (B) Classification  

and gene structure of CRISPR-Cas systems. In adaptation associated cas genes, there are well 

conserved genes, Cas1 and Cas2. Some accessory genes exist like Cas4 in type I, II and V, or 

reverse transcriptase (RT) in type III and VI, or Csn2 in type II. The classification of each 

type primarily based on effector genes. Class 1 has multiple interfering and crRNA biogenesis 

genes. Meanwhile, Class 2 has single effector genes, e.g. Cas9, Cas12 or Cas13.                 

The signature proteins in each type are represented with red outline. Target nucleic acids and 

the existing collateral damage effect are indicated below. 
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Figure 2. Structural architectures of CRISPR integrases and related proteins 

(A) Structure of E. coli type I-E DNA-unbound (apo) Cas1-Cas2 complex (Protein Data 

Bank, PDB, ID: 4P6I) (50). (B) Structure of E. coli type I-E prespacer DNA-bound Cas1- 

Cas2 complex (PDB ID: 5DS4) (52). (C) Structure of Thiomicrospira Cas6-RT-Cas1-Cas2 

complex (PDB ID: 7KFU) (75). Two of the four Cas6-RT domains are invisible. (A–C) The 

arrangement models of the color-coded subunits and DNA (in B) are represented above the 

crystal (in A and B) and cryo-EM (in C) structures of the complexes. (D) Structure of 

Marinomonas mediterranea (MMB-1) truncated Cas6 domain (PDB ID: 6DD5) (76). (E) 

Structure of group II intron reverse transcriptase bound to an RNA template base paired with 

a DNA primer (PDB ID: 6AR3) (82). 
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Figure 3. Domain structure and Phylogenetic distribution of the RT-fused Cas1 and its 

related proteins 

(A) Schematic of the domain organization of HIV-1 RT, TeI4c group II intron RT, A. platensis 

type III-B RT-Cas1, MMB-1 type III-B RT-Cas1, and E. coli type I-E Cas1. Conserved RT 

motifs (1 to 7) are indicated in black boxes. Conserved motifs in mobile group II intron and 

non-LTR–retrotransposon RTs (0 and 2a) are labeled in red boxes. The YXDD sequence 

found in motif 5 represented with two aspartic acid residues is indicated by arrow. The 

X/Thumb domains commonly found in HIV-1 and group II intron RTs are indicated. Amino 

acid numbers are indicated below the bars. D, DNA binding domain. En, endonuclease 

domain. The image is taken from Silas et al. Science, 2016 (69). (B) Phylogenetic tree of 

Cas1 associated with RTs. The analysis is reconstructed with 148 Cas1 proteins. The 

identified clades with numbers are named and colored according to the RT-associated clade. 

The figure is taken and modified from Toro et al. Scientific Reports, 2017 (73). 
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Figure 4. In vivo transcriptional recording by RT-Cas1-Cas2 

(A) Comparison between RNA-seq and Record–seq. RNA-seq captures the transcriptomes 

from subject cells at each point in time, providing a transient snapshot of cellular events. By 

contrast, transcriptional records in CRISPR arrays provide molecular records that can be used 

to reconstruct transcriptional events that occurred over time only by a one-shot analysis. The 

image is adopted and revised from Schmidt et al. Nature, 2018 (88). (B) Schematic of 

experimental platform for the noninvasive interpretation of transcriptional recordings using F. 

sac RT-Cas1-Cas2 in bacterial cells. The E. coli cells transformed to express RT-Cas1-Cas2 

proteins and harbor plasmids with CRISPR arrays are orally gavaged into mice. Stress 

response patterns by bacterial strains as sentinel cells are stored in CRISPR arrays in an 

inheritable and time-ordered way. Eventually, the recorded information can be reconstructed 

by sequencing the CRISPR arrays from microbial samples without any effort for the time- 

course harvest. The figure is taken and modified from Schmidt et al. Science, 2022 (101). 
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