
BMB Reports - Manuscript Submission 

Manuscript Draft 

DOI: 10.5483/BMBRep.2023-0005 

Manuscript Number: BMB-23-005 

Title: Vitamin A: A key coordinator of host-microbe interactions in the intestine 

Article Type: Mini Review 

Keywords: Host-microbe interactions; Vitamin A; Microbiota; Mucosal 

immunity; Nutrients 

Corresponding Author: Ye-Ji Bang 

Authors: Ye-Ji Bang1,2,3,* 

Institution: 1Department of Biomedical Science and 2Department of 

Microbiology and Immunology, College of Medicine, Seoul National University, 

Seoul 03080, South Korea, 
3Institute of Infectious Diseases, Seoul National University College of Medicine, 

Seoul 03080, South Korea, 

UN
CO

RR
EC

TE
D 

PR
OO

F

https://doi.org/10.5483/BMBRep.2023-0005


 1 

Manuscript Type: Mini Review 1 

 2 

 3 

Vitamin A: A key coordinator of host-microbe interactions in the intestine 4 

Ye-Ji Bang1,2,3,* 5 

 6 

 7 

1 Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 8 

03080, South Korea 9 

2 Department of Microbiology and Immunology, College of Medicine, Seoul National 10 

University, Seoul 03080, South Korea 11 

3 Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, 12 

South Korea 13 

 14 

Running Title:  15 

Vitamin A regulates bacteria-immune crosstalk 16 

 17 

Keywords: Host-microbe interactions, Vitamin A, Microbiota, Mucosal immunity, Nutrients 18 

 19 

Corresponding Author's Information:  20 

* +82-2-740-8306, yeji.bang@snu.ac.kr  21 

 22 

  23 

UN
CO

RR
EC

TE
D 

PR
OO

F



 2 

ABSTRACT 24 

The human intestine is home to a dense community of microbiota that plays a key role in human 25 

health and disease. Nutrients are essential regulators of both host and microbial physiology and 26 

function as key coordinators of host-microbe interactions. Therefore, understanding the 27 

specific roles and underlying mechanisms of each nutrient in regulating the host-microbe 28 

interactions will be essential in developing new strategies for improving human health through 29 

microbiota and nutrient intervention. This review will give a basic overview of the role of 30 

vitamin A, an essential micronutrient, on human health, and highlight recent findings on the 31 

mechanisms by which it regulates the host-microbe interactions. 32 
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Introduction  35 

The human intestine is home to trillions of resident microorganisms including bacteria, 36 

archaea, fungi, bacteriophages, and viruses. These microorganisms, collectively termed 37 

microbiota, form a complex and dynamic community along the length of the gastrointestinal 38 

tract (1). Diverse metabolic pathways of microbiota maximize the host’s capacity for nutrient 39 

utilization from the diet and provide key metabolites that are essential for the host’s health. 40 

However, when the microbiota escapes from its niche and invades the host tissue, an infection 41 

occurs that could induce uncontrolled inflammation and lethal sepsis (2,3). Therefore, the host 42 

is equipped with physical and immunological defense systems to prevent the invasion of 43 

microorganisms. This includes the production of mucin, multiple antimicrobial proteins such 44 

as defensins, lysozyme, Reg3 lectins, cathelicidins, and secretory immunoglobulin A. In 45 

addition, the host should develop tolerance to the commensal microbiota to prevent 46 

unnecessary inflammation, failure of which could lead to uncontrollable inflammatory diseases 47 

(4–8). Therefore, the microbiota modulates the pathogenesis, progression, and treatment of 48 

various diseases, and modulating host-microbiota interactions is an emerging therapeutic 49 

avenue for disease control and prevention.    50 

This complex ecosystem is maintained with the interplay of nutrients, microbiota, and 51 

the host that is distinctive along the length of the intestine (1,2,9). The intestinal epithelial cells 52 

are located at the vital interface between microbiota/nutrients and the host and play a key role 53 

in the host-microbiota-nutrient interplay by functioning as a selective barrier that prevents the 54 

entry of harmful molecules while absorbing necessary nutrients (4,10). One of the most 55 

important tasks of intestinal epithelial cells is to monitor the intestinal environment (e.g., 56 

microbiota and nutrient availability) and regulate intestinal immunity accordingly. Multiple 57 

nutrients such as vitamins, amino acids, and fatty acids, and their metabolites are known to 58 

regulate epithelial and/or immune functions that are critically important for human health (11).  59 UN
CO

RR
EC

TE
D 

PR
OO

F



 4 

As nutrients are the essential regulators of the intestinal environment, bacteria, and host 60 

cells, it is important to understand how nutrients from the diet affect and regulate microbiota 61 

and different host cells. Understanding this host-microbe-nutrient interplay is central to the 62 

current efforts on microbiota and/or nutrient interventions for human health and diseases. This 63 

mini-review overviews an example of vitamin A, a relatively well-studied nutrient, and 64 

highlights the role of vitamin A in regulating the host-microbe interactions in the intestine.  65 

 66 

Vitamin A  67 

Vitamin A in health and diseases. Vitamin A is a fat-soluble micronutrient that is 68 

essential for human health. Vitamin A is a collective term for a group of compounds with 69 

similar biological activities to retinol. Retinol is the principal form of dietary vitamin A and 70 

there are multiple derivatives present in the body, including all trans retinoic acid (RA), 71 

retinaldehyde (retinal), and retinyl esters (Fig.1) (12). Vitamin A is required for multiple 72 

essential body functions, including growth, immunity, vision, and reproduction (13,14). 73 

Vitamin A deficiency (VAD) in humans causes childhood blindness, stunting, and anemia, and 74 

predisposes individuals to increased morbidity and mortality from various infections (15,16).  75 

Vitamin A absorption and metabolism in the intestine. Multiple forms of vitamin A 76 

are present in the body (Fig. 1A). Retinol and retinyl esters are found in animal-based diets, 77 

and are absorbed through the epithelial cells in the small intestine. Retinyl esters cannot enter 78 

the enterocyte, but rather are first hydrolyzed into retinol in the lumen. The uptake of retinol is 79 

known to involve a carrier-mediated active transport at dietary concentrations, yet the specific 80 

transporters are not identified (17,18). In addition, provitamin A, called carotenoids, is mainly 81 

found in plants and converted to retinol within the enterocyte after absorption. Mechanisms 82 

involved in the uptake of carotenoids by enterocyte is well established (reviewed in (18)). 83 

After absorption, the majority of the retinol is esterified and packaged into chylomicron 84 UN
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for delivery into the lymphatics (19). Liver hepatocytes uptake retinyl esters in chylomicron 85 

remnants and then transfer them into the stellate cells which are the major storage site of 86 

vitamin A in the body (20,21). It is noteworthy that enterocytes also secrete a significant amount 87 

of unesterified retinol unassociated with lipoproteins (19,22), and have distinct and specific 88 

physiological roles within the intestine. For example, a family of retinol-binding proteins, 89 

serum amyloid A (SAAs), is produced by intestinal epithelial cells and delivers retinol from 90 

the epithelium to the intestinal immune cells (Fig.1B) (23). 91 

 92 

Molecular mechanisms of vitamin A for regulating cellular functions  93 

Retinoic acid and RA signaling. Different forms of vitamin A have distinct roles in the 94 

body. Retinol is the primary form for transport while retinyl esters are the storage forms. 95 

Retinol is the immediate precursor of retinal and RA, two forms that have biologically active 96 

functions within the cell. Retinal is primarily required for the formation of rhodopsin thereby 97 

essential for vision (more details on the function of retinal are reviewed in (24)). Retinal also 98 

serves as an intermediate in the synthesis of RA from retinol. 99 

RA has broader physiological importance as it functions as a ligand for the nuclear 100 

receptors, RA receptors (RAR-α, -β and -γ). RARs bind with retinoid X receptors (RXR-α, -β 101 

and -γ for ) and participate in direct regulation of various gene expressions (25,26). RAR-RXR 102 

heterodimer binds to DNA sequences known as retinoic acid response elements (RARE) that 103 

are usually located on the promotor region of the target genes. Unliganded receptors bind to 104 

co-repressor molecules and repress the transcription, and the binding of RAs to the ligand-105 

binding domain of the receptors leads to a conformational change that results in the release of 106 

co-repressors and the recruitment of co-activators (27,28) (Fig. 2). Retinoids are known to 107 

control most developmental processes through these canonical pathways. Alternatively, the 108 

RA-receptor complex can indirectly down-regulate the expression of genes with no RAREs in 109 UN
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their promoters by competing for the required co-activator proteins (25,29,30). Under some but 110 

not all circumstances, RA is known to activate peroxisome proliferator-activated receptor 111 

(PPAR) β/δ when it is delivered to the nucleus via a specific intracellular lipid-binding protein, 112 

FABP5, albeit its mechanism activating PPARβ/δ is not yet clear (31,32).  113 

RA synthesis in the intestine. RA is a key regulator of intestinal immune homeostasis 114 

through various cells of the innate and adaptive immune system (33). In the intestine, epithelial 115 

cells, stromal cells, and certain immune cells including dendritic cells (DCs) and macrophages 116 

are known to produce RA (34–38). RA is produced in a two-step enzymatic process involving 117 

the conversion of retinol to retinal (by the action of the alcohol dehydrogenases, ADHs and 118 

RDHs) and subsequent conversion to RA (by retinaldehyde dehydrogenases, RALDHs) (39). 119 

A confined population of cells is equipped with the enzymes of both steps, presumably as 120 

nature’s strategy for regulating the production of this highly active metabolite. Many local 121 

factors within the mucosal environment, including vitamin A itself, fatty acids, cholesterol 122 

metabolites, GM-CSF, and Toll-like receptor (TLR) ligands, can promote RA production by 123 

cells (40–46).  124 

RA and intestinal immunity. RA has context- and concentration-dependent 125 

immunomodulatory roles. Vitamin A is critical for the functioning of various innate immune 126 

cells, including DCs, macrophages, neutrophils, and natural killer (NK) cells at the mucosal 127 

site(43,47–49). RA is also essential for imprinting innate lymphoid cells (ILCs) (50) and 128 

regulatory and effector T and B cells (36,51,52) with gut-homing specificity. The anti-129 

inflammatory role of RA involves the production of RA by myeloid cells which are critical for 130 

promoting Foxp3 regulatory T cell differentiation (53,54) and immunoglobulin A (IgA) 131 

production (52,55). Under infectious conditions, RA signaling can induce the production of 132 

proinflammatory cytokines by DCs and promote the differentiation of effector T cells (56,57). 133 

Therefore, RA is crucial in maintaining a balance between immunogenicity and tolerance at 134 UN
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the intestinal barrier (Fig. 3). 135 

 136 

Bacterial regulation of vitamin A metabolism and function 137 

Direct metabolism of vitamin A by gut bacteria. Many studies attempted to identify 138 

bacteria that metabolize or biosynthesize vitamin A. Multiple bacteria including gut 139 

commensals have been proposed to metabolize carotenoids to retinoids (58–61). The ability of 140 

bacteria to directly metabolize retinoids was discovered relatively recently, with Bacillus 141 

cereus being the first example to directly convert retinal to RA or retinol using aldehyde 142 

dehydrogenase (ALDH) (62). No specific gut commensal bacteria have been identified with 143 

the activity until very recently. Recent work by Woo and colleagues showed that commensal 144 

gut microbes including segmented filamentous bacteria (SFB) express ALDH and produce RA. 145 

RA produced by bacteria promotes the host’s defense against intestinal infection by activating 146 

epithelial RA signaling (63) (Fig. 3A). It remains to be determined how bacterial vitamin A 147 

metabolism is regulated and whether vitamin A metabolism per se regulates bacterial 148 

physiology and function in the gut.  149 

Regulation of host vitamin A metabolism by gut bacteria. Recent studies characterized 150 

how intestinal bacteria regulate host vitamin A metabolism. Grizotte-Lake and colleagues 151 

identified that gut commensal bacteria belonging to class Clostridia repress intestinal epithelial 152 

cell expression of retinol dehydrogenase 7 (Rdh7) and suppress epithelial RA synthesis. This 153 

suppression of epithelial-intrinsic RA signaling by gut commensals prevents the expansion of 154 

pathogenic bacteria by specifically reducing IL-22-dependent antimicrobial responses (64). 155 

More recently, a specific bacterium, Faecalibaculum rodentium, has been shown to suppress 156 

epithelial RA signaling at the proximal small intestine, which results in the loss of a certain 157 

eosinophil population. This, in turn, promotes the proliferation and turnover of intestinal 158 

epithelium via intraepithelial lymphocyte (IEL) interferon (IFN)- γ production (65) (Fig. 3C). 159 UN
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In addition, it has been reported that colonization of Bifidobacterium infantis increases the 160 

expression of RALDH by intestinal DCs, which then imposes anti-inflammatory effects by 161 

suppressing TH1 and TH17 responses (66). Therefore, gut microbiota contributes to immune 162 

homeostasis by regulating host RA production in multiple ways (64–66). 163 

Bacterial regulation of host vitamin A mobilization into immune cells. Mobilization 164 

of retinol, the primary transport form of retinoids, is a critical regulator of the function of 165 

vitamin A in the body. Being hydrophobic, retinol does not readily diffuse across aqueous 166 

environments between cellular compartments, but it rather relies on the binding proteins for 167 

mobilization. I and colleagues have recently discovered how gut microbiota regulates retinol 168 

mobilization in the intestine (23). Gut microbiota and dietary vitamin A induce the expression 169 

of a family of retinol-binding proteins, serum amyloid A (SAA) (67), by intestinal epithelial 170 

cells. Epithelial RA signaling mediated by RARβ induces epithelial cell expression of Saa 171 

genes in the presence of dietary vitamin A (68). Retinol is mobilized from epithelium by 172 

binding to SAAs and delivered to myeloid cells through the interaction of SAA with its receptor, 173 

LDL receptor-related protein 1 (LRP1). The SAA-mediated retinol delivery is important for 174 

some vitamin A-dependent adaptive immune responses including the intestinal homing of 175 

lymphocytes and their effector functions (23,68,69). It remains to be elucidated how different 176 

intestinal immune cells acquire retinol and/or retinoic acid through other sources and pathways 177 

(Fig. 3B).  178 

Role of vitamin A on bacterial infection. Vitamin A is essential for the defense against 179 

bacterial infection at the mucosal site. The production of an antimicrobial protein, Resistin-like 180 

molecule α (RELMα), is induced by vitamin A in the skin, which promotes vitamin A-181 

dependent resistance to skin infection (70). Vitamin A induces intestinal epithelial cell-intrinsic 182 

RA signaling and increases the production of interleukin (IL)-18 by epithelial cells. IL-18 183 

induces the production of IFN-γ and promotes the shedding of infected epithelial cells, which 184 UN
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limits the pathogen invasion early in infection (71) (Fig. 3D). Vitamin A may also directly 185 

regulate enteric pathogens. A study showed that retinol and RA inhibit the growth of 186 

Mycobacterium tuberculosis in a dose-dependent manner (72). A vitamin A-deficient diet in 187 

mice has been shown to significantly change the composition of gut microbiota, partly by 188 

vitamin A directly regulating bacterial growth in the gut (73). Whether dietary vitamin A 189 

directly affects the growth of enteric pathogens remains to be elucidated.  190 

 191 

Concluding remarks  192 

The human intestine has a complex ecosystem consisting of nutrients, microbiota, and host 193 

cells. Gut microbiota constantly interacts with host cells and plays critical roles in the health 194 

and disease of humans. Microbiota-based interventions have great therapeutic potential as well 195 

as challenges. Nutrients are the essential regulator of both host and bacterial physiology and 196 

function as key coordinators of host-microbe interactions. Understanding the roles and 197 

underlying mechanisms of each nutrient in regulating the host-microbe interactions will be 198 

essential and require further work. Such efforts should yield deeper insight into how host cells, 199 

microbes, and nutrients interplay in the intestine and should provide new strategies for 200 

improving human health.  201 

 202 

 203 

 204 

  205 

UN
CO

RR
EC

TE
D 

PR
OO

F



 10 

ACKNOWLEDGMENTS 206 

This study was supported by Bumsuk Academic Research Fund in 2022.  207 

 208 

CONFLICTS OF INTEREST 209 

The author declares no conflict of interest. 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 UN
CO

RR
EC

TE
D 

PR
OO

F



 11 

FIGURE LEGENDS 231 

 232 

Figure 1. Vitamin A absorption and metabolism. (A) Structure of vitamin A derivatives in 233 

the body. (B) Uptake, metabolism, and delivery of vitamin A. Retinol is absorbed through the 234 

intestinal epithelial cells and then converted to retinyl esters for storage. Retinyl esters are 235 

packaged into chylomicron, travels through the lymphatics, and stored in the liver. Serum 236 

retinol binding protein 4 (RBP4) delivers stored retinol to peripheral tissues and cells from the 237 

liver. Serum amyloid A (SAA) binds with retinol and delivers it from the intestinal epithelial 238 

cells to intestinal immune cells.    239 

 240 

Figure 2. Mechanisms of gene regulation by all trans retinoic acid. (A) RARs complex with 241 

their RXR heterodimer partner bind to retinoic acid response elements (RARE) DNA 242 

sequences. In the absence of atRA, they recruit corepressors that link RAR-RXR complex to 243 

histone deacetylases (HDACs), which leads to chromatin condensation and repression of gene 244 

expression. When atRA binds to RARs, a conformational change occurs which releases 245 

corepressors and recruits coactivators. The coactivators interact with histone acetylases (HATs) 246 

which lead to chromatin decompaction and allow access to DNA by transcriptional machinery 247 

(27,28). (B) Example of genes that are regulated by RA (26). The genes shown have conserved 248 

RAREs (or predicted RAREs) in their promoters and the expression is regulated in a RA-249 

dependent manner.  RAR, retinoic acid receptor; RXR, rexinoid receptor; atRA, all trans 250 

retinoic acid. 251 

 252 

Figure 3. Vitamin A is a central modulator of bacteria and immune crosstalk in the 253 

intestine. (A) SFB produce RA and promote defense against intestinal infection through 254 

epithelial RA signaling (63). (B) SFB induce expression of a retinol binding protein, SAA. 255 UN
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Retinol is mobilized from epithelium by binding to SAAs and delivered to myeloid cells 256 

through LRP1-mediated endocytosis. Myeloid cells may also acquire retinol and/or retinoic 257 

acid by unknown pathways. RA produced by myeloid cells is a central regulator of immune 258 

homeostasis by regulating differentiation and intestinal homing of T and B cells (23). (C) 259 

Commensal bacteria regulate RA pathways in multiple ways. Bifidobacterium infantis 260 

increases RALDH expression by DCs to promote anti-inflammatory responses. Clostridia 261 

species and Faecalibaculum suppress epithelial RA synthesis, which then reduces IL-22-262 

dependent antimicrobial responses (64) and promotes epithelial turnover through IEL 263 

production of IFN-γ (65). (D) Epithelial RA signaling increases IL-18 production and induce 264 

cell shedding and IFN-γ production, which promotes the clearance of pathogen (71).  265 
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