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ABSTRACT 

After birth, animals are colonized by a diverse community of microorganisms. The digestive 

tract is known to contain the largest number of microbiome in the body. With emergence of the 

gut-brain axis, the importance of gut microbiome and its metabolites in host health has been 

extensively studied in recent years. The establishment of organoid culture systems has 

contributed to studying intestinal pathophysiology by replacing current limited models. Owing 

to their architectural and functional complexity similar to a real organ, co-culture of intestinal 

organoids with gut microbiome can provide mechanistic insights into the detrimental role of 

pathobiont and the homeostatic function of commensal symbiont. Here organoid-based 

bacterial co-culture techniques for modeling host-microbe interactions are reviewed. This 

review also summarizes representative studies that explore impact of enteric microorganisms 

on intestinal organoids to provide a better understanding of host-microbe interaction in the 

context of homeostasis and disease. 

 

INTRODUCTION 

Growing evidence supports that microorganisms and their byproducts can affect an individual's 

phenotype and vice versa (1). With advances in high-throughput sequencing technology in the 

last decade, great efforts have been devoted to understanding host-microbiome interactions. 

Numerous works have demonstrated that the microbiome not only shapes the host immune 

system, but also correlates with tissue homeostasis and pathophysiology of diseases (2). Of 

note, the gut is the most heavily colonized organ. It contains over 70% of total symbionts. 

Significant dysbiosis has been found in gut luminal and fecal microbiota according to disease 

cohort studies, suggesting a causal relationship between the gut and its microbiota in host health 

(3-5). For a mechanistic study, a germ-free mouse model has been widely used to assess impact UN
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of the microbiome on disease progression. However, significant differences in microbial 

tropism, cellular composition, and microenvironment cues such as metabolic pathways 

between human and mouse often hinder interpretation of results (6). In this aspect, organoid 

technology has brought great advances in modeling of host-microbiome interaction in vitro. 

Organoids are self-organizing 3D structures with multiple differentiated cells derived from 

tissue-specific stem cells (7). With support of niche factors and extracellular matrix (ECM), 

LGR5-expressing crypt columnar cells can generate intestinal organoids (IOs), the first 

established epithelial organoids that could recapitulate the crypt-villus axis and lumen 

structures (8). Besides structural similarity, they can mimic several physiological properties of 

the gut such as selective absorption, barrier function, and mucus production. In addition, 

optimized culture conditions ensure robust generation and establishment of personalized- or 

genetically manipulated IOs (9, 10), overcoming limitations of conventional in vitro models. 

In this mini-review, we will briefly introduce current methodology for microbe-IO co-culture. 

We then summarize representative findings describing the impact of symbiont and pathobiont 

as well as probiotic candidates in host health using co-culture systems to provide insights into 

the importance of cross-talk between host and microorganisms. 

 

1. Organoid-microbial co-culture technology 

To investigate interactions between IOs and microbes, it is essential to mimic the naïve gut 

environment harboring microbes. In the gastrointestinal tract, microbes exist within the lumen 

and directly interact with the intestinal epithelium through the apical side. In contrast, typical 

IOs have basal-out structures. Therefore, co-culture methods that allow physiologically 

relevant interaction are required for modeling microbial infections. 
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1-1. Microinjection  

Microinjection of bacteria directly into the lumen of IOs can facilitate bacterial contact with 

the apical side of the epithelium (11, 12). Since the closed lumen has low oxygen tension, 

microinjection can improve the infection efficiency of anaerobic bacteria (13). Given that 

manual injection is a highly labor-intensive, time-consuming procedure (14, 15), a high-

throughput organoid microinjection platform has been developed (16). However, since it is not 

a perfect anaerobic co-culture system, maintenance of a long-term culture of IOs with 

anaerobic bacteria is limited.  

 

1-2. Suspension culture with IOs 

Microbes can be simply treated to organoid growth media or embedded with ECM during IO 

culture. It is the most common method to study host-microbe interaction so far. Organoids can 

be cultured with live- and heat-killed (HK) bacteria or with conditioned media containing their 

byproducts, including bacterial toxins and metabolites (17-19). However, this method restricts 

the access of bacteria to the apical side of IOs. To overcome this limitation, IOs can be 

mechanically shredded to expose the luminal side and then re-seeded into ECM following co-

culture with live bacteria (20, 21).   

  

1-3. Organoid-derived monolayers (ODMs) 

ODMs are established by seeding dissociated 3D-grown IOs on a Transwell plate to expose the 

apical surface upward with media (22, 23). ODMs can recapitulate cell compositions of 

gastrointestinal epithelium such as enterocytes, goblet cells, Paneth cells, and other cell 

populations (24). This monolayer culture provides practical advantages of easy microbial 

access to the luminal side and convenient sample collection compared to ECM-embedded UN
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classical IOs. However, 2D-grown epithelial stem cells usually undergo differentiation. They 

cannot be sub-cultured or maintained for a long time. Thus, many cells are needed each time. 

In addition, it is hard to obtain morphological information with ODM method (25). ODM 

culture technique can be further modified by exposing the upper side of the layer to air to 

generate an oxygen gradient. With the air-liquid interface (ALI) culture method, in which the 

basolateral side and the apical side contact with media and surrounding air, respectively, ODMs 

can differentiate into more mature epithelial cells such as mucus-secreting goblet cells than 3D 

organoids (26, 27). In addition, IHACS (intestinal hemi-anaerobic co-culture system), 

composed of a hypoxic apical chamber sealed with a rubber plug and a basal chamber in normal 

oxygen concentration can facilitate the survival of both epithelial cells and microbes (28, 29).  

 

1-4. Organoids with reversed polarity 

The apical-out IO model is an alternative to microinjection which has limitations of laborious 

processes and requirement of special equipment. Reversion of epithelial polarity is performed 

by removing ECM and maintaining suspended IOs in the low-attachment plate, where 

spontaneous polarity changes from basal-out to apical-out occur (30). Apical-out IOs allow 

direct interactions between the epithelium and microbes. Functional assays for nutrient uptake 

and epithelial barrier integrity can also be performed since epithelial cells within apical-out IOs 

can differentiate into a more mature state than conventional IOs (30).  

 

2. Culturing IOs with microorganisms to study host-microbiome interactions 

 

2.1. Co-culture with pathobionts 

Pathobiont has a significant impact on host health. Enteric infections by bacterial pathogens UN
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are responsible for various diarrheal diseases, particularly in developing countries. Dysbiosis 

in the gut microbiome can lead to several enteric and systemic disorders (31). Moreover, the 

rapid increase of antibiotic-resistant pathogens has become a critical threat in recent years (32). 

Thus, numerous efforts have been made to evaluate and understand the detrimental impact of 

pathobionts on the gut using IOs (Table 1). 

 

a. Shigella flexceri 

Shigella flexneri infection is a leading cause of acute diarrhea, fever, and stomach pain in 

humans, particularly young children (33). ODM culture is the most frequently used in vitro 

model to study the role of S. flexneri in intestinal epithelial injury. After administration, S. 

flexneri exhibits high bacterial adherence rates in ODMs and induces maturation of M cells 

with upregulation of pro-inflammatory signals (24, 34, 35). Infection by S. flexneri can also 

trigger IL-8 secretion and mucin glycoprotein MUC2 expression (24, 35). S. flexneri can invade 

ODMs via the basolateral side, while disruption of the tight junctions in the epithelial barrier 

allows S. flexneri to invade ODMs via the apical surface (36). In addition, the killing potency 

of bacteriophages targeting S. flexneri has been tested in an ODM-based co-culture model to 

find alternatives to current antibiotics (34). Interestingly, bacterial adherence and invasion 

capacity in ODMs are significantly inhibited by the presence of bacteriophage. 

 

b. Salmonella enterica  

Salmonella enterica is a major pathogen for food-borne diarrheal diseases such as typhoid fever 

known to be caused by S. enterica serovar Typhimurium (37). Zhang et al. have investigated 

S. Typhimurium pathogenesis in the intestine using a microinjection method (38). In their study, 

disruption of epithelial tight junction and increment of inflammatory cytokine by NF-κB UN
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activation were observed in IOs upon administration of S. Typhimurium. Moreover, infection 

by Salmonella led to reduced Lgr5 expression, suggesting suppression of stem cell population. 

In an apical-out organoid model, S. Typhimurium invaded the apical epithelial surface more 

efficiently than invading the basolateral surface, which induced actin ruffles (30). Of note, key 

components for bacterial invasion have been revealed with a co-culture system. For instance, 

colonization of S. Typhimurium after microinjection into the lumen of IOs is dependent on an 

important virulence factor, type III secretion system 1 (TTSS-1), and its flagellar motility (39). 

The invasion capacity of S. Typhimurium is also mediated by invA (40) and Pathogenicity 

Island (SPI)-derived Type 3 secretion systems (T3SS) (41). Interestingly, a deficiency of 

phospholipid transporter YrbE in S. enterica serovar Typhi can lead to upregulation of flagellin, 

which enhances pro-inflammatory IL-8 expression in ODM (42).  

 

c. Escherichia coli 

Most Escherichia coli strains are commensal bacteria in the large intestine. However, several 

pathogenic strains are important causes of diarrheal illness and food poisoning (43). For 

example, enterohemorrhagic E. coli (EHEC) serotype O157:H7 is responsible for fatal 

foodborne diarrheal diseases (44, 45). After co-culturing with human ODMs, EHEC can readily 

colonize differentiated human ODMs. It especially targets MUC2 and microvillar resident 

protein PCDH24 at the early stage of  infection (46). EHEC can also secrete extracellular 

serine protease EspP that exhibits enterotoxin activity by stimulating an electrogenic ion 

transporter, leading to reduced PCDH24 and brush border damage, while the enterotoxin-

producing activity of EHEC in human IOs is independent of EspP activity (47).  

Meanwhile, enterotoxigenic E. coli (ETEC) infection is associated with high mortalities in 

developing countries (48). ETEC can secrete heat-stable enterotoxin (ST) and heat-labile UN
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enterotoxin (LT) into the intestinal epithelium, which can induce cGMP and cAMP stimulation 

(49). Indeed, ST-induced cGMP synthesis followed by apical efflux of cGMP into the 

basolateral space has been observed in the human ODM model. However, disruption of 

phosphodiesterase PDE5 can reverse this phenomenon, revealing that cyclic nucleotide export 

and degradation can be initiated by enterotoxins (50). Given their importance in domestic 

animal farms, IOs have been established from porcine small intestine to generate ODM to 

investigate ETEC pathogenesis in pig gut (51). ETEC exhibits F4 fimbriae-mediated adhesion 

to porcine ODM as observed in vivo, indicating the utility of porcine IOs and co-culture 

systems to study enteric pathobionts in industrial animals.  

Recent studies have shown that genotoxic colibactin-secreting E. coli strains are more 

abundantly detected in colorectal cancer (CRC) tissues than in healthy ones (52) and that pks 

genome is responsible for colibactin production (53). Indeed, long-term exposure (over five 

months) of human IOs to pks+ E. coli performed by luminal microinjection can lead to 

accumulation of genetic mutations in epithelial cells (54). Interestingly, organoids upon short-

term exposure to pks+ E. coli also exhibit DNA damage, enhanced proliferation, and Wnt-

independent abnormal growth (21). These studies demonstrate a hypothesis regarding the pks+ 

E. coli can mediate the tumorigenic process in CRC development. 

 

d. Clostridium difficile 

Clostridium difficile accounts for a significant proportion of antibiotic-induced diarrhea and 

colitis (55). Microinjection of C. difficile into IOs can lead to a reduction of Na(+)/H(+) 

exchanger 3 (NHE3) with organoid swelling, which can recapitulate the in vivo situation of C. 

difficile-induced chronic diarrhea (56). Main virulence factors of C. difficile including C. 

difficile toxin A (TcdA), C. difficile toxin B (TcdB), and C. difficile transferase (CDT) can UN
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collapse the adherens junction through disruption E-Cadherin and actin-cytoskeleton (18, 57). 

Similarly, human ODMs express a high level of TcdA receptor (58). TcdA can disrupt the 

barrier function of human IOs upon C. difficile microinjection into the lumen for up to 12 h 

(11). TcdB can further inhibit epithelial regeneration by impairing stem cell functions in IOs 

established from C. difficile-infected mice (57). In this context, several studies have targeted 

C. difficile toxins to neutralize the harmful impact of C. difficile and found that administration 

of human serum albumin (HSA) and antibiotic bacitracin could prevent the toxic effect of TcdA 

and TcdB in IOs (59, 60). Co-culture of C. difficile and IOs has also provided insights into the 

physiological response of epithelial cells to resist microbial infection as reported by Liu et al. 

(19). In their work, the protective role of Paneth cells during C. difficile infection was 

investigated in murine and human IOs. It was shown that constitutive activation of signal 

transducer and activator of transcription 5 (STAT5) signaling could potentiate anti-bacterial 

and niche-supporting functions of Paneth cells in response to inflammatory cytokines and 

bacterial toxin, thus reducing C. difficile cytotoxicity.  

 

e. Vibrio cholerae 

Vibrio cholerae is an important cause of epidemic diarrhea, which is mediated by cholera toxin 

(CT) (61). Several studies have reported that treatment of IOs with CT can activate cAMP 

pathway, which induces acute swelling of IOs due to fluid accumulation in the lumen (62, 63). 

In this aspect, organoid swelling assay has been used for testing CT inhibitors (63). 

Interestingly, IOs derived from O-blood group show more elevated cAMP response upon CT 

administration than IOs derived from A-blood groups (64).  

 

f. Listeria monocytogenes UN
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Listeria monocytogenes is an opportunistic food-borne pathogen that causes listeriosis in 

immunocompromised individuals (65). In vitro infection of L. monocytogenes in IOs can 

stimulate organoid growth and induce differentiation into Paneth cells by regulating the 

expression of transcriptional factors Math1 and Sox9 (20). Another study has shown that L. 

monocytogenes can lead to Paneth cell induction in IOs by inhibiting Notch signaling and 

activating the toll-like receptor (TLR) 2/4 pathway with upregulation of opsonin protein CCN1 

(66, 67). When the infection efficiency of L. monocytogenes was assessed in IOs exhibiting 

different polarity, basal-out IOs were more susceptible to L. monocytogenes invasion than 

apical-out ones because L. monocytogenes could bind to basolateral receptors after targeting 

cell extrusion regions (30). Interestingly, luminal microinjection of L. monocytogenes into IOs 

also demonstrated that crosslinking between bacterial internalin A (InlA) and E-cadherin on 

goblet cells could mediate the invasive process of Listeria, allowing its entry from lumen to 

the basal side despite the presence of epithelial barriers (68). Meanwhile, quantitative 

proteomic analysis has revealed that L. monocytogenes could differentially regulate the 

transcriptional activity and metabolism of IOs depending on their strains and serotypes (69).  

 

g. Other pathogenic bacteria 

A positive correlation between the abundance of Campylobacter species in CRC tissues and 

CRC development has been confirmed (70). Specifically, Campylobacter jejuni can induce 

DNA damage and intestinal inflammation by producing genotoxin (71). In line with previous 

studies, treatment with bacterial lysate from C. jejuni can lead to accumulation of DNA damage 

with increased rH2AX induction in human IOs, while ablation of cytolethal distending toxin 

(CDT) can abrogate pro-inflammatory- and genotoxic impact of C. jejuni (72).  

Since the gut is part of the digestive tract, oral pathogenic bacteria can be detrimental to the UN
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intestine. For instance, Fusobacterium nucleatum in the gastrointestinal tract is positively 

associated with the development of gut inflammation and CRC (73). Interestingly, treatment 

with outer membrane vesicles (OMV) produced by F. nucleatum subsp. polymorphum can 

promote proinflammatory responses by stimulating tumor necrosis factor (TNF) secretion and 

NF-κB activation in human ODMs (74). Lipopolysaccharides (LPS) derived from 

Porphyromonas gingivalis, another major oral bacterium responsible for periodontitis, can 

regulate differentiated epithelial cell marker expression in murine IOs (75). 

 

Table 1. Studies reporting host-pathogenic bacteria interactions using organoids 

Bacteria 

Source of 

organoid 

Culture 

system 

Key findings  

 

References   

Shigella 

flexneri 

Human small 

intestine, colon  

ODM ↑IL-8 secretion (24) 

 Human 

(unspecified) 

ODM ↑IL-8 secretion 

↑Muc2 expression 

(34) 

 Human small 

intestine 

ODM Basolateral infection, 

↑Pro-inflammatory 

signals 

(35) 

 Human small 

intestine, colon 

ODM Testing the 

therapeutic effect of 

bacteriophage 

(36) 

Salmonella Human small 3D- ↓Organoid growth (38) UN
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enterica intestine microinjection ↑NF-kB signaling 

↑Pro-inflammatory 

cytokine, 

↓LGR5 expression 

 Human/mouse 

small intestine 

3D-

microinjection 

Recapitulation of 

early infection cycle, 

TTSS-1 is required 

for colonization 

(39) 

 Human iPSC 3D-

microinjection 

↑Proinflammatory 

cytokines, 

InvA-dependent 

invasion 

(40) 

 Human ESC 3D-

microinjection 

T3SS-1-dependent 

invasion, 

↑Inflammatory 

chemokine 

(41) 

 Human small 

intestine, colon 

Apical-out Cytoskeletal 

rearrangement 

(30) 

 Human small 

intestine 

ODM YrbE-dependent 

inflammatory 

response 

(42) 
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EHEC Human colon ODM ↓Colonic mucus 

Brush border damage 

(45) 

 Human colon ODM Change in active ion 

transport 

(47) 

ETEC Human small 

intestine 

ODM PDE5-mediated 

restriction of 

intracellular cGMP 

accumulation 

(50) 

 Pig small 

intestine 

ODM F4-mediated 

adhesion 

(51) 

pks+ E. coli Human colon ODM Long-term exposure 

caused mutational 

signature 

(54) 

 Human/mouse 

colon  

ODM/ 

Shredded 3D 

↑Proliferation 

Wnt-independent 

growth 

(21) 

Clostridium 

difficile 

Human iPSC, 

ESC 

3D-

microinjection 

↓Epithelial barrier 

function 

(11) 

 Human iPSC 3D-

microinjection 

↓NHE3 expression (56) 

 Human/mouse 

colon 

3D derived 

from infected 

↓Adherens junction, (57) 
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mice/ 

3D-toxin 

treatment 

↓Epithelial 

regeneration 

 Human small 

intestine 

ODM Adherence 

mechanism in human 

ODM model 

(58) 

 Human iPSC 3D-toxin 

treatment 

↓Transmembrane 

adhesion protein 

(18) 

 Human iPSC 3D-toxin 

treatment 

Protective effect of 

HSA 

(59) 

 Human 

(unspecified) 

3D-toxin 

treatment 

Protective effect of 

antibiotic Bacitracin 

(60) 

 Human/mouse 

iPSC 

3D-

microinjection 

Protective effect of 

Paneth cells on C. 

difficile-infected IO 

(19) 

Vibrio  

cholerae 

Mouse small 

intestine 

3D-toxin 

treatment 

↑cAMP pathway (62) 

 Human small 

intestine 

3D-toxin 

treatment 

Testing CT inhibitor 

with swelling assay 

(63) 

 Human small 

intestine 

3D-toxin 

treatment 

O-blood group 

exhibited different 

responses to CT 

(64) 

Listeria Mouse small Shredded 3D ↑ Organoid growth (20) UN
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monocytogenes intestine ↓Lgr5+ ISCs 

↑Paneth cells 

 Mouse small 

intestine 

Shredded 3D ↑TNFa 

↑Paneth cell, goblet 

cell 

↓Notch signaling 

(66) 

 Mouse small 

intestine 

Shredded 3D ↑TLR 2/4 signaling (67) 

 Human small 

intestine, colon 

Apical-out Binding with 

basolateral receptor 

(30) 

 Mouse small 

intestine 

3D-

microinjection 

InlA-Ecad-dependent 

translocation through 

goblet cells 

(68) 

 Mouse 

(unspecified) 

Shredded 3D TMT-based 

quantitative 

proteomic analysis in 

different strains 

(69) 

Campylobacter 

jejuni 

Mouse small 

intestine 

3D-bacterial 

lysate 

DNA damage (72) 

Fusobacterium 

nucleatum 

Human 

(unspecified) 

ODM-OMV 

treatment 

↑TNF, NF-κB, 

MAPK signaling 

(74) 
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Porphyromonas 

gingivalis 

Mouse small 

intestine 

3D Regulation of cell 

composition 

(75) 

 

2.2. Co-culture with commensal bacteria and probiotics 

Recent evidence has shown that probiotics can provide beneficial effects on the host by 

improving the balance of gut microbiota composition and promoting intestinal mucosal barrier 

function, indicating their therapeutic potential to treat a variety of intestinal disorders as shown 

below (76, 77) (Table 2).  

 

a. Lactobacillus  

Most Lactobacillus species including L. reuteri, L. rhamnosus, and L. acidophilus are regarded 

as important probiotics in the intestine. They have been reported to be able to improve 

proliferation, regeneration, and maturation of IOs (78).  

L. reuteri can enhance the recovery of Lgr5+ cells and epithelial barrier after TNF-induced 

intestinal damage by activating the Wnt/β-catenin pathway in IOs (79). When L. reuteri D8 

was co-cultured with murine IOs in the presence of lamina propria lymphocytes (LPLs), L. 

reuteri D8 could stimulate the proliferation of stem cells and Paneth cell induction by up-

regulating the secretion of IL-22 mediated by STAT3 signaling activation (80). The role of L. 

reuteri in modulating host immunomodulation has also been investigated in an IOs-dendritic 

cell (DC) co-culture system (81). It was verified that both L. reuteri and its bacterial surface 

components could promote IL-10 production and DC maturation (81).  

Administration of L. rhamnosus GG (LGG) to an IO culture system can provide some 

protection against rotavirus infection by up-regulating antiviral secretory factors such as 

interferon-α (IFN-α) and CXC motif chemokine ligand 1 (CXCL1) via activation of TLR3 UN
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pathway in epithelial cells (82). Han et al. have also investigated the therapeutic potential of 

LGG in irritable bowel syndrome (IBS) using IO-based co-culture systems with a focus on 

barrier function (83). Interestingly, they found that LGG significantly upregulated junctional 

marker expression and prevented the increase in organoid permeability in response to treatment 

with IFN-γ or fecal supernatants obtained from IBS patients, indicating a beneficial role of 

LGG in the maintenance of gut barrier integrity.  

The protective effect of Lactobacillus species on intestinal epithelial damage has been also 

exhibited by L. acidophilus. To evaluate whether L. acidophilus could suppress the detrimental 

impact of pathobionts on IOs, L. acidophilus and S. typhimurium were treated simultaneously 

to dissociated IOs. Cellular properties of IOs were then assessed (84). In that work, S. 

Typhimurium significantly reduced the organoid-forming efficiency, which could be reversed 

by co-treatment with L. acidophilus. L. acidophilus could also enhance the differentiation into 

secretory lineage cells and, which in turn increased the production of mucus and antibacterial 

peptides to strengthen the mucosal barrier by regulating S. typhimurium-mediated 

hyperactivation of TLR2- and Wnt/β-catenin signaling pathways. Of note, Sittipo et al. have 

revealed dynamic changes in the prevalence of Lactobacillus species in murine stool samples 

after irradiation exposure using 16S rRNA-based oligotyping analysis (85) and reported the 

contribution of L. acidophilus to functional recovery of radiation-induced epithelial injury both 

in vitro and in vivo. Treatment of irradiated IOs with HK L. acidophilus can significantly 

enhance the organoid formation capacity with goblet cell enrichment, suggesting that 

administration of L. acidophilus and its derivatives might be beneficial to restoring intestinal 

homeostasis and barrier function impeded by pathogenic bacterial infection or irradiation. 

 

b. Bifidobacterium UN
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Bifidobacterium is another commensal probiotic bacterium that participates in the homeostasis 

of the gut microorganism community (86). Bifidobacterium, the dominant species in the large 

intestine, requires an anaerobic environment (78). In this context, IHACS, which mimics 

physiological gut anaerobic conditions in vitro, is useful for culturing IOs with Bifidobacterium 

(29). With this oxygen-controlled co-culture system, B. adolescentis could be successfully 

propagated with ODM. Importantly, only live B. adolescentis, not heat-killed bacteria or 

bacterial culture supernatant, could increase the expression of stem cell and goblet cell markers 

of ODM upon co-culture, demonstrating the importance of viability of bacteria in studying 

host-microbe interactions. 

 

c. Escherichia coli  

Benefits of commensal bacteria E. coli Nissle against dysbiosis have been confirmed in IOs 

(87). E. coli Nissle can protect human IOs from pathogenic E. coli-mediated disruption of the 

epithelial barrier, increased oxidative stress, and apoptosis. In addition, microinjection of a non-

pathogenic E. coli strain ECOR2 into human IOs can lead to transient changes in the oxygen 

concentration without causing any harmful impact on epithelial cells (88). After colonization, 

E. coli strain ECOR2 can increase the production of antimicrobial peptides and improve tissue 

maturation of IOs. 

 

Table 2. Studies reporting host-probiotic bacteria interactions using organoids 

Bacteria 

Source of 

organoid 

Culture 

system 

Key findings  

 

References   

Lactobacillus 

reuteri D8 

Mouse small 

intestine 

3D ↑ Intestinal epithelial 

regeneration 

(79) 
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 Mouse small 

intestine 

3D ↑ Proliferation of 

intestinal epithelial stem 

cells 

(80) 

Lactobacillus 

reuteri 

Mouse small 

intestine 

3D ↑ Dendritic cell 

maturation and IL-10 

production 

 

(81) 

Lactobacillus 

rhamnosus GG 

Mouse small 

intestine 

3D ↑ Expression of TLR3 (82) 

 Mouse small 

intestine, colon 

3D-

microinjection 

↑ Epithelial barrier 

function 

(83) 

Lactobacillus 

acidophilus 

Mouse small 

intestine 

3D ↑ Protects the 

intestinal mucosa against 

pathogen 

(84) 

 Mouse small 

intestine 

3D -HK   

bacteria 

↑ Intestinal epithelial 

function and 

differentiation 

(85) 

Bifidobacterium 

adolescentis 

Human colon ODM ↑ Differentiation of goblet 

cell and stem cell 

(29) 

Escherichia coli 

Nissle 

Human small 

intestine 

3D-

microinjection 

↑ Epithelial barrier 

function 

(87) 
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Nonpathogenic E. 

coli 

Human small 

intestine 

3D-

microinjection 

↑ Epithelial proliferation 

& secretion of anti-

microbial peptide 

(88) 

 

FUTURE PERSPECTIVES  

Organoid technology holds great potential to overcome limitations of conventional models 

such as 2D cell lines and experimental animals for modeling human anatomy and physiology. 

However, several challenging issues have to be solved to achieve advanced modeling of host-

microorganism interactions with IOs. First, the absence of other cellular components except 

for epithelial cells is the main limitation of present IOs. Compared to pluripotent stem cell-

derived organoids, which exhibit diverse cellular complexity, most adult stem cell-derived 

organoids like IOs consist of restricted lineage-derived cells that impede modeling of naïve 

microenvironment (89). Considering that microorganisms usually elicit an immune response 

and a repair process, which are predominantly mediated by regional immune cells and stromal 

cells respectively, the addition of these cells to an IO-microbe co-culture system would be 

necessary to recapitulate in vivo circumstances. Optimization of culture conditions is another 

important challenging issue. Although IOs are generally maintained under neutral, normoxic 

conditions, a dynamic range of oxygen concentration and pH found in the gut can significantly 

influence bacterial colonization patterns (90). Since oxygen availability strictly regulates 

bacterial behavior including growth, metabolism, and stress resistance, providing adequate 

oxygen gradient to both mammalian cells and microorganisms using advanced techniques such 

as microfluidic systems would be required to recapitulate in vivo situations. These 

improvements can also help us evaluate IO responses to a polymicrobial infection, which will 

provide clues about the role of dysbiosis in enteric disorder progression and greatly contribute UN
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to the understanding of disease mechanisms and establishing an effective therapeutic strategy. 
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