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ABSTRACT 

Heart disease is one of the major life-threatening diseases with high mortality and 

incidence worldwide. Several model systems, such as primary cells and animals, have 

been used to understand heart diseases and establish appropriate treatments. However, 

they have limitations in accuracy and reproducibility in recapitulating disease 

pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) 

cardiac tissue models produced using tissue engineering technology and human cells have 

outperformed conventional models. In particular, the integration of cell reprogramming 

techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and 

biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac 

spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and 

functional features of the native human heart. These cardiac models have improved heart 

disease modeling and toxicological evaluation. In this review, we summarize the cell 

types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac 

tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, 

recent studies in the modeling of various heart diseases are reviewed. 
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INTRODUCTION 

The heart is a vital organ that maintains every other organ in the human body through the 

pumping and circulation of blood. Therefore, heart problems pose a great threat to human 

morbidity and mortality. In this context, cardiovascular disease, including ischemic heart 

disease, cardiomyopathy, and hypertensive heart disease, is one of the leading causes of 

death for mankind, and the global death toll and consequential burdens have continued to 

increase (1). To overcome these diseases, it is necessary to identify the pathological 

factors of disease progression and their mechanism, and to further develop effective 

treatments suitable for each disease. For this purpose, diverse three-dimensional (3D) 

human cardiac tissue models that mimic the human heart have been actively developed. 

These tissue models are free from the ethical issues which usually surround conventional 

animal models and can also eliminate gaps present between different species. Depending 

on which cardiac cells and engineering platforms are used, cardiac tissue models showing 

various shapes and characteristics can be developed (Fig. 1). Moreover, some biophysical 

cues such as mechanical and electrical stimulation have been applied to cardiac tissue 

models to further generate functionally matured ones. 

The developed cardiac tissue models can be utilized for the modeling of various 

heart diseases. By using patient-derived induced pluripotent stem cells (iPSCs), cardiac 

tissue models expressing disease-associated genes can be developed (2). This model helps 

us to understand the differences in characteristics and phenotypes caused by a particular 

gene. Recently, such models can also be produced by gene editing methods, such as the 

CRISPR-Cas9 system, which manipulate specific target genes, and the role of genes can 

be investigated through comparison with normal models (3). Finally, heart disease models 

can be established by induction of the causative pathway of disease or by exposure to UN
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unfavorable environments (e.g., hypoxia, inflammation). In this review, we describe the 

different approaches to generating human cardiac tissue models using cardiac cells and 

engineering platforms, and then introduce several heart disease models produced with 

engineered cardiac tissue models. 

 

CELL SOURCES FOR CARDIAC TISSUE MODELS 

Cardiomyocytes for cardiac tissue models 

Cardiomyocytes (CMs) are the basic beating units of the heart, and there are several types 

such as pacemaker cells, ventricular CMs, and atrial CMs. For decades, fully 

differentiated primary CMs extracted from the heart have been used as in vitro models. 

However, there are limitations as they are difficult to use due to their low viability and 

loss of maturity during culture (4). As an alternative, obtaining CMs using cellular 

reprogramming, which changes the fate of cells, is currently in the spotlight. 

There are two methods for acquiring CMs, the differentiation method from 

human iPSCs and the direct reprogramming technique. The differentiation method from 

iPSCs first generates mesoderm cells, and then CMs are generated through cardiac 

progenitor cells. This process mimics normal embryonic development, for which several 

signaling pathways, such as Wnt/β-catenin and Activin A/BMP4 signaling, are regulated 

at each stage (5). With this method, CMs can be obtained without burden to the patient 

and an unlimited supply may be possible if iPSCs are cultured adequately. However, the 

differentiation method still has limitations such as yield, purity, variability, reproducibility, 

and cost-effectiveness (6). Direct reprogramming, which enables the acquisition of CMs 

without going through pluripotent stem cells, is gaining attention as an alternative to 

produce cardiac cells (7). Directly induced CMs were first produced using three UN
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transcription factors (Gata4, Mef2c, and Tbx5) in 2010, and many studies have been 

conducted to produce induced CMs more simply and efficiently by adding small 

molecules or microRNAs (8-10). Although the iPSC technology is superior in terms of 

expandability and efficiency, direct reprogramming can provide cardiac lineage cells with 

less tumorigenicity via relatively simple process (11). 

 

Non-myocytes for cardiac tissue models 

Since cardiac tissue models, composed only of CMs, lack maturity compared to the native 

heart, the cell composition of cardiac heart tissue models is currently being highlighted 

(12). An adult human heart contains many types of non-myocytes, including endothelial 

cells (ECs), cardiac fibroblast (CFs), and leukocytes, and their amount is even greater 

than that of CMs (13). Each plays a different role in the human heart and affects the 

maturity of CMs, which will eventually be important in creating disease models (14). 

The ECs distributed inside the vessel form the major population of the heart, and 

serve to transport oxygen and nutrients to maintain the heart. For implementation of 

vascularized networks in cardiac tissue models, human umbilical vein endothelial cells 

(HUVECs), human cardiac microvascular endothelial cells (HMVECs), and human 

adipose-derived stem/stromal cells (hASCs) have widely been used (15-17). Although 

vascular structures can be produced using these cells, studies on the differentiation of 

human iPSCs to ECs are also actively underway, due to the strengths of reprogramming 

techniques, such as the possibility of mass production, development of patient-specific 

models, and simulation of interaction in developmental stages. ECs can be differentiated 

simultaneously with CMs from the cardiac mesoderm, and such differentiated ECs are 

advantageous for reconstituting vascular networks in heart (18). In recent years, more UN
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efficient EC differentiation methods have continued to be developed (19, 20). For 

example, the method of generating functional ECs with high purity from cardiogenic and 

hemogenic mesoderm was developed (20). For the same reason, the CF differentiation 

methods from human iPSC have also been developed (21, 22). Until now, CMs, ECs, and 

CFs have been recognized as the three major cell types for cardiac tissue models, and 

other non-myocytes, such as smooth muscle cells, have been occasionally added (23). 

Furthermore, as the immune response is a critical factor for cardiac homeostasis and 

disease pathophysiology, it is necessary to implement immune cells in 3D cardiac models 

(24). For example, macrophages in heart are known to interact with CMs via connexin 43 

for improved electrical conduction (25). 

 

Cellular interactions for cardiac tissue models 

CMs and non-myocytes play important roles in the transmission of signals through 

interactions with other cells, and these interactions are also involved in disease 

progression and normal development. The ECs contribute to cardiac development, 

remodeling, and regeneration by interacting with CMs (26). They not only secrete several 

paracrine factors, such as nitric oxide (NO), neuregulin-1 (NRG-1), and apelin (APLN), 

to improve function and contractility of CMs during normal development, as well as to 

enhance the cardio-protection in a disease environment (26). ECs actively communicate 

with other non-myocytes. ECs resident in endocardium contribute to CF generation 

through endothelial-to-mesenchymal transition during normal embryonic development 

(27). ECs also participate in immune responses, helping immune cells migrate, by 

secreting cytokines, and even acting as an antigen presenter (28). The main role of CFs, 

generally located between CMs, is to construct the extracellular matrix (ECM) UN
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environment and maintain the homeostasis of ECM in the heart. In normal conditions, 

they communicate with CMs via gap junctions, membrane nanotubes, and paracrine 

signaling, and ultimately enhance the structural maturation and electrophysiological 

function of CMs (22, 29). However, excess activation and accumulation of CFs could be 

one of the phenotypes in cardiac diseases, such as myocardial infarction, cardiac fibrosis, 

and hypertensive heart disease. From this point of view, the implementation of CFs is 

important in establishing both the functionally advanced normal cardiac models and the 

heart disease models. The interactions between CFs and other non-myocytes have been 

examined in previous studies. When tested in the co-culture model, CFs assisted the 

proliferation of ECs and their sprouting (30). IL-1β expression in CFs, under a disease 

condition of myocarditis, has been shown to recruit leukocytes and induce the 

inflammatory process (31). Therefore, the incorporation of non-myocytes to cardiac 

tissue models is essential to replicate their interactions in a human heart tissue and predict 

the disease environment more precisely. In addition, it is required to develop culture 

platforms that can realize their interactions, including the secretion and absorption of 

cytokines, while each cell type can be maintained in optimal conditions. 

 

ENGINEERED CARDIAC TISSUE MODELS 

Cardiac spheroids 

Various types of cardiac tissue models, possessing different characteristics and merits, 

can be produced depending on technologies used for fabrication. The simplest form of 

the model is a cardiac spheroid, which can be mainly prepared using devices that enable 

the collection of single cells, including a microwell, hanging drop plate, and V-bottom 

plate (22, 32, 33). The multicellular cardiac spheroids are fabricated by combination of UN
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CMs, ECs, and CFs. For instance, multicellular spheroids comprising human iPSC-

derived CMs (70%), ECs (15%), and CFs (15%) showed enhanced electrical maturation 

and contractile phenotypes, compared with multicellular spheroids generated with other 

fibroblasts (e.g., skin fibroblasts) (22). In another study, spheroid models produced with 

different cell compositions (50% CMs, 25% ECs, and 25% CFs) were used to investigate 

the crosstalk between three cell types in doxorubicin-induced cardiotoxicity mediated by 

nitric oxide synthase (32). Since these methods can easily produce a large amount of 

uniform-sized 3D tissue models mixed with various cells, it is suitable for high-

throughput drug screening (34). Therefore, cardiac spheroids are likely to be used as a 

screening platform for determining the efficacy and cardiotoxicity of the drug in 

pharmaceutical industry. 

 

Engineered heart tissues 

Engineered heart tissue (EHT) models, first established by Zimmerman et al., can form 

the desired shape by using a mold and contraction of the hydrogel (35). Depending on the 

structure of the mold, EHTs of various shapes such as ring, rod, and patch, have been 

fabricated. The EHT model can recapitulate the environment of in vivo CMs in a simple 

way. The alignment of CMs can be naturally developed by contraction of hydrogel, which 

eventually enhances electrical integration and synchronized contraction of the tissue 

models (36). The use of hydrogel enables the implementation of cell-ECM interaction 

and the encapsulation of bioactive proteins or functional materials (e.g., carbon nanotubes, 

gold nanostructure, and graphene oxide). Moreover, incorporation of additional devices, 

such as solid/elastic pillars with micromanipulator, allows the application of mechanical 

stimulation or the measurement of contractile force (37, 38). UN
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Heart-on-a-chip 

Organ-on-a-chip technology has been applied to develop in vitro models of various organs 

over a number of years. Cardiac tissue models can be manufactured using a microfluidic 

platform and cardiac cells, called a heart-on-a-chip (39). Microfluidic heart-on-a-chip 

shows unique advantages such as supply of well-controlled flow or stimulation, and the 

ability to analyze physiological functions by integrating biosensors (40-42). Since chips 

are generally fabricated using elastomer polydimethylsiloxane (PDMS), they have elastic 

mechanical properties suitable for stretching the entire device (39). Another advantage of 

the chip system is compartmentalization, which facilitates the co-culture of various cell 

types including CMs, ECs, and CFs in different chambers and channels. This is 

particularly helpful in establishing the vascularization of tissue models and, observing 

cell type-dependent drug-induced responses, such as contractile function of CMs and 

permeability change of ECs (40). To create a 3D cell structure on a chip, beyond the 

limitations of the conventional 2D cell layer, the EHT was integrated with microfluidic 

chips, leading to cardiac tissue models with the merits of each system. For example, the 

EHT formed in the chip could be electrically stimulated by 3D electrodes integrated in 

the chip, and endothelialization could also be induced through separate channels (43). 

Moreover, EHT fabricated using human iPSC-derived CMs (80%) and human iPSC-

derived stromal cells (20%) within microfluidic chip showed an increase in cellular 

alignment and ECM production, and further matured under medium condition enriched 

with fatty acids (44). 

 

Cardiac organoids UN
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In recent years, the development of cardiac organoids, which mimic early heart 

development in the human body, has been demonstrated. The first developed cardiac 

organoids derived from aggregates of human iPSCs recapitulated the cardiomyogenesis 

of embryonic development and the expression of other surrounding regions and cells, 

such as mesenchymal cells and ECs (45). As cardiac organoids are generated via intrinsic 

development program, they can represent the in vivo human heart better than other cardiac 

tissue models. More recently, self-organizing cardiac organoids have been developed to 

contain the chamber with vascularization (46, 47). However, current cardiac organoids 

still remain in the early developmental stage (48). Therefore, efforts are required to 

produce more complex and mature cardiac organoids through long-term incubation in 

bioreactors and microfluidic chips or by incorporating additional cell types that do not 

develop naturally along with organoids (e.g., immune cells). In addition, unlike other 

cardiac models fabricated with defined cell numbers and controlled stages of cell 

differentiation, cardiac organoids may encounter the issues on batch variation and 

heterogeneity, which need to be addressed for standardization. 

 

Cardiac tissues with functional hydrogels 

Establishing ECM environments artificially in cardiac tissue models has been conducted 

using hydrogels prepared from synthetic materials (e.g., poly(ethylene glycol)) and 

natural materials (e.g., fibrin, collagen, and Matrigel) (49). The hydrogels play a role in 

anchoring cells at certain locations, and influence cell differentiation and tissue formation 

through cell-matrix interactions. Hydrogels prepared from fibrin and collagen have been 

used to fabricate EHT models, and Matrigel has been used to embed cardiac organoids. 

Hydrogels made of synthetic materials have a low variability due to their chemically UN
CO

RR
EC

TE
D 

PR
OO

F



11 

 

defined composition, and are easy to control mechanical and physical properties (e.g., 

modulus, stiffness). On the other hand, natural hydrogels exhibit superb biocompatibility 

and similarity to the native tissue environment (50). Decellularization technique allows 

removal of cellular components from native organs and tissues, resulting in fabrication of 

biological scaffolds containing tissue-specific ECM. Therefore, decellularized tissue-

derived matrix can reconstitute the complex extracellular environments of the tissues (51-

53). Decellularized tissue matrix has been manufactured as hydrogel and integrated into 

tissue models (54, 55). For instance, EHT model with heart ECM was fabricated using 

neonatal rat cardiomyocytes and 3D bioprinting (56). Decellularized heart-derived ECM 

hydrogel was used as a bioink with other supporting materials (e.g., poly(ethylene/vinyl 

acetate)), which contributed to the increased alignment and differentiation of CMs in the 

EHT model (56). In another study, EHT model was established using human iPSC-CMs 

encapsulated in decellularized heart ECM hydrogel with reduced graphene oxide to 

implement tissue-specific biochemical cues and electrical conductivity (57). This hybrid 

scaffold enhanced contraction force, conduction velocity, calcium handling, and action 

potential duration of the EHT model (57). 

 

Cardiac tissues stimulated with electrical/mechanical cues 

Cardiac tissue models currently tend to be manufactured using human iPSCs. However, 

the maturity and functionality of these tissue models are still limited when compared to 

the in vivo human heart. To solve this problem, many efforts to create advanced models 

have proceeded in the direction of recapitulating the microenvironment and signaling of 

the native heart (58). Thus, in addition to incorporation of non-myocytes or a chip system, 

as previously mentioned, the stimulation of cardiac tissue models with an electrical pulse UN
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and cyclic stretch, has been tested for cardiac maturation. Electrical signals, which play a 

critical role in inducing the conduction of heartbeat, are associated with the functional 

phenotypes of CMs such as electrical interconnectivity and synchronized contraction (59, 

60). Accordingly, the malfunction of electrical signal often leads to heart rhythm problems 

such as arrhythmia (59). When electrical stimulation was applied to the cardiac tissue 

models through bioreactors and biowire devices, structural and functional maturity could 

be substantially enhanced (Fig. 2A) (61, 62). Similarly, application of cyclic stretch using 

elastic scaffolds and stretchable bioreactors promoted the maturation of EHT models 

through the formation of aligned structure and increased electrical functionality (Fig. 2B, 

C) (63, 64). Another study reported that maturation of EHT model fabricated with early-

stage human iPSC-CMs was enhanced by gradually increasing the frequency of electrical 

and mechanical stimulation (from 2 Hz to 6 Hz by 0.33 Hz per day) (65). Maturity of this 

EHT model was similar to that of the adult heart, which was confirmed through various 

analyses, such as ultrastructure, oxidative metabolism, frequency-dependent acceleration 

of relaxation, positive force-frequency relationship, and calcium handling (65). 

 

HEART DISEASE MODELING 

Cardiomyopathy 

Cardiomyopathy is a heart disease indicated by enlarged, thickened, or stiffened heart 

muscle, which is associated with several intrinsic and extrinsic factors, but has been 

mainly recognized as an inherited disorder (66). Hypertrophic cardiomyopathy (HCM) 

and dilated cardiomyopathy (DCM), characterized by a thickening of the left ventricle 

and dilated left ventricle, respectively, are representative examples among the several 

types of cardiomyopathies (67). HCM is caused, in the majority of cases, by mutations of UN
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genes that encode the sarcomere proteins, while DCM can be caused by more diverse 

factors such as mutation of sarcomere and cytoskeletal proteins, systemic pathology, 

maternal mitochondrial DNA, and X-linked mutations (68). 

For cardiomyopathies caused by genetic mutations, disease models can be 

produced using either patient-derived iPSCs or gene editing systems like CRISPR/Cas9 

if the genetic information is known. In 2015, EHT was developed for DCM modeling 

using patient-derived iPSC-CMs which have mutations in the TTN gene encoding titin, 

one of the filamentous proteins contained in sarcomeres (69). Interestingly, contractile 

deficits were not significantly observed in single cells, but they were expressed in the 

developed DCM EHT model (69). These results may be attributed to the increased CM 

alignment and enhanced contractile proteins in the EHT models. The TTN gene-deficient 

EHT models were manufactured via the CRISPR/Cas9 gene editing, which was verified 

by confirming reduced contraction. Barth syndrome (BTHS), caused by mutations in the 

TAZ gene encoding tafazzin, is a disease characterized by the combinational symptoms 

of cardiomyopathies such as HCM and DCM (70). The BTHS heart-on-chip model, 

developed using patient-derived iPSCs or the CRISPR/Cas9 gene editing system, showed 

a diminished contractile stress. This impaired phenotype was restored by treatment with 

TAZ nucleoside-modified messenger RNA (modRNA) or linoleic acid (71). Ma et al. 

constructed a myosin-binding protein C (MYBPC3) deficient human iPSC line using 

TALEN-mediated gene editing. Cardiac microtissues were then generated using 

MYBPC3-deficient human iPSC-CMs and synthetic filamentous matrices fabricated via 

two-photon polymerization (72). They found that the lack of a MYBPC3 (MYBPC3−/−) 

gene in a mechanically overloaded environment driven by filamentous matrices caused 

impaired contractile phenotypes and calcium dynamics, as seen in HCM and DCM (72). UN
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The effect of heterozygous gene deficiency (MYBPC3+/−) was also investigated using 

cardiac microtissue fabricated with micro-heart muscle arrays (73). In another study, the 

association of HCM with mutation in the ACTN2 gene, which encodes α-actinin 2, was 

investigated using an EHT model (Fig. 3A) (74). The ACTN2 mutant EHT model, 

fabricated with patient-derived iPSC-CMs and CRISPR/Cas9-mediated gene editing, 

possessed HCM phenotypes such as a longer action potential and the prolonged relaxation 

of contraction (74). As such, cardiac tissue models can be used to identify novel genes 

related to cardiomyopathy and investigate their roles in cardiomyopathy occurrence. 

Cardiomyopathies occur often without genetic mutation and family history, such 

as nonfamilial HCM. These cases can be modeled through the provision of external 

factors or stimuli. Zhao et al. fabricated an EHT model using patient-derived iPSCs and 

a biowire chip, and then induced a left ventricular hypertrophy by chronic electrical 

stimulation for a period of up to 6 months (75). The left ventricular hypertrophy EHT 

model showed different mRNA profiles and contractile functions, when compared to a 

normal model (75). In a separate study, non-genetic cardiomyopathy was induced by 

treating angiotensin II in an EHT model that was constructed using human iPSC-CMs 

and human ventricular cardiac fibroblasts in a biowire chip (76). The EHT model of 

angiotensin II-induced progressive cardiomyopathy showed a gradually decreased 

contractile force and electrical activity, and was used for evaluation of the toxicity and 

efficacy of the drugs (losartan, relaxin, and saracatinib) (76). 

 

Arrhythmia 

Arrhythmia is a common disease in which an irregular heartbeat appears for various 

reasons. Arrhythmia is caused predominantly by problems in the electrical circuit in the UN
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heart (77). One of the major inherited arrhythmic disorders is long QT syndrome (LQTS), 

which is caused by mutation of cardiac ion channels. LQTS is named due to its clinical 

feature of a prolonged QT interval, and there are several types depending on which ion 

channel is affected (78). Thus, LQTS cardiac tissue models could be developed by 

incorporation of LQTS patient-derived cardiac cells or by the treatment of drugs that 

block specific cardiac ion channels. For instance, ring-shaped EHT models were 

generated with LQT2 patient-derived iPSC-CMs (79). These models exhibited a 

prolonged action potential duration, an abnormal calcium transient, and arrhythmic 

responses (79). The same research group demonstrated ring-shaped atrial arrhythmia in 

the EHT models and tested therapeutic strategies of electrical stimulation or anti-

arrhythmic drugs (Fig. 3B) (80). QT prolongation in the heart could also occur due to the 

adverse action of the drugs (81). Previous study demonstrated the development of two 

types of LQTS EHT models (LQT1 and LQT2) through the treatment of drugs which 

inhibit each ion channel (HMR-1556 and E-4031 for blocking IKs and IKr, respectively) 

(82). Torsade de Pointes (TdP) means “twisting of the points” of heartbeat, which is one 

of the representative characteristics of life-threatening arrhythmia (81). As the occurrence 

of TdP, along with QT prolongation, contributes to the withdrawal of new drugs, drug 

safety screening systems have been focused on these features (83, 84). To model TdP in 

vitro, E-4031, which prolongs the field potential duration, was treated to cardiac tissue 

models, and consequently, spiral wave re-entry and TdP-like arrhythmic responses were 

observed (84). In another study, anatomical defects were induced to produce a structural 

arrhythmia disease model (85). After constructing ventricle models with neonatal rat 

ventricular myocytes and nanofiber spinning system, an artificial hole injury was 

generated to induce an arrhythmia with an abnormal flow of contraction (85). UN
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Myocardial ischemia and myocardial infarction 

Myocardial ischemia is characterized by a limited oxygen supply due to a blood vessel 

occlusion, which leads to the deterioration of heart function. Myocardial infarction is a 

life-threatening disease in which necrosis of the heart occurs due to extended ischemia or 

an acute blockage of the coronary artery (86). Models to simulate these events can be 

developed through culture in hypoxic conditions. For example, a previous study 

cultivated a cardiac tissue model fabricated using human iPSC-CMs in three types of 

hydrogels with different stiffness (0.8, 8, and 30 kPa) under conditions of a 1% oxygen 

concentration and investigated the effects of cell age and tissue stiffness on viability and 

reactive oxygen species (ROS) production (87). In another study, a myocardial infarction 

model was constructed by gradually decreasing the oxygen concentration towards the 

inside of the multicellular spheroids comprising 50% human iPSC-CMs and 50% non-

myocytes (CFs, HUVECs, and hASCs) under conditions of a 10% oxygen concentration 

(88). This spherical disease model exhibited several pathological phenotypes, such as a 

fibrotic response and impaired calcium handling, and was used to test anti-fibrotic drugs 

and to identify the exacerbation of cardiotoxicity by drugs (88). 

Reperfusion therapy is widely used to treat myocardial infarction, however, it can 

cause additional injury, called ischemia-reperfusion injury (IRI). IRI cardiac tissue 

models were first developed in the form of EHT in 2019 via a method of restoring 

oxygenation from ischemic conditions (89). These IRI models can be used for testing 

several therapeutic approaches targeting ischemic preconditioning, intracellular pH, the 

opening of the mitochondrial permeability transition pore (MPTP), and oxidative stress 

(89). Spherical IRI cardiac tissue models were also developed in another study using a UN
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similar inducing method, and these models showed some hallmarks of disease phenotypes 

such as cell death and increased secretion of cytokines associated with inflammation, 

angiogenesis, and cell migration (90). The angiogenic effect of IRI was confirmed 

through enhanced tube formation of HUVECs cultured with conditioned medium from 

spherical IRI tissue models (90). ECs are known to be an important mediator in 

myocardial dysfunction after IRI (91). To accurately predict pathological responses in IRI, 

it is necessary to implement the interaction between ECs and CMs. In this context, the 

cardioprotective roles of endothelial extracellular vesicles and their mechanism were 

investigated using an IRI heart-on-a-chip model (92). In a separate study, an IRI chip 

model was constructed through co-culture of human iPSC-CMs and iPSC-ECs in 

microfluidic chip, and changes in TSG101 and CD63 subunit expression of exosomes 

secreted in chip models were detected after ischemic injury and IRI, respectively (93). 

 

Cardiac fibrosis 

Severe heart defects caused by myocardial infarction and ischemia evoke cardiac fibrosis, 

which eventually leads to heart failure. CF, known to maintain the homeostasis of ECM, 

is a key cell type in cardiac fibrosis characterized by excessive ECM production and 

disrupted balance of ECM homeostasis (94). In this regard, cardiac tissue models based 

on CFs have been developed for modeling cardiac fibrosis, and various fibrosis induction 

methods have been used. To simulate a fibrotic response in cardiac tissue models, the 

application of biomechanical cues could be used. In many organs including the heart, 

overexpression of transforming growth factor-β (TGF-β) signaling is known to accelerate 

fibrosis after  injury by activating fibroblasts, remodeling ECM, and promoting 

myofibroblast conversion (95). Accordingly, activation of TGF-β signaling resulted in a UN
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fibrotic response of the cardiac tissue model with CMs and CFs encapsulated in gelatin 

methacryloyl (GelMA) hydrogels (96). Moreover, cyclic mechanical compression was 

applied to a microdevice containing CFs encapsulated with GelMA hydrogels, and this 

triggered a phenotypic remodeling of CFs to myofibroblasts (97). In another study, 

cardiac fibrosis-on-a-chip was designed and fabricated in the form of EHT containing 

human iPSC-CMs and CFs, and fibrosis was induced by activation of TGF-β signaling 

(98). This fibrosis EHT model in chip showed hallmarks of fibrosis such as collagen 

deposition and increased stiffness, and therapeutic efficacy of anti-fibrotic drugs like 

pirfenidone was examined (98). 

The fibrotic cardiac tissue model could be optimized by tuning the ratio of CMs 

and CFs. Wang et al. used a biowire chip for generating EHT models, and a 3:1 and 1:3 

ratio of CMs and CFs was incorporated for a normal EHT model and cardiac fibrosis EHT 

model, respectively (99). The resultant fibrotic EHT model showed numerous disease 

phenotypes such as collagen deposition, diminished contractile function, abnormal 

calcium transient, and impaired electrophysiological properties (99). The drug effect was 

investigated using p-guanidinomethyl-phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide 

(PCI) in fibrotic EHT models at early and late time points, and the changes in passive 

tension, active force, and collagen deposition were compared with those of normal EHT 

model (99). Early treatment of PCI reduced passive tension, active force, and collagen 

deposition in the fibrotic EHT model, whereas only passive tension was significantly 

decreased by the treatment of PCI at late time points (99). In another study, Daly et al. 

developed a cardiac fibrosis model by adjusting the ratio of CFs in a cardiac tissue model 

manufactured by assembling spheroids using 3D bioprinting (Fig. 3C) (100). In this study, 

a total of 20% of CFs were used for the healthy spheroids and 80% of CFs were used for UN
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scarred spheroids. The developed fibrotic spheroids had a severely damaged contraction 

profiles (100). With the advantage of bioprinting, it was possible to create a cardiac tissue 

model that was locally scarred in a specific area, and the delay of the contraction due to 

scarred region was spatially demonstrated (100). When the cholesterol modified miR-

302b/c was applied for cardiac repair in the fibrotic model, recovery of contractile 

phenotype and activation delay was observed (100). 

 

CONCLUSION 

Owing to the development of stem cell and reprogramming technologies and the 

inaccuracy and ethical issues in animal experiments, 3D cardiac model production is in 

the spotlight. Numerous cardiac tissue models, each having their own advantages, have 

been developed and shown the benefits of modeling heart diseases. The cardiac tissue 

models that incorporate genetic diseases have been realized by using reprogramming and 

gene editing techniques. Modeling heart diseases with various risk factors in addition to 

genetic factors, such as myocardial infarction and cardiac fibrosis, has been achieved via 

creation of disease-specific microenvironments. Despite significant improvement in heart 

disease modeling, the complexity and maturity of the cardiac tissue models are still 

insufficient to simulate the complicated features and pathophysiology of heart diseases. 

Therefore, application and incorporation of tissue-engineering platforms (e.g., functional 

biomaterial scaffolds, microfluidic chip, bioprinting, and electroconductive materials, etc.) 

need to be further expanded for precise recapitulation of the cardiac microenvironments, 

induction of apparent disease phenotypes, and high-throughput culture and analysis. 
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FIGURE & FIGURE LEGENDS 

 

 

Figure 1. Cell components and engineering platforms for the development of cardiac 

tissue models. Several types of cardiac tissue models have been developed, to include 

various cardiac cells, using engineering platforms such as microwells, microfluidic 

devices, functional hydrogel, and bioprinting. This figure was created with 

BioRender.com. 
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Figure 2. Biophysical stimulation to improve the cardiac tissue models. (A) Cardiac 

spheroids cultured in microbioreactors and subjected to electrical stimulation at various 

frequencies. Electrical signals increased expression of gap junction and sarcomere 

thickness in cardiac spheroids. Adapted from Eng et al. (61) (CC BY 4.0 license) 

Copyright 2016, The Authors, published by Springer Nature. (B) EHT models stimulated 

with uniaxial cyclic stretch (10% strain, 1 Hz) using a bioreactor. The expression of gap 

junction and sarcomere structure and electrical responses were enhanced by mechanical 

stimulation. Adapted from Massai et al. (63) (CC BY 4.0 license) Copyright 2020, The 

Authors, published by Frontiers Editorial Office. (C) Ring-shaped EHT models with 

electrical pulses and stretch conditioning, which showed improved biomechanical 

properties and electrical coupling. Adapted from Lu et al. (64) (CC BY 4.0 license) 

Copyright 2021, The Authors, published by Ivyspring International Publisher. 
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Figure 3. Modeling various heart diseases using cardiac tissue models. (A) 

Cardiomyopathy modeling using EHT with genetic defects of ACTN2. Adapted from 

Prondzynski et al. (74) (CC BY 4.0 license) Copyright 2019, The Authors, published by 

John Wiley and Sons. (B) Atrial arrhythmia modeling using ring-shaped EHT. Adapted 

from Goldfracht et al. (80) (CC BY 4.0 license) Copyright 2020, The Authors, published 

by Springer Nature. (C) Cardiac fibrosis modeling by assembling spheroids using 3D 

bioprinting. Adapted from Daly et al. (100) (CC BY 4.0 license) Copyright 2021, The 

Authors, published by Springer Nature. 
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